Вы здесь

Мивары: 25 лет создания искусственного интеллекта. 1. Мивары и искусственный интеллект (О. О. Варламов)

1. Мивары и искусственный интеллект

Проведем обзор литературных источников [1-525] и краткое сравнение и сопоставление достижений и возможностей миварных технологий и основных подходов в области создания ИИ. Но перед этим совсем кратко изложим основы миварного подхода и опишем, для каких систем он создавался. Надеемся, что после такого описания станет понятно, что существующие "традиционные" интеллектуальные системы решают гораздо более простые задачи, традиционные подходы к их решению не удовлетворяют реальным требованиям, а миварный подход является развитием и обобщением практически всех существующих технологий и обладает качественно новыми достоинствами и важными преимуществами.

1.1. Основы миварного подхода

Проблема моделирования интеллектуальной деятельности человека для создания ИИ является актуальной и важной. Миварный подход позволяет предложить новые модели и методы обработки информации и управления. Будем понимать под системами искусственного интеллекта активные самообучающиеся логически рассуждающие системы. В прошлом веке были разработаны технологии создания экспертных систем по отдельным узконаправленным предметным областям. Это было обусловлено сложностями формализованного описания требуемых предметных областей и тем, что системы логического вывода не могли обрабатывать более 20 объектов/правил. В то же время, получили развитие интеллектуальные пакеты прикладных программ (ИППП), которые позволяли решать в автоматизированном режиме задачи в разных областях, где требовались вычисления и конструирование алгоритмов решения задач. Технологии ИППП развиваются в миварах и сервисно-ориентированных архитектурах.

В Интернете развиваются различные формы справочных и обучающих систем. Например, Википедия или проект "Вольфрам". Российская фундаментальная инновационная технология "миварный подход" [46-126, 303, 354-355, 503-504] позволяет использовать эволюционные базы данных и знаний (правил) для формирования единого образовательного и справочного пространства. Активная миварная Интернет-энциклопедия будет содержать в себе не только факты в разных предметных областях, по аналогии с существующими энциклопедиями, но и активные программы для решения различных логических и вычислительных задач (технологии ИППП и сервисов). В миварном подходе объединяются в единую технологию базы данных, вычислительные задачи и логические проблемы.

Миварный подход [46-126, 303, 354-355, 503-504] развивается с 1985 года и включает две основные технологии:

1) эволюционные базы данных и правил (знаний) с изменяемой структурой на основе миварного информационного пространства унифицированного представления данных и правил, базирующегося на "тройке" "вещь, свойство, отношение", предназначенные для хранения любой информации с изменением структуры и без ограничения по объему и формам представления;

2) систему логического вывода или конструирования алгоритмов на основе активной обучаемой миварной сети правил с линейной вычислительной сложностью, предназначенную для обработки информации, включая не только логический вывод, но и вычислительные процедуры и сервисы.

В отличие от традиционных подходов, разделяющих хранение в базах данных, логический вывод и вычислительную обработку [226, 244-245, 264, 273, 328], миварный подход позволяет создавать многомерные и эволюционные системы, обрабатывающие информацию в реальном масштабе времени с совмещением логических выводов и вычислительной обработки [46-126, 303, 354-355, 503-504]. Основой многомерного эволюционного миварного подхода является то, что реальный мир существует сам по себе, а при изучении и познании некоторой предметной области человек представляет себе описание этого мира в виде начального трехмерного пространства, осями которого являются понятия: вещь, свойство и отношение. Эти три понятия – абстракции, удобные для описания реального мира. Отметим, что миварный подход – это современный подход для разработки интеллектуальных систем и, в перспективе, создания систем искусственного интеллекта [72].

1.2. Для каких систем создан миварный подход

Практика общения с коллегами на научных конференциях и дискуссиях показала, что необходимо сразу и четко формулировать, для каких систем был создан миварный подход. Дело в том, что, по признанию многих авторитетных ученых, их работы направлены на решение "игрушечных задач" с очень ограничивающими требованиями, например: замкнутость описания предметной области, не более 20-30 логических правил и т.п. На ранних этапах исследований такие постановки имели право на жизнь. Но миварный подход создавался для принципиально других систем, которые можно кратко называть глобальными познающе-диагностическими системами реального времени. По указанным выше примерам, для миварного подхода сразу было поставлено условие работы с открытыми и достаточно большими предметными областями, где счет логическим правилам идет на десятки тысяч. При этом стоит отметить, что были практически сняты ограничения на вычислительные ресурсы и прочие материальные ограничения, т.к. стояла задача оценки определения предельных возможностей таких систем.

Глобальные познающе-диагностические системы (ГПДС) должны решать задачу мониторинга и прогнозирования сложной предметной области. Обобщенная схема таких систем показана на рисунке 1.


Рисунок 1 – Схема познающе-диагностических систем реального времени


Отметим, что основой работы глобальных познающе-диагностические систем является информация – глобальная же модель предметной области, включающая и все данные, и все правила, и все отношения и т.д. В терминологии миваров это и есть эволюционная база данных и правил. Именно на ее основе можно по кратким фрагментам получаемых сообщений делать обоснованные выводы и прогнозы. Эти краткие сообщения представляют собой лишь горные вершины или вершины айсбергов, за которыми скрываются огромные описания, хранящиеся в базах данных.

Для решения задачи мониторинга и прогнозирования сложной предметной области (ПО) необходимо создать автоматизированную систему информационного моделирования и прогнозирования. Прежде всего, необходимо создать информационную модель предметной области и решить задачи сбора требуемых данных, обработки информации и прогнозирования развития объекта наблюдения. Эта классическая задача имеет большое множество возможных решений, зависящих от особенностей предметной области, имеющихся ресурсов, заданных требований по достоверности, своевременности, надежности, точности прогнозирования и т.п. В любом случае, необходимо выделение и создание трех подсистем:

· сбора данных;

· накопления и обработки информации;

· прогнозирования и имитационного моделирования.

Создание информационной модели сложной предметной области является творческой задачей с применением информационных технологий баз данных, экспертных систем, систем поддержки принятия решений, интеллектуальных систем и др. Успех решения задачи зависит от концептуального моделирования предметной области (выделяют концептуальный, логический и физический уровни моделирования ПО). Отметим, что анализ разработки существующих аналогов показывает необходимость изначального применения эволюционных (развивающихся, обучаемых) систем. В настоящее время существуют современные и перспективные методы моделирования самых сложных предметных областей в предельно жестких ограничениях и внешних условиях. К таким информационным технологиям относится отечественная технология создания самоорганизующихся программно-аппаратных комплексов оперативной диагностики (СПАКОД) на основе эволюционного многомерного информационного пространства универсального представления данных и правил [72, 46-126, 303, 354-355, 503-504].

При решении задач моделирования и прогнозирования сложных предметных областей невозможно изначально определить требуемые ресурсы и возможные проблемы. Такая задача относится к классу познавательных задач и не имеет однозначных, тем более, простых решений. Кроме того, задача мониторинга относится к классу диагностических задач, требующих обработки данных в реальном масштабе времени. Когда задачи познания и диагностики решаются одновременно, возникает наиболее сложный класс познающе-диагностических задач. В настоящее время для одновременного решения задач мониторинга и прогноза сложных реальных предметных областей не существует готовых информационных систем.

Однако, комбинируя существующие технические и программные решения, представляется возможным решить требуемую задачу мониторинга и прогноза сложных реальных предметных областей.

Например, технология самоорганизующихся программно-аппаратных комплексов оперативной диагностики позволяет постепенно по мере изучения (познания) предметной области эволюционно наращивать требуемые ресурсы как на программном, так и на аппаратном уровне.

Информационная модель создается с самого простого и минимального количества данных, а затем, по мере поступления новых данных из подсистемы сбора данных, происходит эволюционное наращивание информационной модели в подсистеме накопления и обработки данных. Далее появляется возможность выполнения прогнозирования на различные интервалы времени.

Технология СПАКОД позволяет одновременно осуществлять информационное моделирование на нескольких моделях, по каждой из которых выполняется прогнозирование. Полученные прогнозы по мере наступления событий сравниваются с реальным развитием предметной области.

Затем, в рамках организации обратной связи анализируются все прогнозы, их отличие от реального развития событий (ошибки прогнозирования) и осуществляется модернизация существующих информационных моделей. Со временем, практика показывает, что такое разномодельное эволюционное прогнозирование с обратной связью позволяет давать достаточно точные и объективные прогнозы.

Таким образом, технология СПАКОД позволяет эволюционно и постепенно наращивать как саму информационную модель (и требуемые для ее функционирования ресурсы), так и точность прогнозирования.

Подчеркнем, что особенности создания системы сбора данных в основном зависят от поставленных задач и предметной области. Однако технология СПАКОД позволяет в процессе информационного моделирования выявлять недостающие данные, определять, где их можно получить, и управлять процессом сбора данных в реальном масштабе времени. Сбор данных может осуществляться как автоматически в различных компьютерных сетях (Интернет), так и с использованием специальных и других технологий, включая специально подготовленных людей или роботизированные системы. Известны различные технологии сбора данных, но их целесообразно рассматривать после начального создания информационной модели сложной предметной области.

Если технологии сбора данных сильно зависят от возможностей людей, то следующие этапы: обработка и прогнозирование – позволяют практически полностью автоматизировать весь процесс и максимально сократить количество требуемого персонала. Кроме того, существуют различные способы разграничения доступа, при которых информация о реально решаемых задачах и получаемых результатах доступна только высшему руководству и системным администраторам СПАКОД.

1.3. Анализ принципиально новых возможностей информатизации

Попробуем разобраться, что принципиально нового дает информатизация. Прежде всего, информатизация – это применение компьютерных технологий. В современном состоянии это означает повсеместное использование территориально распределенных гетерогенных компьютерных сетей и систем. Необходимо сразу же выделить два принципиально разных уровня:

· физический ("железо": оборудование, каналы связи и т.д.) и

· логический ("софт": программное обеспечение, алгоритмы, данные и т.п.).

По существу, компьютеры материализуют человеческие мысли, т.е. выполняют написанные по определенным алгоритмам программы. Алгоритмы могут быть самыми различными. Человек, разрабатывая алгоритм и создавая программу, как бы отделяет от себя свои мысли, дает им самостоятельную жизнь, но потом может воспользоваться результатами выполнения своих программ. До тех пор, пока не создан искусственный интеллект, компьютер является усилителем мыслительной деятельности человека! Это самое принципиальное свойство информатизации: усиливать человеческие интеллектуальные способности. Т.е., если мыслей и интеллекта НЕТ, то и усиливать НЕЧЕГО! Ноль, помноженный на любое число, все равно дает в результате ноль!

Основные процессы, которые автоматизирует информатика: сбор, передача, обработка, хранение и представление данных (информации, сведений и т.п.). По всем этим пяти направлениям компьютеры усиливают и/или расширяют человеческие возможности (способности). Кроме того, с помощью компьютера человек может создавать новую информацию (данные). Отметим, что принято различать понятия: информация, сведения, данные – и близкие к ним, но на данном этапе анализа нет необходимости в этом и все их можно использовать как синонимы (до определенного момента, который надо отдельно оговаривать).

Кратко проанализируем эти пять направлений, но опустим для краткости оценку их реальных возможностей и этичности.

Сбор информации. Компьютерные системы и сети позволяют собирать (получать) человеку практически всю документированную и переведенную в электронный вид информацию. Не будем говорить о закрытой и конфиденциальной информации, а рассмотрим теоретические возможности человека по сбору любой доступной информации. Фактически, информатизация позволяет человеку собирать любую информацию, т.е. возможности человека по сбору информации становятся безграничными.

Передача информации. Современные средства компьютерной телекоммуникации позволяют передавать информацию в очень больших объемах практически в реальном масштабе времени на любые расстояния и многим получателям одновременно. Возможности человека и здесь практически ничем не ограничены (в разумных пределах, конечно же). Особо надо подчеркнуть, что передача позволяет взаимодействовать большому количеству людей в реальном масштабе времени. Есть ограничения по скоростям передачи данных, но в целом даже видеоизображение уже может передаваться в реальном масштабе и без особых финансовых затрат.

Обработка информации. В этом направлении все зависит от формализуемости и наличия четких алгоритмов обработки информации. Все операции, для которых разработаны алгоритмы, могут быть выполнены на компьютерах. Возможности здесь, конечно же, ограничены, но все же компьютеры позволяют весьма существенно усилить человеческие способности и проводить обработку огромных массивов информации достаточно быстро. Пожалуй, именно в обработке информации еще есть большие резервы для усиления человеческого мышления (по возможности и мере необходимости).

Хранение информации. При соблюдении определенных условий хранить можно практически бесконечные объемы информации. Отдельный вопрос – это своевременный доступ к требуемой информации, но здесь еще очень много нерешенных научно-технических проблем. (Для решения этих проблем можно применять, например, миварное информационное пространство, позволяющее в едином формате хранить и данные, и правила (процедуры, программы и т.п.) их обработки). Таким образом, хранить можно бесконечно много данных, но вот с доступом к ним пока есть существенные проблемы (что сильно связано с обработкой информации).

Представление информации. В этом направлении все зависит от требуемых форм представления информации, ее публикации и распространения. Практически все известные формы представления информации доступны для современных компьютеров: видео, голос, запахи, тактильные ощущения и многое другое для всех органов чувств человека. При определенных усилиях человеку доступны все формы и виды представления информации. Отметим, что человек может создавать любую информацию, но для обмена ею с другими людьми надо представить ее в некоторой доступной для других форме.

Перейдем к управлению. По сути, любое управление – это достижение некоторой цели, некоторого требуемого состояния по определенным алгоритмам в конкретных внешних условиях и при учете неизбежных ограничений. Фактически для любого управления может быть создана некоторая модель на основе параметров и алгоритмов. Для решения задач управления современные компьютеры могут оказать значительную помощь, но, к сожалению, не во всех областях. Как было показано выше, если задачу управления можно строго описать, создать четкие алгоритмы и задать пороговые значения всех параметров, то компьютерная система даже без участия человека сможет отлично выполнять функции управления.

1.4. Познающе-диагностические автоматизированные информационные системы и сложные предметные области

Для определения предельных требований к автоматизированным системам необходимо описать максимально сложные условия для их применения. Как известно, выделяют классы познавательных и диагностических автоматизированных систем обработки информации (АСОИ) [72]. Основной задачей познавательных систем является изучение новой сложной предметной области без существенных ограничений по времени работы. Задачей диагностических систем является другая крайность – в минимальное время принимать решения в динамической формализованной области. Представляется, что наиболее сложным случаем является сочетание этих двух систем, когда на неизвестной исследуемой предметной области надо распознавать ее состояние и принимать решения в минимальное время. Такие познающе-диагностические АСОИ являются наиболее сложными, и в них отрабатываются новые подходы, модели, методы и алгоритмы. Практически все реальные сложные проблемы менеджмента относятся именно к познающе-диагностическим задачам.

Таким образом, для обоснованной классификации управленческих АСОИ целесообразно сформулировать наиболее важные условия и категории сложности различных предметных областей. Все управленческие АСОИ и программы можно будет разбить на классы решаемых задач по соответствующей сложности. Тогда, все разнообразные пользователи смогут обоснованно выбирать для себя наиболее подходящие конкретные АСОИ. С научной точки зрения, наибольший интерес представляют именно максимальные условия сложности предметной области. Ведь если некоторая АСОИ создана для максимально сложного случая, то она сможет решать и более простые задачи даже в упрощенном варианте самой АСОИ.

Кроме того, исследуя максимально сложные случаи, можно определить и предельные возможности современных АСОИ, выявить основные научные проблемы и приступить к их целенаправленному решению. Насколько нам известно, наиболее сложными считаются следующие условия для системы управления:

1) сложный, большой, разнообразный, изменяющийся и развивающийся объект управления, когда принципиально нельзя сделать его полную информационную модель;

2) объективное наличие и сильное влияние фактора случайности событий, их непредсказуемости;

3) агрессивная внешняя среда с частыми, неожиданными и очень быстрыми изменениями (нельзя применять только статистические модели);

4) ограниченные внешние и внутренние ресурсы, которых заведомо не хватает для всех, что и порождает конфликты и конкуренцию;

5) наличие не менее интеллектуальных и не менее сильных объектов-противников или конкурентов (обман и комбинации);

6) проблемы со своевременностью получения и передачи сигналов управления: длительные задержки при передаче сигналов управления и получения сигналов с датчиков (в пределе – счет идет на секунды);

7) проблемы с полнотой требуемых исходных данных (не все данные в наличии, более того, реально все данные невозможно получить никогда);

8) проблемы с достоверностью получаемых исходных данных, т.е. неправильные или ошибочные данные по разным причинам;

9) важность и сложность принимаемых решений ("ценою в жизнь").

Возможно, это еще не все условия, и данная проблема требует отдельного изучения. Важно, что в таких случаях принципиально нельзя создать идеальную систему управления (не хватает либо ресурсов, либо времени, либо чего-то еще). Как правило, существует несколько вариантов создания таких систем управления, из которых надо выбрать оптимальный. Принципиально, что на выходе получают квазиоптимальную систему, а так как внешняя среда и противники постоянно изменяются, то и эта система должна быть открытой и эволюционной. Важно еще и то, что, когда некие действия уже начались, у менеджеров не будет времени на раздумывания и создание новых планов действий, а остается только выбрать какой-то один заранее разработанный план и реализовывать его, осознавая всю ответственность и, возможно, немного модернизируя и уточняя его.

Отметим, что для таких сверхсложных систем существующие традиционные базы данных и простейшие экспертные системы не могут быть адекватными. Именно для таких максимально сложных случаев и разрабатывались новые перспективные миварные базы данных и правил и миварное информационное пространство [46-126, 303, 354-355, 503-504]. Миварные базы данных и правил разработаны именно для познающе-диагностических систем реального времени. Отметим, что в миварном информационном пространстве возможно одновременное моделирование в реальном времени нескольких информационных моделей, сопоставление их результатов и разработка различных прогнозов. Это вполне соответствует современным направлениям: сервисно-ориентированные архитектуры, "облачные" вычисления, многоагентные системы – хотя все это разрабатывалось в миварах независимо и параллельно.

1.5. Обзор технологий ИИ и сравнение с миварным подходом

За основу описания области ИИ мы взяли книгу Джорджа Люгера [264], которая была написана в 2001 году и фактически обобщает итоги 20 века в области ИИ. Конечно же, мы учитывали и более современный материал, который излагался в статьях, докладах, книгах и отражен в списке литературы. Тем не менее, основные выводы и положения работы Люгера не утратили своей актуальности, а следовательно, можно сравнивать миварный подход с достижениями в области ИИ.

Итак, основной целью своей работы Дж. Люгер считал "… объединение разрозненных областей искусственного интеллекта с помощью детального описания его теоретических основ …" [264, стр. 20]. Для адекватности изложения материала будем приводить достаточно подробные цитаты, особенно в тех случаях, когда мы согласны с автором. Постараемся собрать таким образом общую аксиоматику в области ИИ, а затем сравнивать ее с миварными технологиями. "Интеллект – это сложная область знаний, которую невозможно описать с помощью какой-то одной теории. Ученые строят целую иерархию теорий, характеризующие его на разных уровнях абстракции" [264, стр. 20]. Там же выделены три уровня:

1) на самом низком уровне находятся нейронные сети, генетические алгоритмы и другие формы эволюционирующих вычислений, позволяющие понять процессы адаптации, восприятия, воплощения и взаимодействия с физическим миром, лежащим в основе любой формы интеллектуальной деятельности;

2) на втором уровне лежат более строгие шаблоны логического вывода, а ученые изучают схемы дедукции, абдукции, индукции, поддержки истинности и другие бесчисленные модели и принципы рассуждений;

3) на третьем уровне абстракции разработчики экспертных систем, интеллектуальных агентов, систем понимания естественного языка пытаются определить роль социальных процессов в создании, передаче и подкреплении знаний.

Отметим, что в наших работах предложено примерно такое же выделение уровней исследований в области ИИ, но с добавлением на третьем уровне проблем исследования искусственной личности, сознания и т.п.

Миварный подход предназначен, прежде всего, для работы на втором уровне, который мы расширяем с логической обработки до обработки информации с учетом автоматического конструирования алгоритмов (это относилось ранее к области создания ИППП). Кроме того, наш опыт создания интеллектуальных систем показал, что на этом уровне необходимо учитывать и традиционные вычислительные процедуры или подпрограммы. Из наиболее известных формализмов, кроме миваров этому соответствует подход на основе сервисов или агентов. Есть некая задача; ее формулируют в виде сервиса или агента и затем формализуют в виде "черного ящика" – процедуры с описанием входных и выходных данных. Миварный подход основывается на представлении всей информации в виде "тройки": "вещь-свойство-отношение". Тогда все процедуры, подпрограммы, агенты, сервисы и т.п. могут быть представлены в виде неких отношений, которые хранятся в базе данных, а при необходимости запускаются на основе миварной сети. Миварный подход позволяет для одной предметной области хранить несколько разных процедур, решающих одинаковые задачи. Более того, если вычислительные ресурсы позволяют, то все эти процедуры могут запускаться одновременно, а потом на основе конкуренции из представленных ими результатов выбирается наиболее подходящий для каждого конкретного случая. Сразу отметим, что методы первого, рефлексного, уровня (в нашей трактовке) могут быть реализованы в виде точно таких же миварных процедур, включающих и нейронные сети, и генетические алгоритмы, и т.д.

В книге Люгера приведено довольно точное и краткое определение: "ИИ можно определить как область компьютерной науки, занимающуюся автоматизацией разумного поведения" [264, стр. 27]. ИИ опирается на теоретические и прикладные принципы компьютерной науки (информатики): структуры данных, алгоритмы, языки и методики программирования. Отметим: само понятие интеллекта определено не очень четко, что дает некую иллюзию использовать термин ИИ в качестве недостижимого горизонта, к которому надо стремиться, но невозможно достичь. К настоящему моменту времени все примерно так и происходит: если некая творческая проблема решается, т.е. ее удается формализовать и разработать соответствующие алгоритмы решения на компьютерах, то большинство ученых сразу объявляет эту проблему нетворческой, решение неинтеллектуальным и, таким образом, отодвигает горизонт (ИИ) дальше и дальше. Нечто подобное уже произошло с самой интеллектуальной игрой – шахматами, после того, как компьютеры стали уверенно обыгрывать самых лучших шахматистов-людей. Да, мы тоже согласны с тем, что, машина решает эти задачи не как человек… Тем не менее, уже достаточно большое количество промышленных автоматизированных систем решает сложные, "человеческие", задачи, а их пользователи-люди уже не могут обойтись без компьютеров.

Подчеркнем лишь то, что в этой области слишком много антропоморфности – человекоподобия, а следовательно, и субъективизма. Мы являемся сторонниками установления единых правил измерения интеллектуальности, т.е. некой шкалы способности к активному отражению, где человеческий мозг – лишь очередное звено и двигаться к нему надо постепенно. Не надо забывать, что до создания человека природа прошла большой путь дарвиновского развития. Вместо того чтобы так же постепенно улучшать способности компьютера, т.е. повышать его интеллектуальность, люди ставят завышенные цели и не могут достичь их, а это приводит к разочарованию "публики" в науке. Что отражается и на финансовом состоянии современной науки. Более того, всякое компьютерное достижение сравнивают не с обычным "средним" человеком, а сразу с самым умным и гениальным… Если писать стихи, то как Пушкин. А много ли таких Пушкиных среди людей? Объективно говоря, наши требования к компьютерам очень сильно завышены. Это с одной стороны. С другой стороны, для многих практических задач достаточно моделирования и реализации деятельности хотя бы простейших животных. Обычно на дискуссиях мы предлагаем сделать не разумного человека, а начать с таракана, собаки и т.п. Необходимо сначала разобраться с интеллектуальностью на уровне животных, что само по себе весьма полезно для промышленности, а уж потом "замахиваться" на создание искусственного человека. Нам не нужны искусственные люди: людей пока в достаточном количестве рожают наши любимые женщины. Кстати, в плане биологического клонирования человека – это тоже, в определенном смысле, проблема создания искусственных людей, т.е. ИИ. Нас интересует не биологический аспект, а создание технических систем. Тогда и приходим к выводу: смысл ИИ – создание усилителя человеческих возможностей. Если этот усилитель-ИИ будет работать полностью автономно, то возникнут проблемы выживания человека в борьбе со "злыми" роботами. Да, эти проблемы тоже лучше решать заранее, но все же, это несколько другие проблемы, хотя, безусловно, важные и актуальные.

Необходимо отдать историческое должное языку Фреге, изложенному им в 1884 году и именуемому сейчас исчислением предикатов первого порядка. Да, это исчисление предикатов служит инструментом для записи теорем и задания значений истинности, а также сыграло принципиальную роль в создании теории представления для ИИ. Исчисление предикатов первого порядка обеспечивает средства автоматизации рассуждений: язык для построения выражений, теорию, позволяющую судить об их смысле, и логически безупречное исчисление для вывода новых истинных выражений. [264, стр. 34]. Далее Люгер указывает, что работа Рассела и Уайтхеда особенно важна для фундаментальных принципов ИИ, т.к. они относились к математике как к чисто формальной системе. Это означает, что аксиомы и теоремы должны рассматриваться исключительно как наборы символов, а доказательства должны выводиться лишь посредством применения формальных правил. При этом исключается использование интуиции или смысла теорем в качестве основы доказательств. Смысл, содержащийся в теоремах и аксиомах системы, имеет отношение только к внешнему миру и совершенно не зависит от логического вывода. Этот формальный подход Рассела и Уайтхеда к математическим умозаключениям сделал возможной его автоматизацию в реальных вычислительных машинах. Логический синтаксис и формальные правила вывода, разработанные Расселом и Уайтхедом, лежат в основе систем автоматического доказательства теорем и составляют теоретические основы искусственного интеллекта [264, стр. 34-35]. Однако, с другой стороны, это наложило и важные ограничения на возможности описания реальных предметных областей: формализм, как выясняется, тоже имеет свои недостатки вместе с преимуществами. Нельзя не отметить и роль А.Тарского, чья теория ссылок сыграла принципиальную роль в процессе формирования ИИ. Согласно этой теории, правильно построенные формулы Фреге или Рассела-Уайтхеда определенным образом ссылаются на объекты реального мира, а эта концепция лежит в основе большинства теорий формальной семантики. Люгер справедливо отмечает, что ИИ не стал жизнеспособной научной дисциплиной до появления цифровых вычислительных машин. Однако архитектура цифровых компьютеров наталкивает на специфичное представление теории ИИ. Получается, что интеллект – это способ обработки информации. Далее Люгер формулирует совершенно замечательную мысль, к которой мы с удовольствием присоединяемся: "Мы часто забываем, что инструменты, которые мы создаем для своих целей, влияют своим устройством и ограничениями на формирование наших представлений о мире". Такое, казалось бы, стесняющее наш кругозор взаимодействие является важным аспектом развития человеческого знания: инструмент (а научные теории, в конечном счете, тоже инструменты) создается для решения конкретной проблемы. По мере применения и совершенствования инструмент подсказывает другие способы его использования, которые приводят к новым вопросам и, в конце концов, разработке новых инструментов [264, стр. 35]. Это очень важно для развития науки!

Здесь весьма уместно привести пример зарождения миварного подхода к логической обработке и созданию прототипа "УДАВ" в далеком 1985 году. Перед Варламовым О.О. поставили задачу изучения сетей Петри и их реализации на конкретном примере: автоматическом решении геометрических задач в треугольниках, где по разным параметрам: углам, сторонам треугольника, высотам и т.д. – с использованием существующих формул всегда можно найти другие параметры, например, площадь, периметр и т.д. Этот пример должен был быть применен для создания прототипов интеллектуальных пакетов прикладных программ. Не будем вдаваться в подробности, т.к. сейчас эта задача успешно решена в миварных сетях и подробно описана в наших работах. Смысл примера в том, что в процессе изучения сетей Петри были выявлены ограничения и неполная пригодность этого формализма даже для решения таких простых задач, как расчет параметров треугольников. Но мы пошли дальше и разработали идею применения нового формализма, позже получившего название "УДАВ" – "универсальный делатель алгоритмов Варламова". Самое "забавное" началось дальше, и этот пример показывает отношение двух разных ученых к разработке нового инструмента. Первый ученый – формалист выслушал все возражения и критику в адрес сетей Петри и также идею нового подхода к решению задач в треугольниках, но вместо одобрения нового подхода принял решение сменить ученика, сменить пример из предметной области и продолжить "мучиться" с сетями Петри. Ему было важно не решение практической задачи, а освоение формализма сетей Петри. Мы считаем это тупиковым путем, когда ученые "уходят в свой формальный мир" и забывают о необходимости решения практических задач и возможности разработки новых инструментов. Мы не будем идентифицировать этого конкретного ученого, т.к. в дальнейшей жизни встречалось огромное количество таких формалистов, которые, к огромному сожалению, помимо полезного вклада в науку, чему мы всегда отдаем должное уважение, на определенном этапе начинают отвергать новые идеи и тормозить развитие науки. Вернемся к нашему примеру и вспомним, что был и второй ученый – Ростовцев Ю.Г., который в своем курсе касался в том числе и вопросов создания ИППП. Варламов О.О. к началу экзаменационной сессии 1986 года уже достаточно четко сформулировал основные подходы "УДАВ", а также выявил ограничения традиционных ИППП. Теперь ситуация: на экзамене ученик говорит своему преподавателю, весьма заслуженному и уважаемому уже на тот момент, заведующему кафедрой: "Извините, но изложенные Вами методы создания ИППП не интеллектуальные, а вот разрешите мне рассказать Вам о моем научном подходе к этому вопросу". И вот второй ученый (Ростовцев Ю.Г.) вполне спокойно согласился, выслушал и в конце даже признал, что метод "УДАВ", действительно, лучше тех методов, о которых он рассказывал на своих лекциях. Это пример реального и положительного подхода, когда ученые выслушивают своих оппонентов и не впадают в формализм. Еще раз, огромное спасибо за поддержку Ростовцеву Ю.Г. К нашему счастью, второй тип настоящих ученых встречался на нашем научном пути достаточно часто и позволял компенсировать негативное влияние и отношение формалистов.

Всегда надо помнить, что любой математический формализм – это всегда ограничения на предметную область, это упрощение реальной жизни, а следовательно, надо вовремя переходить к новым инструментам и не ограничивать себя "детскими ползунками" и простейшими формализмами.

Если говорить о миварах и перечисленных выше формализмах Фреге, Рассела и Уайтхеда, Тарского и многих других, то надо помнить, что наука развивается по спирали и старые формализмы требуют своего продолжения на новом витке. Упомянутые выше исчисление предикатов и другие ранние фундаментальные формализмы при необходимости могут быть реализованы и в правилах (отношениях) миварных сетей. Только надо помнить, что есть и другие формализмы представления информации для ИИ, а у исчисления предикатов первого порядка есть достаточно жесткие ограничения и не очень большие возможности, если вспоминать не об "игрушечных" задачах, а говорить о создании глобальных познающе-диагностических системах и СПАКОД, решающих сложные логико-вычислительные задачи в реальном времени. К сожалению, для достаточно большого количества ученых в нашей области исчисление предикатов так и остается верхом развития, что тормозит применение других более мощных и современных научных теорий. У того же Люгера подробно изложены биологические и социальные модели интеллекта, многоагентные системы, которые опираются не на исчисление предикатов, а на совсем другие и гораздо более современные научные теории [264, стр. 38-42]. Там же приведено интересное и новое определение термина "интеллект", которое отличается от традиционного подхода логиков и сторонников исчисления предикатов первого порядка. "Хассерл, отец феноменологии, рассматривал абстракции как объекты, укоренившиеся в конкретном "жизненном мире"… интеллект заключался не в знании истины, а в знании, как вести себя в постоянно меняющемся и развивающемся мире. Таким образом… интеллект рассматривается с точки зрения выживания в мире, чем как набор логических утверждений о мире (в сочетании со схемой вывода)" [264, стр. 39].

Выделим из описания различных моделей интеллекта Люгера [264] еще несколько, наиболее важных и актуальных для миварного подхода и его различных практических приложений. В нейронных моделях интеллекта упор делается на способность мозга адаптироваться к миру, в котором он существует, с помощью изменений связей между отдельными нейронами. Знание в таких системах не выражается логическими конструкциями, а представляется в неявной форме как свойство конфигураций таких взаимосвязей. Иная модель интеллекта, заимствованная из биологии, навеяна процессами адаптации видов к окружающей среде. В разработках искусственной жизни и генетических алгоритмов программы не решают задачи посредством логических рассуждений, а порождают популяции соревнующихся между собой решений-кандидатов и заставляют их совершенствоваться на основе биологической эволюции. Социальные системы дают еще одно модельное представление интеллекта с помощью глобального поведения, которое бы не удалось решить отдельным их членам. Есть два аспекта:

1) корни интеллекта связаны с культурой и обществом, а следовательно, разум является эмерджентным;

2) разумное поведение формируется совместными действиями большого числа очень простых взаимодействующих полуавтономных индивидуумов, или агентов.

Взаимодействие агентов создает интеллект [264, стр. 40]. Люгер Дж. определяет агента как элемент сообщества, который может воспринимать аспекты своего окружения и взаимодействовать с этой окружающей средой либо непосредственно, либо путем сотрудничества с другими агентами. Большинство интеллектуальных методов решений практических задач требуют наличия разнообразных агентов. Это могут быть простые агенты-механизмы, задача которых – собирать и передавать информацию; агенты-координаторы, которые обеспечивают взаимодействие между другими агентами; агенты поиска, которые перебирают пакеты информации и возвращают какие-то избранные частицы; обучающие агенты, которые на основе полученной информации формируют обобщающие концепции; и принимающие решения агенты, которые раздают задания и делают выводы на основе ограниченной информации и обработки. Получается, что с точки зрения определения интеллекта агентов можно рассматривать как механизмы, обеспечивающие выработку решения в условиях ограниченных ресурсов и процессорных мощностей. Для разработки и построения таких сообществ агентов необходимы: структуры для представления информации, стратегии поиска в пространстве альтернативных решений и архитектура, обеспечивающая взаимодействие агентов [264, стр. 41]. Технология многоагентных систем уже фактически использована для создания познающе-диагностических систем, хотя в явном виде подобные названия и термин "агенты" используются не всегда.

Как видно, в современной теории ИИ кроме предикатного подхода уже разработано большое количество других подходов, кардинально отличающихся от исчисления предикатов и т.п. Подчеркнем, что продукционный подход и его развитие в миварных сетях являются еще одной альтернативой исчислению предикатов при создании ИИ.