Вы здесь

Михаил Козловский: Өнегелі өмір. Вып. 30. ИЗБРАННЫЕ ТРУДЫ И ВЫСТУПЛЕНИЯ АКАДЕМИКА М.Т. КОЗЛОВСКОГО ( Коллектив авторов, 2014)

ИЗБРАННЫЕ ТРУДЫ И ВЫСТУПЛЕНИЯ АКАДЕМИКА М.Т. КОЗЛОВСКОГО

ЦЕМЕНТАЦИЯ КАК МЕТОД РАЗДЕЛЕНИЯ МЕТАЛЛОВ

Явление цементации. – Т.е. вытеснение одних металлов другими, широко используется в гидроэлектрометаллургии: для выделения малых количеств меди при гидрометаллургической переработке бедных руд, при очистке никелевых электролитов, для выделения кадмия при его производстве, для выделения некоторых редких металлов и т. д.

Этот метод может быть использован и в аналитической химии. Так, цементацию применяют для выделения из разбавленных растворов таких металлов, как индий, ртуть, сурьма, таллий и др. При помощи цементации можно также производить освобождение раствора от ряда металлов, препятствующих проведению той или другой реакции или определению того или иного элемента. Наконец, косвенным образом цементация может быть использована для определения некоторых металлов в смеси их с окислами, например, для определения металлического железа в смеси с его закисью и окисью. Важное значение метода цементации для аналитической химии подчеркнул Н.А. Тананаев в своем докладе на I Всесоюзной конференции по аналитической химии [1].

Первые теоретические обобщения, касающиеся цементации металлов, были сделаны более 150 лет назад, когда Севергиным [3], Фишером [2] и Хотинским [3] была установлена закономерность в вытеснении металлов, выражающаяся известным «рядом напряжений» и нашедшая дальнейшее развитие в работах Н.Н. Бекетова [4]. Новое истолкование «ряд напряжений» получил после введения понятия о нормальном потенциале и после того как была установлена зависимость потенциала от природы металла и концентрации (активности) его ионов, обобщенная в виде формулы Нернста. Однако дальнейшие опыты показали, что не всегда ход процесса цементации может 6ыть объяснен при помощи формулы Нернста. Так, по данным Н.А. Тананаева [1], бериллий, алюминий, железо и никель не вытесняют из растворов нитратов даже таких электроположительных металлов, как серебро, ртуть и медь. Эта аномалия может быть объяснена пассивацией цементирующего металла, прекращающей процесс анодного его растворения. В качестве другого примера несоответствия хода процесса ряду напряжений может служить реакция восстановления трехвалентного железа металлическим цинком. При этой реакции происходит выделение в осадок гидрозакиси железа, а не металлического железа, как это можно было бы ожидать на основании величин нормальных потенциалов. Это обусловлено снижением кислотности раствора в связи с разрядом водородных ионов.

Уже эти два примера указывают, что процессы цементации в достаточной степени сложны. Необходимо экспериментальное изучение этих процессов, так как применение одной лишь формулы Нернста не дает еще возможности сделать заключение, как будет проходить вытеснение одного металла другим. Однако количество исследований в этой области невелико [5-9]. Как правило, все эти исследования выполнялись не с целью применения полученных данных в аналитической химии.

Основные вопросы, интересующие аналитика, – это выяснение факторов, влияющих на полноту цементации (что тесно связано с вопросом о скорости цементации), и влияния на ход процесса других катионов, находящихся в растворе. Сравнительно меньшее значение для аналитика имеют вопросы полезного использования цементирующего металла.

Авторами были проведены исследования по цементации некоторых цветных металлов (висмута, сурьмы) на кадмии, железе и свинце, а затем других металлов на амальгамах натрия и цинка. Кадмий и железо 6ыли выбраны как два металла, обладающие почти одинаковым нормальным потенциалом, но сильно отличающиеся по величине перенапряжения для выделения на них водорода. Свинец взят как металл более положительный и обладающий притом 6ольшим перенапряжением для водорода. Опыты проводились с пластинками металла при температуре кипения раствора в солянокислой или серно-солянокислой среде.

При цементации висмута на этих металлах были замечены некоторые закономерности. Оказалось, что при больших концентрациях цементируемого металла скорость цементации зависит от потенциала цементирующего металла. Этого и можно было ожидать, поскольку количество отлагающегося металла должно быть пропорционально силе тока местных элементов, а последняя при прочих равных условиях определяется разностью потенциалов цементируемого и цементирующего металлов. Однако при малых количествах цементируемого металла скорость процесса цементации оказывается уже не зависящей от потенциала металла, примененного для цементации. Это может быть объяснено тем, что в данном случае скорость процесса определяется уже скоростью диффузии разряжающихся ионов. – Т.е. наступает явление, аналогичное явлению предельного тока в полярографии (рисунки 1 и 2).

Величина же перенапряжения для выделения водорода резко сказывается на величине полезного использования металла для процесса цементации. Так, при цементации 10,6 мг висмута на цементацию металла было израсходовано 53 % кадмия, а на выделение водорода (а также на восстановление незначительных количеств растворенного 02) – 47 %, в то время как для железа – 12 и 88 %, соответственно. Полезное использование свинца достигало 95 %.


Рисунок 1. Цементация 6ольших количеств висмута. 1 – цементация кадмием, 2 – железом, 3 – свинцом


Рисунок 2. Цементация малых количеств висмута. 1 – цементация кадмием, 2 – железом, 3 – свинцом


В ряде опытов приходилось набдюдатъ, что при выделении некоторого количества цементируемого металла скорость процесса цементации начинала возрастать. Это может быть объяснено увеличением катодной поверхности: при небольшой поверхности микрокатодных участков процесс лимитируется скоростью диффузии разряжающихся ионов к этим участкам. При отложении же цементируемого металла поверхность катодных участков возрастает и соот- ветственно увеличивается число ионов, диффундирующих к катоду в единицу времени. Отметим, что непрерывное изменение величины как катодной, так и анодной поверхности в процессе цементации делает недостоверными практикуемые некоторыми авторами подсчеты констант скорости реакции цементации.

Как уже отмечалось, с точки зрения аналитической химии, наиболее важным является вопрос о количественном выделении металла из раствора путем цементации. Опыты показали, что особенно трудно выделить последние следы металла. По мере уменьшения содержания металла в растворе потенциал, необходимый для его выделения, делается все более отрицательным, вследствие чего металлу стано- вится все труднее конкурировать с водородом. Например, при снижении содержания висмута с 10,6 до 1,06 мг на 100 мл раствора полезное использование кадмия снижается с 53 до 13 %, а железа – с 12 до 1,4 %, остальное же количество цементирующих металлов расходуется на выделение водорода.

Для улучшения процесса цементации малых количеств металла было решено испытать добавку к цементируемому раствору солей других металлов. В качестве такой добавки применялись соли свинца. Авторы рассчитывали на положительное его влияние из таких соображений: 1) выделившийся на цементирующем металле свинец увеличивает поверхность катодных участков, 2) ввиду высокого перенапряжения водорода на свинце конкурирующий процесс разряда ионов водорода будет задержан.

Опыты показали справедливость высказанных предположений. Если при наличии в растворе 1 мг висмута за 25 мин на кадмии удавалось выделить всего лишь 0,5 мг висмута, то после добавления к раствору 100 мг свинца количество выделенного цементацией висмута за тот же срок составляло 98,2-99,0 %. Даже при количестве 0,11 мг висмута процент выделенного металла достигал 90 %. При этом расход кадмия на выделение водорода резко снижался; на выделение водорода кадмий практически совсем не расходовался.

Аналогичные опыты были проведены с сурьмой, при цементации которой железом к раствору добавляли соли меди. Оказалось, что и в этом случае добавление ионов другөго металла повышало количество выделенной сурьмы, однако в этом случае положительное влияние добавки меди в основном связано с увеличением катодной поверхности, а также с тем, что медь, образуя химическое соединение с сурьмой, несколько сдвигает в сторону положительных значений потенциал разряда ионов сурьмы. Что же касается выделения ионов водорода, то, поскольку медь обладает малым перенапряжением для водорода, последний при добавлении малых количеств меди выделяется в Больших количествах из-за увеличения катодной поверхности. При добавлении 6ольших количеств меди выделение водорода замедляется ввиду уменьшения поверхности анодных участков.

Рассмотрим опыты по цементации при помощи амальгам. Цементация амальгамами нас интересовала в силу целого ряда соображений: 1) на амальгамах велико перенапряжение для выделения водорода, поэтому на амальгамах не так сильно будет сказываться конкурирующий процесс выделения водорода; 2) при цементации амальгамами выделенный металл растворяется в ртути, следовательно, его легко можно отделить от исследуемого раствора (не прибегая к фильтрованию); 3) полученную амальгаму можно затем исследовать полярографически (по методу А.Г. Стромберга [9]), электрохимически, подвергая анодному окислению по нашему методу, или титровать ее по методу В.А. Циммергакла и Р.С. Хаймовича [10]; 4) при применении амальгамы для цементации можно использовать такой металл, как натрий, который не мешает проведению большинства реакций и одновременно характеризуется большой восстановительной способностью. Кроме того, применение амальгам для цементации металлов представляет определенный интерес и с методологической точки зрения, так как в этом случае не происходит изменения величины катодной и анодной поверхностей.

Нами изучался процесс цементации некоторых металлов при помощи амальгам натрия и цинка. В качестве объектов для цементации первоначально был выбран кадмий как в отдельности, так и в присутствии следующих метяллов: железа (металла, обладающего 6лизким к кадмию нормальным потенциалом, но отличающимся от кадмия по растворимости в ртути и по величине перенапряжения для водорода), никеля (металла, Близкого по свойствам к железу, но обладающего более положительным потенциалом), меди (металла более электроположительного, чем водород) и цинка (одного из наиболее электроотрицательных металлов). Были проведены также опыты по цементации свинца и олова из щелочных растворов амальгамой натрия.

Опыты проводились при температуре 20° в стакане емкостью 100 мл при постоянном числе оборотов мешалки. Установлено, что при цементации кадмия амальгамой натрия из нейтральных растворов не наблюдается полного выделения кадмия вследствие выпадения части кадмия в осадок в виде гидроокиси. При слабом подкислении раствора количество кадмия, переходящего в амальгаму, возрастает, а при более сильном подкислении уменьшается в связи с конкурирующим влиянием ионов водорода. Кроме того, при этих опытах было установлено конкурирующее влияние растворенного кислорода, действие которого приводило к переходу уже выцементированного кадмия из амальгамы снова в раствор. При цементации кадмия в присутствии цинка из нейтральных растворов наблюдалась 100 %-ная цементация кадмия, так как в этом случае гидроксильные ионы связывались не кадмием, а цинком, гидроокись которого менее растворима, чем гидроокись кадмия.

При цементации кадмия в присутствии никеля и железа оказалось, что происходит одновременная цементация обоих металлов, однако, в первую очередь цементируется преимущественно кадмий, а не никель, хотя нормальный потенциал последнего и более положителен, нежели кадмия. Это объясняется тем, что образование амальгамы никеля (равно как и железа) требует затраты значительного количества энергии. Оба металла цементируются не количественно: из нейтральных растворов – вследствие образования осадка гидроокисей, из кислых же растворов – вследствие конкурирующего процесса выделения водорода, который в этом случае проходит довольно интенсивно. Что же касается железа, то оно переходит в амальгаму в еще меньшем количестве, чем никель, так как потенциал железа отрицательнее потенциала никеля. При цементации кадмия в присутствии железа из нейтральных растворов наблюдается количественное выделение кадмия: ионы гидроксила так же, как и в случае цинка, связывают уже не кадмий, а железо, гидроокись которого менее растворима, чем гидроокись кадмия (произведения растворимости для гидроокисей кадмия, железа двухвалентного и никеля соответственно равны 1,2∙10-14, 4,8∙10-16 и 2∙10-14).

При цементации кадмия в присутствии меди из слабокислых растворов (0,1 н.) оба металла количественно переходят в амальгаму, при цементации же из нейтральных растворов как медь, так и кадмий оказываются частично в осадке гидроокисей.

Опыты по цементации кадмия в присутствии других металлов показывают, что лимитирующей стадией процесса является катодный процесс, который определяется скоростью диффузии ионов к амальгаме. В самом деле, при наличии второго металла, на выделение которого затрачивается натрий, первый металл выделяется в меньшем количестве, чем в отсутствии второго металла.

При использовании вместо амальгамы натрия амальгамы цинка оказалось, что цементация кадмия при помощи цинка (опыты проводились в кислых растворах) проходит даже быстрее, чем при помощи амальгамы натрия; это объясняется тем, что цинк не расходуется на выделение водорода. Что же касается никеля и железа, то они амальгамой цинка цементируются в крайне ничтожной степени.

Далее 6ыли проведены опыты по цементации свинца и олова амальгамой натрия в щелочных растворах. Оказалось, что свинец количественно может быть переведен в амальгаму при одновременном выделении водорода. Несмотря на проведение процесса в щелочной среде, на выделение водорода расходовалось до 80 % натрия, имеющегося в амальгаме. При проведении опытов с амальгамами разных концентраций оказалось, что более концентрированные амальгамы дают худшие результаты, чем разбавленные; в этом случае при применении более концентрированной амальгамы (1 %-ной вместо 0,5 %-ной) наблюдается затвердевание первоначально жидкой амальгамы, сопровождающееся выделением прекрасно образованных кристаллов, имеющих форму куба и представляющих собой тройную систему из ртути, свинца и натрия. Ориентировочный анализ показал, что содержание ртути в этих кристаллах Близко к 99 %, натрий же и свинец находятся в молекулярных соотношениях 20:1 (0,27 % свинца, 0,55 % натрия).

Что же касается цементации олова амальгамой натрия, то проведенные при доступе воздуха опыты показали, что цементация проходит совсем неудовлетворительно: в амальгаму удается перевести лишь незначительное количество олова. Это легко объясняется тем, что кислород воздуха окисляет станнит и натрий расходуется в основном на обратный процесс восстановления станната в станнит.

Выводы

1. При процессах цементации следует учитывать возможность протекания следующих процессов, конкурирующих с процессом выделения металла: выделение водорода и восстановление кислорода воздуха.

2. Как тот, так и другой процесс приводят к замедлению цементации металла, причем выделение водорода может привести к выпадению осадка гидроокиси металлов.

3. При цементации смеси нескольких металлов ход процесса может определяться значениями перенапряжения для водорода на этих металлах, а также величинами произведения растворимости их гидроокисей.

4. При цементации металлов необходимо учитывать возможность образования интерметаллических соединений, которые могут оказывать влияние на ход цементации.

5. Процесс цементации металлов амальгамами нуждается в дальнейшем изучении и может найти разнообразные аналитические применения.

Литература

1. Тананаев Н.А. // Тр. конференции по аналитической химии, 2. – М., 1948. – 297 с.

2. Fischer N.W. //Pogg. Ann., 1826. -6. – P.43; 1826. – 8. – P.4888; 1827. – 9. – P.255; 1827. – 10. – P. 603.

3. Баталин А.Х. // Вестн. Чкаловского отделения ВХО им. Д.И. Менделеева. – 1946. – 3.

4. Бекетов Н.Н. Исследования над явлениями вытеснения одних элементов другими. – Харьков, 1865.

5. Изгарышев Н.А., Миркин И.А. // Журн. общ.хим. – 1934. – 4. – С.7.

6. Шахов А.С. // Журн. Физ. Хим. – 1936. – 4. – С. 525.

7. Дроздов Б.В. // Журн. Прикл. Хим. – 1949. – 22. – С. 483.

8. Плаксин И.Н., Суворовская Н.А. // Цветные металлы. – 1948. – 3. – С. 37.

9. Стромберг А.Г. Рефераты докладов на совещании по электро- химическим методам анализа. – М., 1950.

10. Цыммергакл В.А., Хаймович Р.С. // Завод, лаб. – 1948. – 14. – С. 1289.

Доклад на конференции по аналитической химии в Москве в 1950 г. Труды по аналитической химии АН СССР. – Т. IV (VII). – М, 1952. – 263 с.

О ПОДГОТОВКЕ КАДРОВ ХИМИКОВ-АНАЛИТИКОВ ДЛЯ ПРОМЫШЛЕННОСТИ

Нет необходимости говорить о том значении, которое в современном производстве имеет правильная и четкая постановка работы заводских лабораторий. Точные методы анализа и усовершенствованная аппаратура представляют собой основные звенья, обеспечивающие высокое качество работы аналитических лабораторий. Не меньшее значение имеют и вопросы организации труда в заводских лабораториях. Все перечисленные вопросы регулярно освещались и освещаются на страницах журнала «Заводская лаборатория». Однако один основной вопрос, который имеет исключительно серьезное значение в работе заводских лабораторий, – вопрос о подготовке кадров аналитиков – до сих пор совершенно не затрагивался в журнале.

Между тем, в системе вузовского образования аналитическая химия в настоящее время занимает крайне скромное место. Если 30 лет назад на изучение одного лишь качественного анализа студент затрачивал свыше 500 час., то теперь по университетским планам на всю аналитическую химию (качественный и количественный анализ) отводится всего лишь 390 час. Этим ограничивается аналитическая подготовка химиков всех специальностей, кроме химиков-аналитиков, имеющих еще спецкурсы в последнем году обучения.

Нормально ли такое положение? На этот вопрос, прежде всего, должны ответить производственники.

Министерством высшего образования созывались методические совещания по вопросу о преподавании аналитической химии. Последнее такое совещание проходило в июне 1950 г. Однако на этих совещаниях, как правило, не присутствовяли представители зяводских и других производственных лабораторий. В числе 232 делегатов совещания 6ыло всего 6 инженеров, и единственным производственником, выступавшим на данном совещании, был старший научный сотрудник ВИМС В. Г. Сочеванов.

Между тем, я считаю, что по вопросам подготовки специалистов-аналитиков должны высказаться, в первую очередь, те, для кого эти кадры готовятся. – Т.е. руководители крупных производственных лабораторий. Именно эти лица должны указать Министерству высшего образования на те недостатки, которые имеются в подготовке аналитиков. Они же должны осветить вопрос о потребности в кадрах аналитиков различных специальностей и об аналитической подготовке химиков-технологов и исследователей.

Проводя в жизнь принцип содружества работников науки и производства, мы не должны забывать этот принцип и при разрешении таких важных вопросов, как составление программ и учебных планов высших учебных заведений.

Я считаю, что редакция журнала «Заводская лаборатория» должна проявить инициативу и провести обсуждение на страницах журнала столь важного вопроса, как вопрос о подготовке кадров аналитиков и о месте аналитической химии в системе химического образования.

Заводская лаборатория, 1951 г.

АМАЛЬГАМНАЯ МЕТАЛЛУРГИЯ КАК ОДНА ИЗ ПРОБЛЕМ НОВОЙ ТЕХНИКИ

История развития цветной металлургии показывает, что непрерывно возрастающая потребность в цветных металлах вынуждает металлургов перерабатывать все более бедные руды. Пирометаллургическая переработка бедных руд стала возможной благодаря применению современных методов обогащения. Однако во многих случаях методы обогащения сами по себе не могут привести к разрешению проблемы переработки бедных руд, особенно полиметаллических. В связи с этим все большее значение приобретают различные гидрометаллургические методы с использованием процесса цементации. – Т.е. вытеснения одного металла другим.

Одним из возможных путей дальнейшего развития гидрометаллургических методов является «амальгамная металлургия», открывающая широкие перспективы не только в области переработки бедных полиметаллических руд, но и в области получения металлов высокой степени чистоты, что является также одной из проблем современной техники [і].

Методы амальгамной металлургии основаны на селективном переводе металлов в ртуть с образованием амальгам и на последующем селективном же извлечении их из полученных амальгам. В этом отношении можно в известной мере сравнить методы амальгамной металлургии с методами разделения и очистки солей путем их растворения и кристаллизации из водных растворов.

Разделение металлов амальгамными методами основывается на различной растворимости металлов в ртути и различии в значениях электродных потенциалов при осаждении металлов на ртутном катоде, а также при анодном окислении амальгам. Напомним, что при электролитическом выделении металлов на катоде в первую очередь отлагаются те металлы, которые обладают наиболее положительным потенциалом. При обратном же процессе – анодном растворении металлов – в раствор переходят сначала те металлы, которые характеризуются наиболее отрицательным потенциалом. Перевод металлов в ртуть может быть осуществлен разными способами:

1) непосредственной обработкой ртутью материалов, содержащих металлы как таковые. – Т.е. не в виде их химических соединений с неметаллами, например самородные металлы, металлический лом и т. д.;

2) электролизом растворов солей металлов с применением ртути в качестве катода;

3) цементацией амальгамами. – Т.е. вытеснением металла из раствора его соли с помощью амальгамы более электроотрицательного (менее «благородного») металла.

Непосредственным растворением металлов в ртути могут быть получены амальгамы тех металлов, которые обладают заметной растворимостью в ней. В таблице 1 приведены данные по растворимости различных металлов в ртути.

Таблица 1

Растворимость металлов в ртути, вес. %

Продолжение таблицы 1


Как видно из этой таблицы, растворимость металлов в ртути колеблется в широких пределах. Так, у таллия она достигает примерно 45 %, металлы же группы железа практически не растворимы в ртути. Для некоторых металлов, например алюминия, наблюдается резкое увеличение растворимости с повышением температуры. Рассмотрение таблицы показывает, что прямым растворением металла в ртути удается получить амальгамы лишь небольшого числа металлов.

Методом же электролиза с ртутным катодом легко переводятся в ртуть те металлы, которые в ней практически не растворимы либо обладают малой растворимостью, причем удается получить системы, содержащие весьма большие количества металла. Так, электролизом с ртутным катодом мы получали амальгамы со следующим содержанием металлов на литр ртути: меди – 380 г, висмута – 418, цинка – 780, олова – 950, кадмия – 900, кобальта – 175, никеля – 235, железа – 110 г.

Такие амальгамы не растворимых в ртути металлов, а также амальгамы, содержащие металл в количествах, превышающих его растворимость в ртути, не представляют собой однофазных систем (истинных растворов), а являются двух- или многофазными системами. – Т.е. взвесями металлов в ртути.

Процесс цементации, по сути дела, также чисто электрохимический процесс, аналогичный процессу электролиза: катодным процессом в данном случае является выделение цементируемого металла, а анодным – растворение цементирующего металла. При процессе цементации, так же, как и при электролизе, могут быть получены амальгамы не растворимых в ртути металлов и амальгамы, содержащие металлы в количествах, превышающих их растворимость в ртути.

Электролиз с ртутным катодом и процесс цементации с помощью амальгам имеют большие преимущества по сравнению с электролизом с твердыми катодами и цементацией твердыми металлами.

Во-первых, перенапряжение для выделения водорода на ртутном катоде весьма высоко, что ставит выделяемый металл в несравненно благоприятные условия в отношении конкуренции его ионов с ионами водорода при процессе разряда на катоде. При этом перенапряжение для водорода остается высоким, даже если в ртути растворится металл, обладающий низким значением перенапряжения. Так, по нашим данным, перенапряжение для выделения водорода на ртути и на амальгаме кобальта, обладающего низким перенапряжением, оставалось практически одинаково высоким, даже когда концентрация кобальта достигала 3 г-атом/л ртути.

Во-вторых, при электролизе с ртутным катодом поверхность электрода остается совершенно однородной, что исключает образование местных элементов и тем самым вредное влияние различных примесей. Например, при электролизе цинка с твердым катодом наличие в электролите следов некоторых более положительных металлов вызывает резкое снижение выхода цинка по току, так как наряду с отложением цинка на катоде происходит обратный процесс растворения цинка за счет работы местных элементов.

Как известно, всякому анодному процессу должен отвечать какой-то катодный процесс, при невозможности же протекания катодного процесса прекращается и анодный. В данном случае растворение цинка является анодным процессом, катодным же служит выделение водорода на микро- участках, образованных выделившимися на катоде более положительными, нежели цинк, металлами, обладающими низким перенапряжением для выделения водорода. При электролизе же с ртутным катодом такие микроучастки не образуются.

Далее при электролизе с ртутным катодом, если не допускать слишком высокой концентрации металла в амальгаме, отпадает опасность образования дендритов. Как известно, дендритообразование вызывает короткие замыкания, что приводит к периодическим остановкам процесса. Исключение дендритообразования при электролизе с ртутным катодом позволяет проводить процесс при более Близком расположении электродов, благодаря чему снижается рас- ход электроэнергии.

При цементации с помощью амальгам сохраняются все преимущества катодного отложения металла на ртути, в частности оказывается сильно затрудненным конкурирующий процесс разряда ионов водорода, в результате чего полезное использование цементирующего металла повышается. Легкое раздробление на мелкие куски увеличивает ее действующую поверхность, что значительно ускоряет процесс цементации. При цементации с помощью амальгам не приходится опасаться тормозящего процесса влияния пленки выделенного металла, поскольку таковая не остается на поверхности, а растворяется в ртути. Если сравнить цементацию амальгамами, рассматриваемую как электро-химический процесс, с процессом выделения металлов из водных растворов их солей путем обычного электролиза, то цементация обладает несомненными преимуществами: прежде всего простотой аппаратурного оформления, а также отсутствием таких поБочных процессов, как коррозия твердых анодов и отложение металлов в виде окислов на аноде.

Наконец, цементация при помощи жидких амальгам позволяет легко осуществлять принцип противотока, имеющий большое технологическое значение и позволяющий выделять металлы из весьма разбавленных растворов их солей. При проведении цементации по принципу противотока можно осуществить фракционированное разделение металлов. Например, раствор, содержащий медь, свинец и цинк, можно подвергнуть цементации амальгамой цинка. При этом медь, обладающая более положительным потенциалом, чем свинец, будет цементироваться в первую очередь, а свинец – во вторую, что дает возможность получать непрерывный поток двух амальгам – медной и свинцовой и цинксодержащего раствора. Этот раствор будет содержать не только тот цинк, который первоначально находился в водном растворе вместе со свинцом и медью, но и тот цинк, который перешел из амальгамы в процессе цементации свинца и меди. Контроль процесса цементации осуществляется путем измерения электродного потенциала амальгамы, и самый процесс цементации может быть полностью автоматизирован.

При рассмотрении процессов электролиза с ртутным катодом и цементации при помощи амальгам следует учитывать, что потенциал разряда ионов металла на ртути во многих случаях значительно отличается от потенциала разряда этих же ионов на твердых электродах. Это позволяет производить на ртутном катоде разделение таких металлов, которые не могут быть разделены методом обычного электролиза. Напомним, что на ртутном катоде могут быть выделены из нейтральных и щелочных растворов даже такие электроотрицательные металлы, как натрий и калий.

Рассмотрим вопрос о способах выделения металлов из амальгам.

Выделение металла из амальгам может быть выполнено следующими методами:

– удалением ртути из амальгамы путем нагревания (отгонкой ртути);

– фильтрованием амальгамы (для двухфазных амальгам);

– методом электролиза при использовании амальгамы в качестве анода;

– методом цементации: обработкой амальгамы солями более электроположительных металлов. В этом случае металл из амальгамы выделяется не в своБодном состоянии, а в виде соли.

Выделение металлов путем отгонки ртути в настоящее время получило уже промышленное применение при производстве металлического натрия. По литературным данным, получение натрия путем электролиза с ртутным катодом раствора хлористого натрия и последующей отгонкой ртути из полученной амальгамы натрия требует в три раза меньше электроэнергии, нежели получение натрия обычным методом – электролизом расплавленных солей. Отметим, между прочим, что расход тепла на испарение одного килограмма ртути в семь раз меньше, чем для испарения одного килограмма воды.

Путем фильтрования могут быть выделены из амальгамы те металлы, которые в ртути не растворимы. Этот метод прошел уже промышленные испытания: на нем основан процесс очистки алюминия от примесей железа и кремния. Технический алюминий растворяют в ртути при температуре около 600°, причем железо и кремний остаются нерастворенными и отфильтровываются. При понижении температуры происходит выделение алюминия (как уже отмечалось, при комнатной температуре ялюминий практически не растворяется в ртути). Выделившийся алюминий отделяется от ртути фильтрованием. Механически захваченная алюминием ртуть удаляется отгонкой. Этим путем получают алюминий, сво6одный от кремния и железа.

Следует отметить, что при фильтровании амальгам не наблкщается такого неприятного явления, как забивание пор фильтра.

Путем фильтрования амальгам могут быть получены также порошки марганца, хрома, железа, никеля и кобальта.

– Т.е. металлов, не растворимых в ртути, амальгамы которых, однако, могут быть получены электролизом с ртутным катодом водных растворов их солей или цементацией амальгамами электроотрицательных металлов (например, амальгамой натрия). Получение порошков металлов приобретает большое значение в связи с развитием порошковой металлургии (как известно, методы порошковой металлургии используются при получении сверхтвердых сплавов) [2].

Процесс анодного разложения амальгам обычно сочетается с катодным отложением выделяющегося из амальгамы металла. Технически этот процесс проще всего может быть осуществлен с использованием современных электролизеров с вращающимися электродами. Такие электролизеры применяются в производстве едкого натра методом электролиза с ртутным катодом. При проведении процесса электролиза с контролем электродных потенциалов можно осуществлять достаточно тонкое разделение и получать металлы весьма высокой степени чистоты. По литературным данным, подобным методом можно получить цинк, содержащий всего лишь не более 0,001 % примесей [і].

Выделение металлов из амальгам путем цементации.

– Т.е, взаимодействия амальгамы с солями более электро-положительных металлов, было рассмотрено выше при описянии метода цементации. Если амальгама содержит несколько металлов, то при обработке такой смешанной амальгамы последовательно растворами солей соответству- ющих металлов можно разделить металлы, находящиеся в амальгаме, получив ряд растворов их солей. Если же амальгаму обработать раствором ртутной соли, то из амальгамы можно извлечь все растворенные в ней металлы (за исклю- чением более благородных, нежели сама ртуть) и таким образом осуществить регенерацию ртути. Вообще же следует подчеркнуть, что в методах амальгамной металлургии ртуть, находясь в кругообороте, теоретически не должна расходоваться. Практически же расход ртути, как показывает практика заводов по электролизу поваренной соли, составляет в год около 2 % от общего количества находящейся в производстве ртути.

Объем настоящей статьи не позволяет нам останавливаться подробно на различных схемах, предложенных для переработки бедных руд и отходов производства (например, пиритных огарков).

Сущность подобных схем сводится к тому, что после предварительного хлорирования или хлорирующего обжига руды получают растворы, которые перерабатываются методами амальгамной металлургии. При этом в случае применения методов электролиза с ртутным катодом выделяющийся на аноде хлор используется в процессах хлорирования.

Подобные схемы, прошедшие промышленную проверку на Дуисбургском заводе, предусматривают, например, извлечение из пиритных огарков не только меди, но и цинка, кадмия, таллия и свинца, а из пестрого песчаника, без всякого предварительного обогащения – свинца, цинка, меди, серебра и серы (в виде хлорида). Отметим, что в работе [1] особенно подчеркивается важность этих методов для переработки бедных свинцовых руд.

Амальгамные методы могут 6ыть использованы также для получения солей различных металлов и минеральных красок путем обработки амальгам растворами соответствующих солей [3].

Возможно, что амальгамная металлургия найдет себе также применение при производстве сплавов различных металлов: при смешении амальгам некоторых металлов наблюдается взаимодействие этих металлов, приводящее к образованию соответствующих сплавов.

При обсуждении перспектив развития методов амальгамной металлургии часто выдвигается в качестве возражения против применения этих методов то обстоятельство, что ртуть ядовита. Мы считаем, что это возражение в условиях современной санитарной техники не является существенным. Если придерживаться точки зрения изъятия из промышленности всех вредных и опасных в обращении веществ, то пришлось бы отказаться от целого ряда производств: от получения свинца, серной кислоты и т.п., а об использовании атомной энергии в мирных целях, конечно, не могло бы быть и речи. К этому следует добавить, что ртутный метод получения едкого натра, несмотря на вредность работы с ртутью, нашел практическое применение в громадных масштабах: количество циркулирующей ртути на некоторых заводах составляет десятки и даже сотни тысяч килограммов [27]. Если учесть, что процессы амальгамной металлургии осуществляются, как правило, в герметизированных аппаратах, то станет ясным, что ртутная опасность перестанет быть неразрешимой проблемой.

Вторым возражением является высокая стоимость ртути. Однако это возражение отпадает, если учесть, что затраты на приобретение ртути необходимы лишь при организации производства, в дальнейшем же, как уже отмечалось, расход ртути невелик.

Для оценки масштаба применения различных ртутных методов за рубежом определенный интерес представляют данные по потреблению ртути в Германии и США: если до второй мировой войны потребление ртути в каждой из этих стран составляло примерно около 900 т в год, то в Германии в1940 г. оно достигало 1927 т, а в США в 1954 г. – 2200 т [4]. По новейшим данным [5], в США запланировано приобретение 6990 т ртути на ближайшие три года. Официальная статистика обеих стран объясняет столь резкое возрастание спроса на ртуть использованием ее в электрохимических производствах.

Развитие амальгамных методов, несомненно, связано с теми теоретическими исследованиями в области электролиза с ртутным катодом, которые стали широко проводиться в связи с появлением нового метода электрохимического анализа, так называемой полярографии. Не случайно исследования по амальгамной металлургии проводились под руководством доктора Гона, известного специалиста по полярографии. Эти работы были начаты в 1938 г., но выполнялись в строгом секрете, и первое сообщение о них появилось в 1948 г. в мало распространенном химическом журнале [і]. Широкую же известность они приобрели уже в 50-х годах, после появления соответствующих заметок в реферативных журналах, а также ряда новых публикаций [6-8].

Совершенно независимо от работ, проведенных за границей, ряд исследований в области амальгамных методов разделения металлов был выполнен коллективом научных сотрудников Казахского гөсударственного университета им.

С.М. Кирова и в Академии наук Казахской ССР. Исследования в области электролиза цветных металлов с ртутным катодом были начаты в 1939 г., прерваны в связи с войной и возобновлены в 1945 г. В этих работах [9-26] большое внимание уделялось изучению величин электродных потенциалов при электролизе солей различных металлов с ртутным кятодом и при янодном окислении амальгам, поскольку, как уже отмечалось, величины электродных потенциалов являются важнейшей характеристикой, определяющей поведение металла при электролизе. Поэтому ряд работ был посвящен вопросам теории и практики цементации вообще и амальгамам, в частности, а некоторые – вопросам взаимодействия друг с другом растворенных в ртути металлов [22-24].

Отметим, что интересные работы по амальгамным методам разделения металлов были выполнены также и в ИОНХ АН УкрССР [25, 26]. На многочисленных работах по электролизу с ртутным катодом растворов щелочных металлов в настоящей статье останавливаться не будем.

Считаем, что методы амальгамной металлургии должны привлечь к себе внимание работников цветной металлургии Казахстана и что исследования вэтой области должны проводиться широким фронтом в тесном содружестве научно- исследовательских учреждений и заводов.

С одной стороны, необходимо проводить дальнейшие теоретические исследования в области химии и физики амальгам и изучения их электрохимических свойств. С другой – успех дела зависит и от удачного технологического оформления методов, разработанных в лабораториях. К этому должны быть привлечены инженеры-технологи, хорошо знакомые с технологией электрохимических производств.

Литература

1. Hohn Н. //Osterreich. Chem. Zeitung. – 1948. – 49. – Р. 15-31, 60-68. 102-114.

2. Eisenkolb F. Die neuereEntwicklung der Pulvermetallurgie, Berlin, 1955.

3. Billiter J. //TechnischeElectrochemie, В. I., Halle, 1954.

4. Мельников С.М. Ртуть. – М.:Металлургиздат, 1951. – С. 5.

5. Gardiner W.С., КirсhеrМ.S., Sherrow W.D. // J. of the Electrochem. Soc. –1955. – 102. – 187c.

6. Hohn H. //Research, 1950. – 3. – 19. – P.407.

7. Kuss E. //Zeitschr. f. allgem. Chemie, 1950. – 77. – P.519.

8. Mac Mullin R. //Chem. Engin. Progress, 1950. – 46. – P.440.

9. Козловский М.Т., Цы6П.П. // Журн. Прикл. Хим. – 1950. – 46. – С.440.

10. Цы6 П.П.,Козловский М. Т. // Журн. Прикл. Хим. – 1951. – 24. – С.840.

11. Козловский М.Т., Цы6 П.П., Рузина Е.П. // Журн. Прикл. Хим., 1951. – 24. – С.882.

12. Козловский М.Т., Цы6 П.П., Бабкин Г.Н., Виторская Л.Л., Скаблинская И.В. // Журн. Прикл. Хим., 1954. -27. – С.757.

13. Цыб П.П., Козловский М.Т. // Завод. Лаборатория. – 1950. – 16. – С.147.

14. Цыб П.П. // Завод.лаборатория. – 1950. – 16. – С.1405.

15. Козловский М.Т., Цыб П.П., Сперанская Е.Ф. // Труды Всесоюзной комиссии по аналитической химии, 4 (VII). – М.: Изд-во АН СССР – 1952, – С.255.

16. Козловский М.Т., Бухман С.П., Малюк А.Т. //Там же. – С.263.

17. Цыб П.П. // Ученые записки КазГУ Химия» 1954. – 16. – С.65.

18. Цыб П.П. // Там же. – С.79.

19. Козловский М.Т., Бухман С.П. //Изв. АН КазССР, серия хим., 1951. – Вып. 3. – С.4.

20. Козловский М.Т. //Вестн. АН КазССҢ 1954. – № 4. – С.103.

21. Сперанская Е.Ф., Цыб П.П., Козловский М.Т. // Ученые записки КазГУ Химия, 1954. – 16. – С.72.

22. Сперанская Е.Ф. Амальгамные методы отделения и определения цинка: автореферат дисс. – Алма-Ата, 1952.

23. Зебрева А.И. Электрохимическое исследование некоторых сложных амальгам: автореферат дисс. – Алма-Ата, 1953.

24. Зебрева А.И., Козловский М.Т., Бухман С.П. // Журн. физ. хим. – 1955. – 19. – вып 7.

25. Циммергакл В.А. и Хаймович Р.С. // Завод.лаборатория. – 1948. – 14. – С.1289.

26. Бабко А.К., Полищук А.П., Волкова А.И. // Записки Института химии АН УССР, 1941. – 7. – Вып. 4.

27. Стендер В.В. Электролитическое производство хлора и щелочей. – Л.: ОНТИ, 1935.

Вестник АН КазССР, 1955, 11 (128), 16.

НЕКОТОРЫЕ ВОПРОСЫ АМАЛЬГАМНОЙ МЕТАЛЛУРГИИ – ЦЕМЕНТАЦИЯ МЕТАЛЛОВ АМАЛЬГАМАМИ

Электролиз с ртутным кятодом, широко применявшийся в промышленности для получения едкого натра и хлора [і], в недавнее время стал использоваться также и в металлургии для получения цветных и редких металлов высокой степени чистоты и металлических порошков. Не останавливаясь на принципах «амальгамной металлургии», изложенных в работе [2], где приведена и соответствующая литература, укажем, что в этом процессе наряду с электролизом широко используется цементация амальгамами. – Т.е. вытеснение из растворов более электроположительных металлов амальгамами металлов, обладающих более отрицательным потенциалом.

Одним из важнейших вопросов теории процесса цементации является вопрос о скорости этого процесса, изучением которого занимались многие исследователи. Однако точки зрения их различны, равно как и полученные ими экспериментальные данные и вычисленные константы скорости процесса цементации.

Эти расхождения мы объясняем тем, что обычно при вычислении констант скорости цементации упускались из виду три обстоятельства: 1) изменение величины поверхности катодных и анодных участков при цементации; 2) взаимная сопряженность катодных и анодных процессов и 3) конкурирующие катодные процессы, протекающие одновременно с процессом цементации основного металла.

При цементации твердыми металлами учет величины истинной поверхности катодных и анодных участков представляет собой весьма трудно разрешимую задачу. Иначе обстоит дело при цементации жидкими амальгамами. В этом случае катодно-анодные процессы протекают на всей поверхности амальгамы, причем обособленных катодных участков не создается, так как цементируемый металл уходит в ртуть. Равным образом нет и обособленных анодных участков. Кроме того, при цементации амальгамами обычно почти устраняется важнейший конкурирующий процесс – выделение водорода, поскольку перенапряжение водорода на амальгамах весьма велико.

Учитывая электрохимический характер процесса цементации, мы сочли возможным приложить представления из области теории коррозии металлов к теории процесса цементации и, в частности, к цементации амальгамами. Само собой разумеется, что эти же теоретические представления целиком приложимы и к цементации твердыми металлами, однако в последнем случае непрерывное изменение величины катодной и анодной поверхности, а также изменение сопротивления электролита между катодными и анодными участками (в результате изменения расстояния между ними) значительно осложняет всякого рода количественные расчеты.

Как известно, скорость коррозии определяется ходом поляризационных кривых для катодного и анодного процесса («поляризационная диаграмма Эванса», уточненная Г.В. Акимовым [3]). На рисунке 1 кривая 1 представляет собой поляризационную кривую для катодного процесса. – Т е. кривую зависимости величины катодного потенциала от плотности тока, кривая 2-такую же зависимость для анодного процесса.

При дальнейших рассуждениях будем считать величину катодной и анодной поверхности равной единице – в этом случае вместо плотности тока можно говорить о силе тока. Для того чтобы процесс коррозии или, в нашем случае, цементации, осуществлялся, необходимо, чтобы между катодом и анодом существовала какая-то, хотя бы самая малая, разность потенциалов. Сила тока будет равна разности потенциалов, деленной на сопротивление элемента. При бесконечно малом сопротивлении сила тока была бы равной бесконечности, если поляризационные кривые были бы прямыми, перпендикулярными к оси абсцисс. – Т.е. потенциалы катода и анода не зависели бы от силы тока. Но так как в действительности катодные и анодные кривые имеют противоположный наклон и пересекаются друг с другом, то при бесконечно малом сопротивлении элементов сила тока не будет бесконечно большой. Предельное значение силы тока будет определяться величиной ординаты точки пере- сечения обеих поляризационных кривых.


Рисунок 1. Катодная (і) и анодная (2) поляризационные кривые


При сопротивлении же элемента не бесконечно малом, а равном какой-то определенной величине R, сила тока будет выражаться ординатами точек В и B1на обеих кривых, расстояние между которыми – отрезок А – равно падению напряжения на омическом сопротивлении (К). Поскольку катодный и анодный процессы взаимно связаны. – Т.е. их скорости равны, то точки В и B1на катодной и анодной кривых должны иметь одинаковые ординаты. Чем больше омическое сопротивление между катодными и анодными участками, тем больше будет величина отрезка А1между катодной и анодной кривыми. – Т.е. тем меньше будет сила тока, или, иначе говоря, скорость процесса.

В том случае, когда цементация производится при помощи амальгам, величиной омического сопротивления при практических расчетах можно пренебречь, поскольку катодный и анодный процессы протекают на участках поверхности амальгамы, находящихся в непосредственной Близости друг от друга. При такой предпосылке сила тока будет определяться ординатой точки пересечения обеих поляризационных кривых. Абсцисса же этой точки будет определять потенциал амальгамы в процессе цементации, и изменение потенциала амальгамы в процессе цементации будет соответствовать перемещению этой точки.

Рассмотрим применение изложенных выше представлений для установления зависимости скорости процесса цементации от различных факторов.

Зависимость скорости цементации от природы цементирующего металла

На рисунке 2 схематически показаны поляризационные кривые для катодного выделения металла (кривая 1) и для анодного окисления амальгам двух металлов, обладающих различными потенциалами (кривые 2 и 3). Ход этих кривых определяется природой металлов, природой электролитов и зависит также от ряда других факторов, в частности от температуры, скорости перемешивания, концентрации металла в амальгаме и концентрации ионов металла в растворе. Из рисунка 2 видно, что скорость цементации при данном ходе поляризационных кривых будет выше при цементации амальгамой более электроотрицательного металла. Соотношение скоростей будет выражаться соотношением ординат точек О1 и О2. Однако по мере цементации концентрация ионов цементируемого металла в растворе будет уменьшаться, и это можөт вызвать изменение хода поляризационной кривой. При малой концентрации может наступить явление так называемого предельного тока, и поляризационная кривая примет вид, показанный на рисунке 3 (кривая 1). Как видно из рисунка, в этом случае скорость цементации становится уже не зависящей от природы выбранных нами цементирующих металлов. Однако если взять третий металл (кривая 2), более положительный, нежели два предыдущих, то при данной концентрации ионов цементируемого металла для него скорость цементации будет меньше, чем для двух предыдущих металлов (сравните ординаты точек О1, О2 и О3). При дальнейшем уменьшении концентрации цементируемого металла скорость станет равной для всех трех металлов (кривая 5).


Рисунок 2. Поляризационные кривые при цементации металла двумя различными амальгамами


Рисунок 3. Изменение скорости цементации при изменении концентрации цементируемого металла


Зависимость скорости цементации от природы цементируемого металла

Рассмотрим вначале случай цементации одной и той же амальгамой двух различных металлов не из одного, а из двух различных растворов. На рисунке 4 кривая 1 представляет со6ой поляризационную кривую металла А, 2 – металла Б, 3 – поляризационная кривая для анодного растворения металла амальгамы. Из рисунка видно, что скорость цементации более электроотрицательного металла А меньше скорости цементации металла Б, более электроположительного. Соотношение скоростей выражается соотношением ординат точек О1 и О2. Если же более электроположительный металл присутствует в малых количествах и ход его поляризационной кривой таков, как на кривой4, то и в этом случае скорость цементации более электроположительного металла оказывается меньше, чем скорость цементации более электроотрицательного металла, присутствующего в Больших количествах. Если же оба металла присутствуют в одном и том же растворе, то при малых концентрациях этих металлов поляризационная кривая (кривая 1, рис. 5) будет иметь вид обычной полярографической кривой для двух металлов.


Рисунок 4. Цементация двух металлов из двух раздельных растворов


Рисунок 5. Цементация двух металлов, находящихся в одном и том же растворе


В этом случае, если цементация будет проводиться амальгамой металла, поляризационная кривая которого представлена кривой 2, то сначала будет проходить цементация более электроположительного металла, и лишь когда его концентрация уменьшится и поляризационная кривая для катодного процесса примет вид кривой 3, тогда одновременно начнет цементироваться и второй металл. Соотношение скоростей цементации первого и второго металлов будет пропорционально величине отрезков В1 и В2.

Если же для цементации будет применена амальгама более отрицательного металла, характеризующегося анодной поляризационной кривой 4, то, как видно из рисунка, с самого начала будет проходить цементация обоих металлов. В том случае, когда концентрация более положительного металла весьма велика (кривая 5), обе амальгамы будут цементировать лишь более электроположительный металл.

Зависимость скорости цементации от конкурирующих процессов – выделения водорода и восстановления растворенного кислорода

Это можно рассматривать как частный случай предыдущего: наличие растворенного кислорода вызывает появление соответствующих двух кислородных волн. Так как кислородные волны располагаются в области потенциалов более положительных, нежели волны многих металлов, восстановление растворенного кислорода обычно всегда сопровождает процесс цементации. Что же касается выделения водорода, то поскольку поляризационная кривая для водорода на ртути (и амальгамах) лежит в области сильно отрицательных потенциалов, выделение водорода будет наблюдаться лишь в случае применения амальгам весьма электроотрицательных металлов.

Зависимость скорости цементации от температуры, скорости перемешивания и концентрации цементирующего металла в амальгаме

При повышении температуры, а также при увеличении скорости перемешивания ход поляризационных кривых (как катодных, так и анодных) становится более крутым. Поэтому точки пересечения катодных и анодных кривых будут иметь большие значения ординат. – Т.е. процесс будет проходить с большей скоростью (при расчете на единицу поверхности амальгамы).

Что же касается влияния концентрации растворенных в ртути металлов, то оно сравнительно невелико. Однако при малых концентрациях металла в амальгаме наблюдаются явления предельного тока и для анодного процесса. Это обстоятельство соответствующим образом отразится на положении точки пересечения поляризационных кривых.

Изложенные нами основные положения теории цементации амальгамами могут быть распространены и на случай цементации твердыми металлами. Однако количественные расчеты трудно осуществимы из-за непрерывного изменения величины поверхности катода и анода. При попытке произвести расчет скорости процесса цементации в этом случае нельзя пренебрегать величиной омического сопротивления микроэлементов. Кроме того, следует помнить, что плотность тока при катодном и анодном процессах, как правило, не будет одинаковой, так как площадки катода и анода не равны друг другу. Сила тока, проходящего через катод и анод, будет, конечно, одной и той же.

Увеличение электропроводности раствора приведет к уменьшению потери напряжения на преодоление омического сопротивления (та потеря на рисунке 1 выражается величиной отрезка А). Соответственно с этим должна увеличиться сила тока местных элементов. Однако увеличение электропроводности путем повышения концентрации ионов водорода может привести к конкуренции этих ионов с ионами цементируемого металла. Кроме того, нужно помнить, что изменяя электропроводность путем добавления кислот или различных солей, соответствующим образом можно изменить и ход поляризационных кривых. В связи с этим увеличение электропроводности иногда может вызвать не увеличение, а уменьшение скорости цементации.

При использовании поляризационных кривых для решения практических вопросов технической электрохимии и электролиза следует иметь в виду, что ход кривых может измениться в результате взаимодействия металлов, находящихся в амальгаме. Особенно ярко это взаимодействие может быть проиллюстрировано на примере медно-цинковых амальгам, в которых происходит образование интерметаллического соединения CuZn [4]. Взаимодействие металлов в сложных амальгамах обнаружено нами и в ряде других случаев (например, между сурьмой и цинком, сурьмой и натрием, никелем и цинком, кобальтом и цинком и др.) и является предметом систематического изучения нашими сотрудниками А.И. Зебревой, Г.Н. Бабкиным, В.М. Илющенко, Е.Ф. Сперанской и др.

Литература:

Стендер В.В. Электролитическое производство хлора и щелочей. – Л.: Гостехиздат, 1935.

Козловский М.Т. // Вестн. АН КазССР. – 1955. – № 11 (128). – С. 16. Акимов Г.В. Основы учения о коррозии и защите металлов. – М.: Изд-во АН СССР, 1946.

Зебрева А.И., Козловский М.Т. // Журн. физ. хим. -1956. – 30. – С. 1553.

Доклад на 4-ом совещании по электрохимии. – М., 1956. Труды 4-го совещания по электрохимии. – М.: Изд-во АН СССР, 1959. – 704 С.

ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИТИЧЕСКОЙ ХИМИИ

Развитие аналитической химии в мировом масштабе характеризуется за последние три-четыре десятилетия широким применением физико-химических методов анализа. Среди них особое место занимают электрохимические методы. Практическое значение многих этих методов обусловлено тем, что они позволяют определять весьма малые количества вещества. Некоторые из них являются экспрессными методами и, наконец, на них основано подавляющее Большинство автоматических и телемеханических методов анализа, приобретающих в последние годы особенно 6ольшое значение, в частности в связи с вопросами мирного использования атомной энергии.

Успешному развитию электрохимических методов анализа в СССР способствовало и то обстоятельство, что советская электрохимическая наука за истекшие годы заняла ведущее положение в мире.

Методы электрохимического анализа можно подразделить на три основные группы:

1) методы, в которых количество вещества определяют путем измерения различных электрических величин: силы тока, количества электричества, потенциала электрода, электропроводности;

2) методы титриметрического анализа, в которых электрические измерения используются для индикации конечной точки титрования (потенциометрическое, амперометрическое, кондуктометрическое, высокочастотное титрование и т. П.);

3) методы, в которых электрический ток используется в качестве своеобразного реактива (классический электроанализ, внутренний электролиз, цементация).

Особенно большое значение в настоящее время приобрели некоторые из методов первой и второй групп. Из них, прежде всего, следует остановшъся на полярографии – методе, основанном на измерении силы тока, проходящего в цепи при предельной поляризации электрода.

Этот метод, принцип которого был сформулирован Я. Гейровским в 1922 году, приобрел в настоящее время необычайно большое значение и очень разнообразное применение. Однако за пределы лаборатории Я. Гейровского новый метод вышел фактически лишь после 1933 года. Примерно в это же время полярографией начинают заниматься и в Советском Союзе. Большая заслуга в развитии у нас полярографического анализа принадлежит В.И. Вернадскому, который, посетив лабораторию Я. Гейровского в 1932 году, сразу же оценил значение этого метода и направил своего сотрудника А.П. Виноградова в Прагу для ознакомления с новым методом. Вскоре, по инициативе Е.С. Бурксера, в Одессе налаживается производство первых советских полярографов. Примерно в это же время появляются первые советские работы по полярографии как теоретического, так и прикладного характера.

Теоретические исследования были направлены, прежде всего, на выяснение природы полярографических максимумов (А.Н. Фрумкин и его школа), на выяснение влияния поверхностно-активных веществ на характер полярограмм (М.А. Лошкарев. – Т.А. Крюкова и др.), на развитие общей теории диффузии, лежащей в основе полярографии (В.Г. Левин) и на ряд других вопросов. Т. А. Крюкова обнаружила явление так называемых полярографических максимумов «второго рода», дала их теорию и показала возможность использования их для определения самых минимальных количеств поверхностно-активных веществ.

Большая частъ работ по полярографии посвящена, как известно, катодным процессам, поскольку анодные процессы на ртутном капельном электроде о6ычно ограничены окисляемостью самой ртути. А.Г. Стромберг с сотрудниками (1950) выполнил капитальные исследования в области теории и практики так называемой «амальгамной полярографии». Он показал перспективность данного метода для определения малых количеств электроотрицательных металлов в присутствии Больших количеств более электропо-ложительных.

Другое направление работ в области амальгамной полярографии сосредоточено на выяснении взаимного влияния металлов, входящих в состав амальгамы; было установлено, что в связи с образованием в амальгамах интерметаллических соединений наблюдается сдвиг потенциала как при катодном процессе выделения металлов на амальгамах, так и при анодном окислении амальгам (М.Т. Козловский с сотрудниками). Это обстоятельство, с одной стороны, ограничивает возможности амальгамной полярографии, с другой стороны, в свою очередь, может быть использовано для разделения металлов.

Изыскание путей определения малых количеств того или другогө металла в присутствии подавляющих количеств более электроположительных металлов, повышение чувствительности полярографического метода и распространение его на неводные растворы и расплавленные среды – таковы основные направления, в которых происходит дальнейшее развитие полярографии. Все эти направления развивались и развиваются и в Советском Союзе.

Первая из указанных задач может быть решена как чисто химическим методом – путем связывания соответствующего компонента в достаточно прочный комплекс, так и путем предварительных разделений электролизом (П.Н. Коваленко).

Изучением влияния различных комплексообразующих веществ при полярографировании различных цветных металлов занимались многие исследователи, в частности И.А. Коршунов, А.Г. Стромберг и др. Интересные возможности открываются в связи с применением так называемых комплексонов.

Для обнаружения малых количеств электроотрицательных металлов в присутствии Большого количества более электроположительных применяется так называемая компенсационная или «разностная» полярография и дифференциальная полярография.

Что касается компенсационной полярографии, то этот метод пока еще почти не получил отражения в работах советских аналитиков и, пожалуй, не является особенно перспективным. Дифференциальная же полярография, основы которой разработаны Я. Гейровским, развивалась в Совет- ском Союзе достаточно успешно (работы И.Г. Гринман, Е.М. Скобец, И.В. Аксельруд и др.).

Осциллографическая полярография дает возможность увеличить чувствительность определений. Однако следует сказать, что этот метод развивается в Советском Союзе еще недостаточно широко: число работ, посвященных ему, исчисляется пока единицами (Я.П. Гохштейн, Р.Ш. Нигматуллин, И.И. Цапив, А.А. Габович). За рубежом этот весьма перспективный метод, открывающий пути как к исследованию электродных процессов, так и к решению практических задач, получил относительно широкое распространение.

Полярография органических соединений в настоящее время выросла в большую самостоятельную область. Среди многочисленных работ здесь следует отметить работы М.Б. Неймана, И.А. Коршунова А.Л. Маркмана и др. Поскольку многие органические соединения плохо растворимы в воде, использование полярографии в анализе органических соединений тесно связано с вопросами полярографии неводных растворов, изучением которых в Советском Союзе особенно успешно занимался Н.А. Измайлов.

Полярография расплавленных сред связана с заменой ртутного капельного электрода твердым электродом. Первую попытку применить в полярографии платиновый электрод сделал С.Д. Миллер еще в 1939 г. В дальнейшем работы в этой области проводились Е.М. Скобец, С.К. Чирковым, Ю.К. Делимарским и Ю.С. Ляликовым и др. Последний главное внимание уделял полярографии расплавов и показал значение этого метода.

Наряду с исследованиями в области теории полярографического метода и разработкой различных его видоизменений, в Советском Союзе была проведена очень большая работа по практическому приложению полярографического метода к анализу руд, металлов и других технических материалов. Работами С.А.Плетенева. – Т.В. Арефьевой, С.И. Синяковой, З.С. Мухиной, А.М. Занько, П.Н. Коваленко было положено начало широкому применению полярографии в заводских и производственных лабораториях.

В послевоенные годы полярографический метод анализа стал применяться для экспрессных массовых определений при анализе минерального сырья (В.Г. Сочеванов, Д.П. Щербов и др.). Заслуживает внимания организация работы по полярографическому анализу руд в Казахском геологическом управлении (Д.П. Щербов). В этой лаборатории два аналитика успевали выполнить за смену до 200 полярографических определений цветных металлов. Практика работы производственных лабораторий показала, что применение полярографов с фотографической записью не может обеспечить высокой производительности труда, а также достаточной точности определения (в связи с малыми размерами шкалы гальванометра при фотографической регистрации силы тока). Поэтому в производственных лабораториях, как правило, стали применяться визуальные полярографы – «полярометры», в разработке конструкций которых принимали участие многие исследователи (М.И. Клер, А.Г Стромберг, П.Г. Гринман, коллективы сотрудников Государственного Института цветных металлов, Горьковского университета, Всесоюзного института минерального сырья и др.).

Одним из наиболее «молодых» электрохимических методов анализа является кулонометрия, основанная на законе Фарадея. Советский Союз, как это признается и в зарубежной литературе, является родиной кулонометрии, поскольку основателем этого метода считается М.С. Захарьевский, опубликовавший в 1938 г. работу по кулонометрическому определению тяжелых металлов в пищевых продуктах. Однако, к сожалению, приходится констатировать, что кулонометрические методы у нас развивались далеко недостаточно. Это относится также и к методам кулонометрического титрования, предложенным в том же 1938 г. венгерскими химиками Сцебелледи и Сомогий. Из работ в области кулонометрического анализа можно указать лишь несколько работ, в частности работу Ф.И. Тришина, разработавшего «электрохронометрический» метод, основанный на измерении времени, необходимого для выделения металла на ртутном катоде при постоянной силе тока, и работу М.Т. Козловского, А.И. Ляха и А.А. Журавлевой, посвященную кулонометрическому определению некоторых цветных металлов при определенном значении катодного потенциала с применением гидразина в качестве анодного деполяризатора.

Работы в области кулонометрии, начатые В.С. Сырокомским, были, к сожалению, прерваны преждевременной смертью их автора.

Своеобразный, по сути дела тоже кулонометрический метод, был предложен в 1955 г. Е.Г. Турьяном, который производил восстановление на ртутном катоде органических и неорганических веществ, причем количество электричества определял путем титрования йода, выделившегося на платиновом аноде из йодида калия.

К области кулонометрии относятся также работы А.Г. Стромберга по милликулонометрии и М.Б. Неймана по кулонометрическому исследованию процесса восстановления некоторых органических соединений; однако эти работы носят в основном не столько аналитический, сколько физико-химический характер.

Нужно полагать, что методы кулонометрии и, в частности, кулонометрического титрования в дальнейшем привлекут к себе более широкое внимание советских аналитиков как методы, позволяющие определять весьма малые количества вещества. Для успешного развития этих методов необходимо организовать выпуск нашей промышленностью соответствующей аппаратуры.

Переходим к рассмотрению потенциометрических и кондуктометрических методов анализа.

Непосредственное определение концентрации ионов путем потенциометрических измерений применяется, главным образом, для определения рН. За прошедшие 40 лет методика измерения рН шагнула далеко вперед. Советские химики принимали большое участие в разработке теории стеклянного (Б.П. Никольский, Л.И. Беленький, Н.А. Измайлов и др.) и сурьмяного электродов (И.И. Жуков и др.). Сконструирован ряд новых моделей ламповых потенциометров, на многих предприятиях осуществлен непрерывный автоматический контроль рН. Работы в этом направлении продолжаются, имея главной целью повышение точности определения.

Для определения концентрации водородных ионов применяются также кондуктометрические измерения, при помощи которых осуществляется и автоматический контроль различных производственных растворов. Однако поскольку электропроводность обусловливается всеми ионами, находящимися в растворе, применение кондуктометрии для аналитических целей довольно ограничено. Практическое применение нашли методы определения общего содержания солей в грунтовых водах и почвах (С.И. Долгов и А.А. Шиткова, Н.Н. Берлинер и Н.Н. Долгополов).

Рассмотрим теперь использование измерения электрических величин к установлению конечной точки титрования. Наибольшее значение здесь имеют методы потенциометрического и амперометрического титрования.

Советские аналитики разрабатывали вопросы как теории, так и практики потенциометрического титрования. Из теоретических исследований, прежде всего, следует отметить работы В.С. Сырокомского с сотрудниками (главным образом Ю.В. Клименко и В.Б. Авиловым), посвященные изучению различных аналитических окислительно-восстановительных систем и выяснению влияния кислотности раствора и комплексообразования на величину окислигольно-восстановительного потенциала. Наиболее подробно В.С. Сырокомский исследовал системы, образованные ионами ванадия различных степеней окисления, разработав новый метод титриметрического анализа – так называемую «ванадатометрию». По нашему мнению, дальнейшее широкое изучение окислительно-восстановительных систем сможет значительно расширить область применения титриметрических методов. Например, недавно С.К. Чирков использовал изменение величины окислительного потенциала перманганата при изменении кислотности раствора для потенциометрического титрования смеси минеральных кислот.

Наряду с разработкой теоретических вопросов в области потенциометрического титрования большая работа была проведена советскими аналитиками по разработке конкретных потенциометрических методов определения различных веществ, прежде всего – металлов. Здесь можно упомянуть работы А.И. Бусева, В.М. Звенигородской, В.Г. Сочеванова, С.К. Чиркова, Ш.Т. Талипова, Д.И. Рябчикова, Н.Я. Хлопина и др.

Что касается амперометрического (полярометрического) титрования, то оно является, как известно, ответвлением полярографии. Этот метод, имеющий некоторое внешнее сходство с кондуктометрическим титрованием, по сравнению с последним, обладает очень Большим преимуществом, заключающимся в том, что присутствие посторонних ионов не снижает точности определений, в то время как кондуктометрическое титрование, как правило, хорошо протекает лишь в чистых растворах. По сравнению же с полярографией амперометрическое титрование характеризуется несколько большей точностью и возможностью проводить определения значительно большего числа ионов. Метод амперометрического титрования широко разрабатывался в Советском Союзе, особенно в послевоенные годы. Приблизительно четвертая часть опубликованных по амперометрическому титрованию работ принадлежит советским авторам. Здесь можно отметить работы И.П. Алимарина с сотрудниками, работы, проводившиеся в Днепропетровске (Ю.И. Усатенко, Г.Е. Беклешова, Г.А. Бутенко), в Казани (А.М. Васильев, А.А. Попель, В.Ф. Торопова, А.Н. Марунина), работы О.А. Сонгиной и др. в Алма-Ате и т. д. Особенно широкое применение в работах советских аналитиков получили методы амперометрического титрования с платиновым вращающимся анодом. В ближайшее время предстоит работа по более широкому внедрению предложенных методов в практику и приспособлению их к различным конкретным объектам.

За последние годы внимание аналитиков привлек метод высокочастотного титрования, представляющий собой своеобразную разновидность кондуктометрического метода. Этот метод основян на измерении, с одной стороны, электропроводности, с другой – диэлектрической проницаемости. Основное преимущество этого метода заключается в отсутствии электродов, погружаемых в раствор, что дает возможность работать в агрессивных средах, а также проводить титрование эмульсий различных диэлектриков. Высокочастотное титрование можно проводить не только в водных, но и в неводных растворах. Систематические работы в области высокочастотного титрования в Советском Союзе проводятся В.А. Заринским с сотрудниками.

Переходим, наконец, к электрохимическим методам, в которых электрический ток используется в качестве своеобразного реактива. Как упоминалось выше, к этой группе можно отнести методы «классического» электроанализа, внутреннего электролиза и цементации.

Из методов «классического» электроанализа за последние десятилетия вызывали повышенный интерес методы отделения металлов друг от друга при одновременном присутствии их в исследуемом объекте, иногда в весьма малых количествах, при контроле катодного потенциала. Хотя подобный прием был предложен еще в 1907 г., широкое распространение он смог получить только за последние десятилетия, когда были сконструированы приборы, позволяющие автоматически контролировать потенциал в процессе электролиза. Во многих случаях весьма удобным оказалось сочетание классического электроанализа с другими электро-химическими методами, например, с полярографией. Такой «комбинированный» метод успешно разрабатывался П.Н. Коваленко. Одновременно П.Н. Коваленко занимался и другим важным вопросом – заменой платиновых электродов электродами из других металлов. Говоря о применении электролиза для разделения совместно присутствующих металлов, необходимо также указать на оригинальное решение этого вопроса в отношении никеля и кобальта, предложенное К.А. Ненадкевнчем и В.С. Салтыковой.

Для разделения металлов успешно применяется также ртутный катод. Работы в этом направлении развивались главным образом М.Т. Козловским с сотрудниками. Электролиз проводится также с контролем катодного потенциала, причем была показана возможность использования для разделения металлов не только катодного, но и анодного процесса – электролитического окисления амальгам. Для получения последних применялись два метода – либо электролиз с ртутным катодом, либо вытеснение (цементация) растворенного металла амальгамой более активного металла, например цинка или натрия. Оба эти метода позволяют извлекать металлы из весьма разбавленных растворов и затем последовательно выделять их из амальгам электролизом с контролем анодного потенциала.

Вопросами цементации при помощи амальгам занимались и другие исследователи, в частности И.В. Тананаев и Вл.Д. Пономарев, использовавшие амальгамы для количественного определения и разделения металлов и для перевода в раствор труднорастворимых осадков, например сульфата свинца. Очень интересным является предложенный В.А. Циммергаклом и Р.С. Хаймович метод дробного извлечения металлов из амальгам. Этот метод, в сущности, представляет собой также метод цементации, но уже не других металлов, а самой ртути: обрабатывая амальгаму солями ртути и контролируя потенциал амальгамы, указанные исследователи осуществляют селективное извлечение металлов из амальгамы в раствор.

Что касается цементации твердыми металлами, то из исследований в этой области следует упомянуть о работе Н.А. Тананаева, изучавшего цементацию целого ряда металлов в различных средах, используя различные менее благородные металлы. В этих исследованиях Н.А. Тананаев показал, что применение так называемого «ряда напряжений» при выборе цементирующего металла связано с рядом ограничений. Некоторые причины, вызывающие эти ограничения, разъяснены М.Т. Козловским на основе применения поляризационных кривых в теории цементации.

В тридцатых годах много внимания было уделено разработке метода внутреннего электролиза (Ю.Ю. Лурье, Ю.А. Чернихов, Л.Б. Гинзбург, М.И. Троицкая и др.). Этот метод представляет собой своеобразное видоизменение процесса цементации и отличается от последнего тем, что в нем катодный и анодный процессы локально разграничены, поскольку вытесняемый металл отлагается не на самом цементирующем металле, а на отдельном катоде. Метод внутреннего электролиза пригоден для выделения малых количеств некоторых цветных металлов.

Приведенный материал показывает, насколько успешно развивались электрохимические методы в Советском Союзе.

Электрохимическим методам анализа посвящены отдельные руководства и монографии (С.А. Щукарев и Б.П. Никольский, Ю.С. Ляликов, Е.Н. Виноградова, В.А. Пчелин и др.). На русском языке издан ряд монографий зарубежных авторов (Я. Гейровский, И.М. Кольтгоф и Дж.Дж. Лингойн, И.М. Кольтгоф и Г А. Лайтинен, И.М. Кольтгоф и Н.Г. Фурман, А. Классен, А. Шлейхер и Фишер и др.). Исчерпывающая библиография работ русских авторов по электрохи-мическим методам анализа опубликована в справочнике А.И. Бусева «Аналитическая химия, 1941-1953». Следует, однако, признать, что издание литературы по электрохимическим методам анализа все еще далеко не достаточно, что, несомненно, является одним из препятствий к еще более широкому внедрению электрохимических методов в практику производственных и заводских лабораторий.

Другим препятствием на пути широкого внедрения и развития электрохимических методов анализа является недостаточный выпуск нашей промышленностью современной электроаналитической аппаратуры.

Как правило, все те ценные исследования по электро-анализу, которые вышли из стен наших научных учреждений, выполнялись на уникальных приборах, сконструированных непосредственно в этих учреждениях.

Журнал аналитической химии, 1957.
– Т. XII, вып.5. – С. 623-628.

ПОДНЯТЬ РОЛЬ ЗАВОДСКИХ И ПРОИЗВОДСТВЕННЫХ ЛАБОРАТОРИЙ

Технический прогресс – важнейшее условие развития социалистического производства. Большое значение для технического прогресса имеет укрепление содружества работников науки и производства. Практика ряда научно-исследовательских учреждений и вузов показывает весьма плодотворные результаты совместной с производственниками разработки вопросов новой техники и технологии. Очень важно поднять роль заводских лабораторий, укреплять их материальную и экспериментальную базу, состав научных работников.

Огромные задачи стоят перед заводскими и другими производственными лабораториями, в частности перед химическими, в связи с грандиозными перспективами развития народного хозяйства.

Ряд заводских лабораторий Казахстана успешно участвует в научно-исследовательской работе. Так, на Балхашском медеплавильном заводе в содружестве с Академией наук Казахской ССР была успешно проведена работа по извлечению редкого металла – рения, участники которой отмечены Государственными премиями. Лаборатория Карагандинского завода синтетического каучука осуществляет важные исследования по усовершенствованию процесса гидратации ацетилена, а лаборатория Гурьевского нефтеперерабатывающего завода – по использованию отходящих газов крекинг-процесса. Заметно оживляется научная работа, проводимая сотрудниками лаборатории Лениногорского полиметаллического комбината. Важные работы выполня- ются и лабораториями некоторых других предприятий. Од- нако общее состояние научно-исследовательской работы в большинстве лабораторий Казахстана еще нельзя считать удовлетворительным. Многие лаборатории проводят только рядовые анализы по стандартным методикам, не принимают активного участия ни в исследовательской работе по усовершенствованию технологического процесса, ни даже по аналитической химии.

Часто заводские лаборатории рассматриваются только как органы технического контроля, в обязанности которых входит установление качества сырья, поступающего на производство, и качества выпускаемой готовой продукции. Между тем их роль должна быть шире. Лаборатории призваны помогать совершенствовать процессы производства, вести научно-исследовательскую работу на предприятии. А наличие научно-исследовательских отделов на заводах ни в коей мере не исключает участия лабораторий в проведении исследовательской работы хотя бы потому, что их научные и практические выводы в области технологии целиком основываются, как правило, на данных анализа. Именно аналитическая роль работы в большинстве случаев является наиболее трудоемкой, от качества ее выполнения зависит успех проводимых исследований. Это, в свою очередь, требует от руководителей лабораторий не слепого выполнения заказов научно-исследовательских отделов, а творческого участия в их осуществлении.

Особенно большие задачи стоят перед лабораториями геологической службы. Не следует забывать, что все данные по подсчету запасов полезных ископаемых основываются на результатах химического анализа проб минерального сырья, отбираемых геологами-разведчиками, и что работа геолога неразрывно связана с работой химика-аналитика. В настоящее время эта область деятельности аналитических лабораторий значительно осложнилась. Если раньше от химика-аналитика обычно требовалось определение наиболее распространенных металлов (железо, медь, свинец, цинк, марганец и т.д.), то теперь необходимо определить почти все элементы периодической системы. При этом если раньше надо было определять лишь относительно большие содержания компонентов – обычно не меньше десятых и сотых долей процента, – то теперь речь идет об определении тысячных и даже десятитысячных долей процента. Изменились требования и к чистоте выпускаемых материалов, в частности металлов. Развитие атомной техники и полупроводниковой промышленности потребовало разработки методов определения примесей в чистом металле, присутствующих в стотысячных и миллионных долях процента. Высокие требования к чистоте материалов предъявляет и промышленность пластмасс.

Новые задачи ставятся перед аналитиками и в связи с развитием газовой промышленности. Прежде, когда газы нефтеперерабатывающих заводов, коксовых печей и природные использовались только как топливо, технолога интересовала их калорийность и общее содержание углеводородов. При использовании же таких газов в химической промышленности необходимо знать содержание каждого углеводорода в отдельности, а также характер присутствующих в газе посторонних примесей.

Вообще предстоящее развитие промышленности высокомолекулярных соединений, несомненно, поставит перед химиками-аналитиками такие вопросы, для решения которых потребуются совершенно новые методы.

Какие требования предъявляются к аналитикам в организации контроля самого технологического процесса? Чтобы на основании данных анализа управлять процессом производства, необходимо получать результаты этого анализа в кратчайший срок. При этом условии можно использовать данные анализа не только для регистрации неполадок в процессе, но и для своевременного устранения их. Отсюда вытекает потребность в так называемых экспрессных методах анализа. При автоматизации же производства необходима автоматизация и методов анализа.

Решение всех перечисленных выше задач нельзя осуществить, используя только старые «классические» методы химии – весовой и обычный объемный анализ. Самое широкое применение в современной аналитической химии получают различные физико-химические и физические методы анализа. Интересно отметить, что за последние годы число работ, посвященных физико-химическим методам анализа, составляет 52 % от общего числа работ по аналитической химии, опубликованных в мировой литературе, в то время как процент работ по весовому анализу – всего лишь 6,5 %, а по обычному объемному – 17,2 %. Около 9 % работ приходится на долю спектрального, рентгеновского и микрокристаллоскопического анализа и около 14 % – на долю газового анализа и биохимических методов.

Распространение новых методов анализа можно проиллюстрировать и на примере работ казахстанских лабораторий. Так, на первой конференции заводских лабораторий, проходившей в Алма-Ате в 1946 г., было прочитано всего 18 докладов, из которых лишь один был посвящен полярогра- фическому методу анализа и четыре – визуальной колориметрии, один – спектральному и один – рентгеноспектральному анализу, остальные – классическим методам аннализа и организационным вопросам. На пятой же конференции в октябре 1958 г. доклады по спектральному анализу пришлось выделить в специальную секцию, а из общего числа докладов по аналитической химии (51) на долю полярографии приходится уже 17 докладов. При этом ряд докладов посвящается уже не обычной полярографии, а новейшим ее видоизменениям.

Почти все доклады по колориметрии также посвящены новым ее видоизменениям. На конференции сообщалось о радиохимических методах анализа, о флуоресцентном анализе, о хроматографических и ионообменных методах разделения металлов. С докладами по амперометрическому титрованию, о котором вообще не говорилось на первой конференции, на последней же конференции выступили работники не научно-исследовательских институтов, а представители заводских лабораторий. Все это является показателем того Большого практического значения, которое приобретают физико-химические методы анализа.

Но при возрастающей роли физико-химических методов, классические нисколько не утрачивают своего значения. Необходимо дальнейшее усовершенствование этих методов, а также и методов разделения компонентов в анализируемом образце.

При оценке новых методов анализа большое значение придается их экспрессности. Однако, говоря об экспрессности того или иного метода, следует одновременно учитывать и его трудоемкость. Эти понятия не равноценны. Известен ряд методов весьма длительных, но малотрудоемких, и наоборот – экспрессных, но весьма трудоемких. Когда, например, при выполнении анализа проводится выпаривание на водяной бане, то на это затрачивается только время, а не труд аналитика. Равным образом фильтрование также требует много времени, но не труда. Электролиз же с контролем электродного потенциала, проводимый вручную, без автоматического прибора, – процесс хотя и быстрый, но трудоемкий, так как требует неотлучного присутствия аналитика. Это различие в экспрессности и трудоемкости особенно проявляется при массовых анализах, поскольку выпаривание, фильтрование или прокаливание, скажем, 50 проб зачастую потребует почти столько же времени, сколько проведение этих операций с одной пробой. Применение классических методов анализа при массовой работе иногда может обеспечшъ большую производительность лабораторий, нежели исполъзование так называемых «экспрессных».

Однако экспрессностъ совершенно необходима, как мы уже упоминали, в том случае, когда на основании резулътатов анализа осуществляется контролъ самого процесса производства. Высшая степенъ «экспрессности» проявляется при автоматическом анализе, который в ряде случаев сочетается с автоматическим управлением самим технологическим процессом. Наиболее пригодны для этой цели различные электрохимические методы, так как они легче всего позволяют передаватъ резулътаты анализа на расстояние и осуществлятъ дистанционное управление процессом. Наиболее легко автоматический анализ осуществляется при работе с растворами или газами, особенно если определяется всего один компонент. Между тем современная технология требует разработки автоматических методов анализа и других объектов (например, хвостов обогатителъных фабрик), причем одновременно на содержание несколъких компонентов. Это одна из важнейших задач современной аналитической химии.

Таким образом, задачи, стоящие перед современной аналитической химией, разнообразны и оченъ сложны. Их нелъзя разрешитъ силами одних научно-исследователъских учреждений, занимающихся подобными вопросами, тем более что таких учреждений, даже если включить в их число кафедры вузов, не так много. В этой работе должна участвовать многотысячная армия аналитиков всех отраслей народного хозяйства. Если академические учреждения в основном занимаются решением принципиалъных вопросов аналитической химии и разработкой новых методов анализа, то разработкой чистых методик применителъно к тем или другим промышленным объектам, к тому или иному виду сыръя должны заниматъся заводские и производственные лаборатории. Промежуточным звеном должны являться отраслевые исследовательские институты. Конечно, это не исключает того, что отдельные заводские лаборатории будут самостоятельно решать и крупные аналитические проблемы, а академические институты разрабатывать конкретные методики. Но в любом случае между академическими учреждениями и заводскими лабораториями обязательна тесная связь.

Исследовательскую работу заводским лабораториям необходимо развивать в двух направлениях: разработка и дальнейшее усовершенствование методов анализа и исследования, связанные с совершенствованием технологического процесса. О работах первого направления говорилось выше. Что же касается вопросов совершенствования технологических процессов, то здесь для химиков открывается необозримое поле деятельности.

В Казахстане, в частности, весьма актуальны работы по созданию химической промышленности «тяжелого» органического синтеза на базе переработки отходящих газов нефтеперерабатывающих предприятий, а также природных газов и твердого топлива. Именно на этой сырьевой базе в Казахстане должна быть создана мощная промышленность пластмасс и других синтетических продуктов.

Не менее важной для Казахстана с его неисчерпаемыми запасами черных, цветных и редких металлов является проблема рационального комплексного извлечения металлов из руд и усовершенствование процесса обогащения последних. Актуальными являются вопросы кооперирования металлургической и химической промышленности, в частности, на основе использования для производства серной кислоты от- ходящих газов металлургических заводов.

Большого внимания заслуживают проблемы переработки фосфоритов Каратау и природных солей Казахстана, химической переработки камыша и другого растительного сырья.

Решение этих проблем потребует самой напряженной исследовательской работы химиков Казахстана.

Реорганизация управления промышленностью создала более благоприятные условия для развития исследовательской работы на заводах. Чтобы лаборатории стали центрами научно-исследовательской работы на предприятиях, необходимо выполнение ряда условий. Прежде всего, лаборатория должна быть обеспечена высококвалифицированными кадрами с широкой общей химической подготовкой.

К сожалению, вопрос о подготовке химиков-аналитиков в настоящее время недооценивается: еще господствует взгляд на аналитическую химию как на какое-то мастерство, основанное не столько на научных предпосылках, сколько на практических навыках.

Наряду с подготовкой новых кадров работников заводских лабораторий необходимо организовать курсы повышения квалификации химиков вследствие быстрого внедрения в лабораторную практику различных электронных приборов, с которыми химики обычно очень мало знакомятся в вузах.

Вторым условием успешной работы лабораторий является обеспечение лабораторий современным оборудованием и реактивами. В практике лабораторий органические реактивы играют большую роль. Однако ассортимент реактивов, вырабатываемых химической промышленностью, крайне мал, и многие реактивы, предложенные нашими учеными, для рядовых лабораторий недоступны. Неудовлетворительно обстоит дело и с выпуском реактивов высшей степени чистоты, что чрезвычайно затрудняет проведение работы по анализу полупроводниковых материалов.

Одним из вяжных условий успешного развития заводских лабораторий является правильная организация их работы.

Устранение недостатков, создание лучших условий для работы позволят повысить роль заводских и производственных лабораторий в решении стоящих перед ними задач.

Народное хозяйство Казахстана, 1958. – № 10. – С.5.

М.Т. КОЗЛОВСКИЙ, П.И. ЗАБОТИН, В.М. ИЛЮЩЕНКО, С.П. БУХМАН, М.В. НОСЕК, В.Я. СЕРГИЕНКО, Я.3. МАЛКИН

Институт химических наук АН КазССР,Чимкентский свинцовый завод

ПРИМЕНЕНИЕ АМАЛЬГАМНОГО МЕТОДА К ИЗВЛЕЧЕНИЮ ТАЛЛИЯ ИЗ ПЫЛЕЙ ЧИМКЕНТСКОГО СВИНЦОВОГО ЗАВОДА

(В порядке обсуждения)

Основанием для проведения описываемой работы послужили результаты ряда исследований теоретического и прикладного характера в области амальгамных методов разделения и получения металлов, проведенных в Институте химических наук АН КазССР и Казахском государственном университете им. С.М. Кирова под руководством М.Т. Козловского [1-8].

Работа включает изучение отдельных стадий процесса (для обоснования принятой нами технологической схемы) и проверку его в полупромышленных условиях. Полупромышленные испытания амальгамного метода извлечения таллия из пылей агломерационного цеха Чимкентского свинцового завода проведены в тесном содружестве с Казахским государственным университетом и заводом. В работе принимали участие сотрудники кафедры аналитической химии Казахского государственного университета канд. хим. наук А. Зебрева, студ. В. Гладышев и работники Чимкентского свинцового завода М. Леванов, В. Прачев, Е. Рубанова, М. Шалагинова, Г. Носов, Ю. Столяров. Большую помощь в организации полузаводских опытов оказали б. директор Чимкентского завода К. Симаков и главный инженер Л. Ушков.

Анализы на таллий проводили сотрудники спектральной лаборатории завода под руководством И. Юделевича и Н. Карпенко. Химические и полярографические анализы проведены сотрудницей научно-исследовательского отдела завода Н. Поповой и лаборанткой Института химических наук АН КазССР О. Орса.

Лабораторные исследования

Характеристика сырья. Химический состав пыли рукавных фильтров агломерационногө цеха зависит от состава сырья, перерабатываемого заводом. В таблице 1 приведен состав агломерационной пыли, определенный в разное время.

Таблица 1

Анализ агломерационной пыли




О6жиг агломерационной пыли. Обжиг проводился в стальном противне в подовой электрической печи сопротивления с ручным перегребанием. Количество загружаемой пыли составляло 20-25 кг. Температура обжига поддерживалась в пределах 400-400-500о Характеристика огарка, полученного в процессе обжига, приведена в таблице 2 и на рисунке 1

Таблица 2

Изменение концентрации сульфидной серы и таллия в пыли в процессе обжига при 4000


Из анализов огарка видно, что уже за первый час обжига при 400о удаляется значительная часть сульфидной серы и таллия. Таким образом, если ставить цель сохранить в огарке весь таллий и выжечь только сульфидную серу, то использовать окислительный обжиг как предварительную операцию перед выщелачиванием нецелесообразно.

Выщелачивание пыли. Поскольку почти все соединения одновалентного таллия, которые могут содержаться в пылях агломерационного цеха, удовлетворительно растворимы в воде [9], нами для извлечения таллия было применено водное выщелачивание, проводившееся в фарфоровых смесителях при отношении ж: т = 4: 1. Во всех случаях пульпа перемешивалась механической мешалкой.


Рисунок 1. Изменение концен- трации сульфидной серы и таллия в пыли в процессе обжига при 400°


В таблице 3 приведены результаты выщелачивания водой двух образцов пыли (по 250 г) путем последовательной четырехкратной обработки одной и той же навески пыли при 80-90о и ж: т = 4: 1.

Как видно из табл. 3, четырехкратное водное выщелачивание обеспечивает извлечение таллия из пыли в раствор до 80 – 90 %. Были также проведены опыты по выщелачиванию при различных температурах, которые показали, что с по- вышением температуры извлечение таллия увеличивается. Последнее находится в соответствии с температурной зави- симостью растворимости его соединений.

Таблица 3

Результаты последовательного четырехкратного выщелачивания пыли

Продолжение таблицы 3


Проверкой скорости отстаивания пульпы (рисунок 2) 6ыло выяснено, что осаждение твердой фазы практически заканчивается через 30-40 мин.


Рисунок 2. Изменение высоты нижнего слоя пульпы со временем


Цементация таллия амальгамой цинка. Извлечение таллия из раствора в амальгаму проводилось цементацией амальгамой цинка. Раствор, полученный после водного выщелачивания, перед цементацией подкислялся серной кислотой до 5 г/л для уменьшения шламообразования ртути при цементации и для частичной очистки раствора от свинца. Для цементации использовался раствор, содержащий 0,36- 0,4 г/л2п, 0,127 г/лС6и 108 мг/л Т1.

Цементация проводилась при непрерывном прохождении раствора последовательно через две цементационные ячейки. Схема установки представлена на рис. 3. Раствор подавался на цементацию из напорного чана через фильтр в цементатор I, откуда он самотеком поступал в цементатор II, а затем направлялся в сборный чан через ванну для улавливания шлама. Скорость протекания раствора регулировалась и составляла примерно 1 л/мин. Скорость вращения мешалок в обоих цементаторах была ~1450 о6/мин. Объем ртути в цементаторе I составлял 1л, в цементаторе II – 1,5 л. В цементатор I загружался цинк в количестве, заведомо недостаточном для полной цементации таллия из всего объема раствора. В цементаторе II количество цинка было взято с некоторым избытком.


Рисунок 3. Схема цементационной установки: 1 – амальгама; 2 – раствор; 3 – шлам


Вцементаторе I для контроля содержания цинка во время цементации измерялся потенциал амальгамы. Он определялся обычным компенсационным методом. Во время цементации периодически отбирались пробы раствора после цементаторов I и II для определения содержания в нем цинка, таллия и, в некоторых случаях, кадмия. Результаты опыта представлены в таблице 4.

Таблица 4

Результаты цементации таллия амальгамой цинка в проточном растворе


Всего таким образом 6ыло переработано 195 л раствора. Продолжительность процесса составляла 185 мин.

После цементации в цементаторе I осталось 895 мл амальгамы, в цементаторе II – 1450 мл. Остальные 205 мл Нg были механически унесены с отработанным раствором в сборные чаны.

Как видно по результатам опытов, при цементации таллия в проточном растворе достигается значительное извлечение егө из раствора (около 98-990/о). При этом удалось трижды проследить полное удаление цинка из амальгамы цементатора I (см. значения потенциалов).

Разложение амальгамы анодным окислением. Амальгама, полученная при цементации, кроме таллия, содержала кадмий, свинец и остаток цинка. Для разделения металлов, содержащихся в амальгаме, применялись специальные электролиты: сульфатно-аммиачный (2-н. (NH4)2SO4 – 1-н. (NH4OH) для выявления цинка и кадмия, щелочной (1-н.NaOH) – для выделения свинца и сернокислый (1-н. H2SО4) – для выделения таллия.

Электролиз проводился с контролем анодного потенциала при анодной плотности тока от 100 до 50А/м2 при последующем постепенном снижении ее по мере извлечения выделяемого металла из амальгамы. В качестве катодов использовались алюминиевые пластины в первом и третьем электролитах и железные – во втором (щелочном).

Данные по распределению таллия в продуктах, получаемых при анодном разложении амальгамы, приведены в таблице 5.

Таблица 5

Распределение таллия по продуктам, получаемым при анодном разложении амальгамы

Полупромышленные испытания

Проведенные исследования позволили наметшъ технологическую схему извлечения таллия из пылей агломерационного цеха (рисунок 4), которая была осуществлена на полупромышленной установке Чимкентского завода. Аппа- ратурная схема представлена на рисунке 5.


Рисунок 4. Схема амальгамного способа производства таллия из пылей агломерационного цеха Чимкентского свинцового завода


1- смеситель емкостью 5 м3; 2 – промежуточный бак емкостью 5 м3; 3, 8, 9 – насосы; 4 – сборник промывных вод емкостью 25 м3; 5 – сборник готовых растворов емкостью 25 м3; 6, 7 – фильтр-прессы по 24 рамы; 10 – напорный чан емкостью 1,5 м3; 11- фильтр; 12 – цементатор I емкостью 35 л; 13-цементатор II емкостью 35 л; 14 – ванна для улавливания шлама емкостью 1 м3; 15 – электролизер емкостью 15 л; 16 – бачок для приготовления амальгамы цинка емкостью 5 л.

Примечание. Аппаратура позиций 1, 2, 5 изготовлена из железа и внутри покрыта кузбасс-лаком, 4 – из железа, 10 – из винипласта или дерева, 12-16 – из винипласт

Рисунок 5. Схема укрупненной установки для амальгамного извлечения таллия из пылей агломерационного цеха Чимкентского свинцового завода


Эта установка, хотя и не отвечала всем необходимым требованиям технологической схемы, так как для установки приспосабливалось, большей частью, уже имевшееся оборудование, все же обеспечила с апреля по октябрь 1956 г. переработку нескольких тонн пыли, а в октябре – проведение балансовых опытов.

Выщелачивание пыли. Аппаратура для выщелачивания состояла из двух железных баков емкостью по 5 м3, один из которых, оборудованный механической мешалкой, змеевиками для обогрева глухим паром и барботажными трубками для острого пара, использовался в качестве реактора, другой – для хранения промежуточных растворов; двух железных баков емкостью по 25 м3, используемых для хранения растворов, и двух 24-рамных фильтр-прессов. Контроль температуры осуществляется термометром сопротивления. Для уменьшения контакта растворов с железом внутренние стенки основных баков покрывались кузбасс-лаком.

Выщелачивание (трехкратное) проводилось при 80-90° в течение часа при ж: т = 5:1. Отделение жидкого от твердого в промежуточных операциях проводилось декантацией отстоявшейся пульпы. Конечные растворы и отвальный кек отделялись фильтрованием на фильтр-прессе. Анализ пылей, загруженных в смеситель, и выгруженных кеков по- казан в таблице 6.

Таблица 6

Содержание таллия в пылях и кеках и извлечение таллия в раствор при выщелачивании


В процессе выщелачивания 6ыли получены растворы с концентрацией таллия:

1) готовые растворы (растворы I выщелачивания) – 170- 200 мг/л;

2) промежуточные растворы (растворы II выщелачивания) – 80-100 мг/л;

Конец ознакомительного фрагмента.