Вы здесь

Методы восстановления. Глава 2. Утомление при мышечной деятельности (С. Ю. Махов, 2016)

Глава 2. Утомление при мышечной деятельности

Мышечное утомление – это такое состояние организма, при котором работоспособность человека временно снижена. Понижение работоспособности является главным внешним проявлением этого состояния, его основным объективным признаком. Однако работоспособность может снижаться не только при утомлеиии, но и при тренировке в неблагоприятных условиях среды (высокой температуре и влажности воздуха; пониженном парциальном давлении кислорода в воздухе, например в среднегорье).

Утомление является естественным физиологическим процессом, нормальным состоянием организма. Для успешной тренировки необходимо, чтобы при каждом упражнении была достигнута определенная степень утомления. Утомление характеризуется еще одним субъективным признаком – усталостью (тяжестью в голове, конечностях, общей слабостью, разбитостью). Русский физиолог А. А. Ухтомский считал, что усталость является «натуральным предупредителем утомления». Выраженность усталости не всегда соответствует степени утомления, т. е. объективным физиологическим и биохимическим сдвигам, наступающим в организме в процессе тренировки. В данном случае играет роль эмоциональная настройка спортсмена: при большой заинтересованности в проделанной работе усталость долго не проявляется, при падении интереса она наступает рано.

Утомление – это биологически защитная реакция организма, направленная против истощения функционального потенциала центральной нервной системы (ЦНС). При развитии утомления, перенапряжения, перетренированности, переутомления имеет место нарушение корковой нейродинамики.

Ряд ученых утверждают, что причина утомления кроется в самой мышце как рабочем органе, так как, по их мнению, в результате физической работы в мышце накапливаются продукты обмена веществ (например, молочная кислота), и поэтому она не может выполнять дальнейшую работу. Тренированной мышце утомление наступает и без накопления молочной кислоты. Выдвигается теория, согласно которой утомление наступает как в работающих мышцах, так и в нервных центрах. Эта теория основана на концепции постоянного воздействия на нервные центры импульсов от работающих мышц, в результате чего в нервных центрах и развиваются процессы, следствием которых является мышечное утомление.

Опытами было установлено, что ЦНС, побуждая мышцу через двигательные нервы к работе, одновременно через симпатические нервы приспосабливает ее трофические функции к выполнению этой работы. Развивая это положение, процесс утомления как результат нарушения взаимодействия между соматической и адаптационно-трофической системами. Разучивание движений приводит к быстрому утомлению, потому что оно совершается исключительно под управлением коры большого мозга. По мере повышения автоматизации движений управление ими берут на себя подкорковые образования. Движения становятся высококоординированными только благодаря тому, что они «выходят» из-под ведения коры и начинают подчиняться подкорковым системам.

Симпатическая нервная система усиливает окислительные процессы в мышцах, а основной причиной утомления является расстройство координации функционирующих систем.

Утомление в значительной степени зависит от изменения обмена веществ в нервной ткани, в результате чего происходят сложные нервно-рефлекторные сдвиги в ЦНС. Так, существенную роль в жизнедеятельности нервных клеток играет кислород: чем меньше его доставляется к нервной ткани, тем быстрее снижается ее возбудимость, тем скорее возникает утомление.

В основе утомления лежат механизмы охранительного торможения, которые предохраняют нервные центры от функционального истощения. Что касается исполнительных органов, т. е. самих мышц, то изменение их состояния является вторичным и обусловлено изменением состояния высших нервных Центров. В. Н. Волков составил классификацию клинических проявлений утомления.

1. Легкое утомление – состояние, которое развивается даже после незначительной по объему и интенсивности мышечной работы. Оно проявляется в виде усталости. Работоспособность при этой форме утомления, как правило, не снижается.

2. Острое утомление – состояние, которое развивается при предельной однократной физической нагрузке. При этом состоянии отмечается слабость, резко снижается работоспособность и мышечная сила, появляются атипические реакции сердечно-сосудистой системы на функциональные пробы. Острое утомление чаще развивается у слабо тренированных спортсменов. Клинические проявления его: бледность лица, тахикардия, повышение максимального артериального давления (АД) на 40–60 мм рт. ст., резкое снижение минимального АД (феномен бесконечного тона), на ЭКГ нарушение обменных процессов сердца, повышение общего лейкоцитоза крови, иногда белок в моче.

3. Перенапряжение – остро развивающееся состояние после выполнения однократной предельной тренировочной или соревновательной нагрузки на фоне сниженного функционального состояния организма (перенесенное заболевание, хронические интоксикации – тонзиллит, кариес зубов, гайморит и др.). Чаще это состояние развивается у квалифицированных спортсменов, которые способны благодаря хорошим волевым качествам выполнять большие нагрузки на фоне утомления. Клинически перенапряжение проявляется общей слабостью, вялостью, головокружениями, иногда обморочными состояниями, нарушением координации движений, сердцебиением, изменением АД, нарушением ритма сердца, увеличением печени (болевой печеночный синдром), атипическими реакциями сердечнососудистой системы на нагрузку. Эта форма утомления длится от нескольких дней до нескольких недель. Требуется вмешательство врача и тренера.

4. Перетренированность – это состояние, которое развивается у спортсменов при неправильно построенном режиме тренировок и отдыха (хроническая физическая перегрузка, однообразие средств и методов тренировки, нарушение принципа постепенности увеличения нагрузок, недостаточный отдых, частые выступления в соревнованиях), особенно на фоне очагов хронической инфекции, соматических заболеваний.

Перетренированность характеризуется выраженными нервно-психическими сдвигами, ухудшением спортивных результатов, нарушением деятельности сердечно-сосудистой и нервной систем. Все сдвиги в реакциях резко выражены, отмечаются изменения ЭКГ, снижение сопротивляемости организма к инфекциям. Эта форма утомления требует вмешательства врача и тренера.

5. Переутомление – это уже патологическое состояние организма. Оно чаще всего проявляется в виде невроза, наблюдается, как правило, у спортсменов с неустойчивой нервной системой, эмоционально впечатлительных, при чрезмерных физических нагрузках. Клинические проявления похожи на свойственные перетренировке, но более четко выражены. Спортсмены апатичны, их не интересуют результаты участия в соревнованиях, у них нарушен сон, появляются боли в сердце, расстройство пищеварения, половой функции, тремор пальцев рук. Это состояние требует вмешательства врача и тренера.

Диагностика утомления основывается на учете субъективных и объективных данных. Поэтому спортсмены с различными формами утомления подлежат тщательному медицинскому обследованию, где учитываются показатели физического развития, дается оценка функционального состояния дыхательной системы (определяется жизненная емкость легких – ЖЕЛ, проводятся проба Штанге с задержкой дыхания на вдохе, проба Генчи с задержкой дыхания на выдохе), сердечно-сосудистой системы (проводятся электрокардиография, ортоклиностатическая проба, клинические анализы крови). Например, при переутомлении резко меняется нормальная приспособляемость сердечно-сосудистой системы к физическим нагрузкам: замедляется скорость кровотока, повышается периферическое сопротивление крови, отмечаются признаки перенапряжения сердца.

Кроме того, уменьшается газообмен на 35–55 %, появляется белок в моче, резко увеличивается содержание молочной кислоты в мышцах и крови, наблюдается потеря веса до 13 %, снижается функция организма: меняется фагоцитарная активность нейтрофилов крови, ухудшаются бактерицидные свойства кожи.

Для диагностики острого утомления можно воспользоваться методикой изучения функционального состояния зрительного анализатора, в частности критической частоты слияния световых мельканий (КЧСМ). Резкое снижение КЧСМ после физической и нервной нагрузки указывает на торможение в ЦНС вследствие наступающего утомления. Методика проста и доступна в любых условиях.

В процессе диагностики утомления и функционального состояния спортсмена используются различные тесты и пробы. Ниже будут приведены некоторые из них.

1. Сердечно-сосудистая система. Частота сердечных сокращений (ЧСС) и АД наиболее полно характеризуют функциональное состояние сердечно-сосудистой системы. Во время физической нагрузки при высокой тренированности ЧСС достигает 180–200 уд/мин. В состоянии острого утомления по сравнению с покоем она увеличивается в 1,5–2 раза. При нарастании утомления пульс может быть более частым или редким, нередко отмечается аритмия. Уровень АД также четко отражает степень утомления. Обычно при нарастании утомления АД повышается на 20–50 мм рт. ст. При остром утомлении после большой физической нагрузки минимальное давление падает до ноля (феномен бесконечного тона). Наблюдения над хоккеистами и борцами вольного стиля показали, что в состоянии острого утомления у них наблюдаются выраженные колебания ЧСС и АД с атипическими реакциями на функциональные пробы (З-разовый 15-секундный бег с интервалом 5 с, степ-тест, велоэргометрия).

Электрокардиография (ЭКГ) является важным методом диагностики утомления. В состоянии острого утомления отмечаются признаки перегрузки желудочков сердца и диффузные изменения миокарда (уплощение зубца Т, удлинение электрической систолы и предсердно-желудочковой проводимости, отрицательный зубец Т в III и II отведениях). В основе дистрофических изменений в мышце сердца лежит недостаточное коронарное кровообращение и развитие гипоксии.

Наиболее часто явления перегрузки сердца наблюдаются у спортсменов с очагами хронической инфекции: хроническим тонзиллитом, кариесом зубов, гайморитом и др. При функциональных пробах с физической нагрузкой наблюдаются неадекватная реакция, замедление времени восстановления, изменение конечной части желудочкового комплекса ЭКГ (низкий зубец Т на изолинии или отрицательный), экстрасистолия.

Признаки гипоксии миокарда могут быть обнаружены по ЭКГ: смещается сегмент S – Т, уплощается зубец T, учащается ритм сердца. Гипоксия создает благоприятные условия для развития аритмии или для усиления уже имеющейся.

Простой тест Руффье-Диксона:




где p – пульс в покое, p2– пульс после 20 приседаний, p3 – пульс после минуты отдыха.

Итоговые цифры 1–3 – очень хороший показатель, 3–6 – хороший. При этом решающей является ЧСС до нагрузки.

Индекс Кердо – соотношение АД диастолического (Д) и пульса (П):




У здоровых он близок к нулю; при преобладании симпатического тонуса увеличивается, при парасимпатикотонии уменьшается, становясь отрицательным. При равновесии состояния вегетативной нервной системы ИК=0. При сдвиге равновесия под влиянием симпатической нервной системы диастолическое АД падает, ЧСС растет, ИК>0. При усиленном функционировании парасимпатической нервной системы ИК<0. Исследование необходимо проводить в одно и то же время суток (например, утром после сна). ИК информативен в игровых видах спорта, где нервно-психическое напряжение высокое. Кроме того, этот показатель надо рассматривать в комплексе с другими показателями, в частности с биохимическими (лактат, мочевина, гемоглобин, гематокрит), с учетом напряжения физиологических функций. Необходимо учитывать этап подготовки, функциональное состояние, возраст и пол спортсмена.

Среднее артериальное давление является одним из важных параметров гемодинамики. Математический метод вычисления среднего давления:

среднее АД=АДдиаст.+АДпульсовое/2.

Наблюдения показывают, что при физическом утомлении среднее АД повышается на 10–30 мм рт. ст.

Коэффициент экономичности кровообращения (КЭК) – это минутный объем крови. Вычисляется он по формуле:

АДмакс. – АДминим. xЧСС. В норме КЭК = 2600. При утомлении он увеличивается.

Ортостатическая проба проводится таким образом. Спортсмен лежит на кушетке 5 мин, затем подсчитывают ЧСС. После этого он встает и вновь подсчитывается ЧСС. В норме при переходе из положения лежа в положение стоя отмечается увеличение ЧСС на 10–12 уд/мин; увеличение до 20 уд/мин считается удовлетворительной реакцией, более

20 уд/мин – неудовлетворительной, что указывает на недостаточную нервную регуляцию сердечно-сосудистой системы.

Клиностатическая проба – переход из положения стоя в положение лежа. В норме замедление ЧСС составляет 6–10 уд/мин. Более резкое замедление указывает на повышенный тонус парасимпатической нервнон системы.

Височное давление измеряют по Ровинскому-Маркелову специальной манжеткой шириной 4 см. В норме оно равно 1/2 максимального АД. При утомлении показатели височного давления увеличиваются на 10–20 мм рт. ст.

Коэффициент выносливости (КВ) определяется по формуле Кваса. Тест характеризует функциональное состояние сердечно-сосудистой системы. Этот тест представляет собой интегральную величину, объединяющую ЧСС, систолическое и диастолическое давление. Он рассчитывается по следующей формуле:




В норме КВ равен 16. Увеличение пульсовое давление его указывает на ослабление деятельности сердечно-сосудистой системы, уменьшение – на усиление.

Электротермометрия – исследование кожной температуры в различных точках. Щуп электротермометра прикладывают к исследуемой точке и по шкале гальванометра определяют температуру в градусах. При переутомлении отмечается асимметрия кожной температуры и снижение на 2–3 °С. Поскольку температурная реакция после физической нагрузки имеет фазный характер, электротермометрия позволяет оценить динамику функционального состояния организма спортсмена, его утомляемость.

Средневзвешенная температура кожи (СВТК) определяется в пяти точках термометром ТПЭМ-1 с последующим расчетом по формуле Н. К. Витте:

СВТК = 0,07 Тл + 0,5 Тгр + 0,18 Тб + 0,2 Тгл + 4–0,05 Тк,

где Тл – температура кожи в области лба, Тгр – температура кожи в области груди, Тк – температура кожи кисти, Тб – температура кожи бедра, Тгл – температура кожи голени.


Температура и влажность воздуха, радиация – наиболее агрессивные факторы, определяющие напряженность терморегуляторной системы.

В условиях интенсивных физических нагрузок большое значение имеет время проведения тренировочных занятий (как правило, 2–3-разовых) в зонах с жарким (и особенно влажным) климатом, в среднегорье. На СВТК влияют различные режимы тренировок и отдыха. Максимальное значение СВТК у спортсменов отмечаются в 11 и 16 ч (35,5 ±0,1) и (35,3 ± 0,2). СВТК в течение суток изменяется в пределах 1,2 °С. СВТК зависит также от места проведения тренировок: в помещении показатели ее выше, чем на воздухе. Исследование СВТК необходимо для изучения биоритмов и выяснения наиболее целесообразного времени проведения тренировочных занятий.

Проба Вальсальвы заключается в следующем. Спортсмен после полного выдоха и глубокого вдоха производит выдох в мундштук манометра и задерживает дыхание на отметке 40–50 мм рт. ст. Во время нагрузки измеряют АД и ЧСС. Под влиянием натуживания повышается диастолическое давление, снижается систолическое и увеличивается ЧСС. При хорошем функциональном состоянии продолжительность натуживания увеличивается, при утомлении – уменьшается.

Скорость кровотока является важным показателем функционального состояния кровообращения. Определяют ее оксигемометром 0–56 на отрезке сосудистого русла «легкое-ухо» путем создания искусственной гипоксемии – задержки дыхания на 15–20 с на выдохе с последующим быстрым вдохом. Задержка дыхания снижает оксигенацию крови.

При возобновлении дыхания уровень оксигемоглобина крови вновь повышается и стрелка прибора возвращается в исходное положение. Время от момента вдоха (после задержки дыхания) до начала подъема оксигенации и является показателем скорости тока крови на исследуемом участке. Скорость кровотока увеличивается при физических нагрузках.

После тренировки насыщение артериальной крови кислородом снижается до 89,6 ± 0,2 %, что находится в прямой зависимости от физической нагрузки и уровня тренированности спортсмена.

Капилляроскопия – определение функционального состояния капилляров и их количества. До тренировки капилляроскопическая картина ногтевого валика характеризуется нежно-розовым фоном, подсосочковая сеть не видна, поле зрения чистое, ток крови умеренный, в поле зрения 8–10 петель. После тренировки отмечается замедление тока крови, помутнение фона, сужение подсосочковой сети, уменьшение числа петель, что является морфологическим признаком кислородной задолженности после большой физической нагрузки. У тренированных лиц изменения в капиллярах ногтевого валика выражены в большей степени, чем у нетренированных, что свидетельствует о большой лабильности капиллярного кровотока у спортсменов.

Объем циркулирующей крови (ОЦК) влияет на функциональное и морфологическое состояние различных органов и тканей. Массаж, сауна, ванны, гидромассаж способствуют перераспределению крови, выводу ее из депо, увеличению микроциркуляции. Если до массажа ОЦК составляет 76,4 + 3,0 мл/к г, то после массажа – 87,1 ± 0,5 мл/кг (р<0,001).

Венозный кровоток определяют методом выведения контрастного вещества из вен нижних конечностей. Под влиянием массажа, электростимуляции и других методов венозный кровоток ускоряется. Восстановительные мероприятия ликвидируют венозный застой.

Контрастное вещество (кардиотраст) после проведенного массажа не определяется. Это можно считать свидетельством ускорения венозного кровотока.

2. Аппарат внешнего дыхания. Функция аппарата внешнего дыхания направлена на обеспечение организма необходимым количеством кислорода и освобождение от избытка углекислоты. Газообмен в легких и насыщение крови кислородом осуществляются посредством слаженного взаимодействия нескольких процессов, основными из которых являются легочная вентиляция, альвеолярно-капиллярная диффузия, легочный кровоток.

Жизненная емкость легких – максимальное количество воздуха, которое можно выдохнуть после максимального вдоха, – измеряется с помощью спирометра или спирографа. Рекомендуется оценивать ЖЕЛ путем сравнения с так называемой должной жизненной емкостью легких (ДЖЕЛ), т. е. с той, которая должна быть у данного человека. Она теоретически рассчитывается с учетом пола, возраста, роста, веса. Для этого можно пользоваться номограммой. Соединяя прямой линией соответствующие пункты на шкалах «Возраст» и «Относительная масса», на дополнительной линии А отмечают точку пересечения. От этой точки проводят прямую линию на шкалу «Рост». Точка пересечения этой линии со шкалой УС и будет должной величиной ЖЕЛ.

ЖЕЛ выражается в процентах от нормативной величины. Под влиянием тренировки ЖЕЛ может возрастать даже на 30 % (И. В. Аулик, 1979). Снижение ЖЕЛ наблюдается при переутомлении, перетренировке, острых и хронических заболеваниях.

При повторных исследованиях ЖЕЛ уменьшается, что связано с утомлением дыхательной мускулатуры и снижением функционального состояния ЦНС.

Проба Розенталя заключается в пятикратном измерении ЖЕЛ с интервалом отдыха 15 с. У тренированных спортсменов отмечаются одинаковые данные или их увеличение. Уменьшение же показателя говорит об изменении в состоянии дыхательного аппарата или утомлении.

Проба Штанге – задержка дыхания на вдохе. Обследуемый в положении стоя делает вдох, затем глубокий выдох и снова вдох (80–90 % от максимального) и закрывает рот. На нос накладывают резиновый зажим. Отмечается время задержки дыхания. Тренированные спортсмены способны задержать дыхание на 60–120 с. При утомлении время задержки резко снижается. Пробу можно записать на ленте кимографа от манжетки, наложенной на живот.

Проба Генчи – задержка дыхания на выдохе. При хорошем функциональном состоянии спортсмены способны задержать дыхание на выдохе на 60–90 с. При утомлении время задержки дыхания резко уменьшается. Пробу также можно записать на кимографе через капсулу Марея.

Значимость этих проб увеличивается, если вести наблюдения постоянно, в динамике.

Форсированная жизненная емкость легких (ФЖЕЛ), или объем форсированного выдоха (ОФВ), – количество воздуха, которое может быть выдохнуто при форсированном выдохе после глубокого вдоха. После максимального вдоха спортсмен на несколько секунд задерживает дыхание, а потом быстро выдыхает. Исследование проводится 2–3 раза. Учитывают максимальное значение. При утомлении показатель снижается.

Пневмотонометрический показатель (ПТП) характеризует состояние дыхательной мускулатуры. В последнее время установлена зависимость величины мышечных усилий от степени напряжения дыхательной мускулатуры. Известно, что функция внешнего дыхания в определенной мере зависит и от функции дыхательных мышц.

У здоровых мужчин ПТП на выдохе составляет 32В ± 17,4 мм рт. ст., на вдохе – 227 ±4,1 мм рт. ст., у женщин (соответственно) 246 ±1,6 и 200 ± 7,0 мм рт. ст. При гиподинамии, а также после интенсивных физических нагрузок ПТП снижается.

ПТП определяли у спортсменов после физических нагрузок и в посттравматическом периоде пневмотонометром. ПТП на вдохе у пловцов выше, чем у представителей других видов спорта. Это связано с тем, что во время плавания спортсмен делает выдох в воду, при этом грудной клетке приходится постоянно преодолевать сопротивление воды.

В исследовании, которое проводилось при помощи пневмотахометра Вотчала, определялась степень снижения мощности выдоха после интенсивных физических нагрузок, а также в посттравматическом периоде у спортсменов. Было установлено, что в норме мощность выдоха больше или равна мощности вдоха. У здоровых мужчин с нормальной проходимостью бронхов мощность выдоха и вдоха составляет 3,5–5,5 л/с, у женщин – 3–3,8 л/с.

Фактический пиевмотахометрический показатель сам по себе не характеризует состояния бронхиальной проходимости. Его необходимо сопоставлять с должными величинами. Должная мощность выдоха равна фактической ЖЕЛ X 1,2. Чем больше ЖЕЛ, тем выше максимальная объемная скорость выдоха.

С повышением уровня тренированности скорость вдоха преобладает над скоростью выдоха, особенно у пловцов. Увеличение скорости вдоха у пловцов связано с повышением резервных возможностей легких.

3. Нервная система. В процессе тренировочных занятий и соревнований совершенствуются функциональные возможности ЦНС. Они тем выше, чем лучше тренированность, Для оценки функции ЦНС рекомендуются различные простые пробы.

Рефлексометрия, или реакциометрия, – это метод определения времени двигательной (сенсомоторной) реакции. Оно позволяет судить о функциональном состоянии ЦНС и анализаторов. Простое время сенсомоторной реакции измеряется с момента включения сигнала до момента выполнения заданной ответной реакции. В качестве сигнала чаще всего используют оптический (световой) или акустический (звуковой) раздражитель, который включается одновременно с электросекундомером. После ответной реакции, например нажатия на кнопку, секундомер останавливается. При высокой тренированности время простой двигательной реакции составляет 0,15–0,20 с.

Более полную информацию о функциональном состоянии ЦНС и анализаторов можно получить, определяя время сложной реакции. При этом используется не один, а несколько разных сигналов, каждому из которых соответствует определенная ответная реакция. Например, при загорании зеленой лампы нужно нажать на одну кнопку, а при загорании красной лампы – на другую. В этом случае до ответного движения проходит больше времени, чем при простой реакции, так как обследуемый затрачивает его на принятие решения. При утомлении все показатели ухудшаются.

Координация движений характеризует состояние ряда областей и зон коры большого мозга и дает возможность определить динамические нарушения (неврозы, дискинезии).

При изучении статической координации учитывают степень устойчивости туловища. Исследуя динамическую координацию, отмечают симметричность в точности, завершенности, плавности и соразмерности движений.

Проба на устойчивость в позе Ромберга проводится следующим образом. При простом варианте спортсмен стоит, как в основной стойке, но глаза закрыты, руки вытянуты вперед, пальцы разведены. При усложненном варианте стопы находятся на одной линии (носок к пятке). Определяют максимальное время устойчивости и наличие тремора. У тренированных спортсменов время устойчивости возрастает по мере улучшения спортивной формы. При утомлении отмечается нарушение устойчивости, появляется тремор пальцев рук.

Трем орография – запись тремора с помощью сейсмодатчика на ЭКГ-аппарате. Этот метод позволяет оценить эмоциональное и функциональное состояние, составить суждение о степени утомления. Исследование проводится в положении испытуемого стоя. На указательный палец подвешивается сейсмодатчик, соединенный с ЭКГ-аппаратом. Запись производится в течение 5–10 с.

Затем анализируется форма полученной кривой по амплитуде и частоте. При утомлении и возбуждении амплитуда и частота тремора увеличиваются. Улучшение тренированности сопровождается, как правило, снижением величины тремора. Следует заметить, что треморография имеет выраженный индивидуальный характер. Запись тремора до и после тренировочного занятия в течение микроцикла дает ценную информацию о функциональном состоянии спортсмена и позволяет корректировать тренировочный процесс.

Актография (запись двигательной активности человека во время сна) осуществляется на элсктрокимографе, чернильными писчиками на бумаге. В качестве воспринимающей части применяется велосипедная камера длинной 1,5 м с давлением в ней 15–20 мм рт. ст., которая размещается под матрацем и соединяется резиновой трубкой с капсулой Марея. При анализе актограмм учитывается продолжительность засыпания, длительность максимальных промежутков полного покоя, общее время сна, показатель покоя. Чем выше показатель покоя, тем лучше сон. При утомлении, перетренированное происходит нарушение сна. Под влиянием восстановительных мероприятий он нормализуется.

Критическая частота слияния световых мельканий (КЧСМ) измеряется следующим образом: исследуемому предъявляют ритмические световые стимулы определенной интенсивности, частота колебаний которых может плавно изменяться; при определенном числе колебаний исследуемый воспринимает стимул без импульсов (произошло их субъективное слияние). У каждого человека своя КЧСМ (число колебаний в секунду – герц).

КЧСМ зависит от лабильности (функциональной подвижности) нервных процессов, которая, в свою очередь, чувствительна к изменению психического состояния человека. Величина КЧСМ повышается по сравнению с фоном, когда человек возбужден, и снижается при значительном утомлении. Размах ее изменений зависит от исходного уровня. Например, W. Hacker (1961) установил, что чем выше эта величина до начала утомительной работы, тем больше ее снижение после работы. При малых исходных значениях величина КЧСМ может несколько повышаться по завершении деятельности. При диагностике утомления, переутомления исходный уровень величины КЧСМ имеет существенное значение.

4. Нервно-мышечный аппарат. Миотонометрия – определение тонуса мышц (эластичности, твердости, упругости) с помощью аппаратов Уфлянда. Щуп прибора погружают в исследуемую мыщцу, поставив вертикально, и по шкале в условных единицах (миотонах) измеряют сопротивление, оказываемое мышцей. При улучшении функционального состояния увеличиваются амплитуда и показатель мышечного тонуса (разница между напряжением и расслаблением). При утомлении (переутомлении) амплитуда уменьшается, тонус покоя повышается.

Определение частоты произвольных движений проводится следующим образом. На бедро или плечо накладывается манжетка аппарата Рива-Роччк или манжетка для измерения височного давления, соединенная с кимографом, и на бумаге через капсулу Марея записываются кривые, в течение 20 с спортсмен в максимальном темпе сокращает и расслабляет мышцы. По мере утомления частота сокращения и амплитуда кривых уменьшаются. В зависимости от функционального состояния, степени тренированности или утомления амплитуда, частота и высота кривых резко меняются.

Динамометрия икроножной мышцы применяется для контроля за эффективностью восстановительных мероприятий. Наиболее простым, удобным в практическом отношении является измерение максимальной силы мышц в изометрическом режиме специальным динамометром.

Максимальное усилие икроножной мышцы, развиваемое при сгибании стопы, относится к числу наиболее информативных показателей состояния нервно-мышечной системы.

Максимальное усилие икроножных мышц измеряется в положении сидя. Спортсмен ставит ногу на пластмассовую основу прибора и производит максимальное давление. У здоровых мужчин сила икроножных мышц составляет 57±3,6 кг, у женщин – 38,3±2,3 кг. Гиподинамия приводит к снижению силы икроножных мышц.

В состоянии покоя скелетные мышцы характеризуются низким обменом веществ, малым кислородным запросом и кровенаполнением.

Известно, что мышечная система прямо или косвенно оказывает влияние на кровообращение, обмен веществ, Дыхание, эндокринное равновесие и т. д. Поэтому резкое ограничение движений может явиться причиной нарушения физиологического взаимодействия организма с внешней средой и повлечь за собой временные функциональные сдвиги или (в далеко зашедших случаях) глубокие патологические изменения. Ограничение мышечной деятельности значительно снижает афферентную импульсацию, связанную с активностью опорно-двигательного аппарата.

Определение массы тела. Метод определения жировой прослойки у спортсменов.




Тощая масса тела = 98,42 + 1,82 (масса тела) – 4,15 (обхват талии). Согласно формуле Лоренца, идеальная масса тела (М) составляет:




где Р – рост человека.


5. Психическое состояние. Темпинг-тест – это определение максимальной частоты движений кисти. Он отражает функциональное состояние двигательной сферы и силу нервной системы. Для проведения теста необходимы секундомер, карандаш и лист бумаги. На бумагу наносят квадрат 20 × 20 см и делят его двумя линиями па четыре равные части. Испытуемый в течение 10 с в максимальном темпе ставит точки в первом квадрате, через 20 с – во втором и т. д. Чтобы точки не ложились друг на друга, рекомендуется перемещать руку по кругу. Для оценки результатов подсчитывают число точек в каждом квадрате, соединяя все точки между собой. Резкое снижение частоты движений, т. е. уменьшение числа точек от квадрата к квадрату, свидетельствует о недостаточной подвижности нервных процессов, а она, в свою очередь, – о замедлении процесса врабатываемости. Этот тест используется для контроля за скоростными качествами, ловкостью и развитием утомления.

6. Биохимические методы исследования. В настоящее время биохимические методы занимают одно из ведущих мест в общем комплексе обследования спортсменов. Будучи достаточно точными и надежными, они значительно дополняют оценку функционального состояния спортсмена, позволяют объективно судить о течении обменных процессов и правильно определять степень патологических нарушений.

Биохимические методы исследования, применяемые в динамике, служат объективным показателем течения заболевания, дают возможность следить за эффективностью проводимого лечения (или профилактики), изучать направленность обменных процессов путем определения специфических промежуточных продуктов обмена в крови, моче и других средах и вносить коррективы в тренировочный процесс.

Азотистый обмен изучают путем определения мочевины в крови, углеводный обмен – по содержанию сахара, молочной и других кислот в крови.

Эритроциты в норме содержатся в количестве 3,7–4,7 млн в 1 мкл крови у женщин и 4–5 млн у мужчин.

Развитие клеток крови – гемопоэз – представляет собой сложный процесс, совершающийся в органах кроветворения. Эритроциты обладают антигенными свойствами, участвуют в гемостазе, но основная их роль – снабжение тканей кислородом и участие в транспорте углекислоты. Снижение числа эритроцитов в крови является одним из основных показателей анемии.

Гемоглобин крови в норме составляет у женщин от 11,7 до 15,8 г% (70–94,8 единиц), у мужчин – от 13,8 до 18 г % (82,8–108 единиц).

Гемоглобин – дыхательный пигмент крови. Основной функцией его в организме является транспортировка кислорода и углекислоты. Определение гемоглобина – одно из основных лабораторных исследований крови.

Гематокрит (гематокритная величина, Hcf) дает представление о состоянии между объемами плазмы и форменных элементов крови (главным образом эритроцитов). Гематокритной величиной принято выражать объем эритроцитов. У здоровых людей гематокрит крови равен 40–48 об. % (или 0,40–0,48) для мужчин и 36–42 об. % (или 0,36–0,42) для женщин.

Этот показатель широко используют для суждения о степени анемии, при которой, как правило, отмечается его снижение, иногда значительное. Показатель Нс1 дает представление о сдвигах в концентрации гематокрита, он снижается при гемодилюции. Используют гематокрит для расчетных показателей, отражающих различные характеристики эритроцитов: средний объем, среднюю концентрацию гемоглобина и др.

Снижение гематокрита, несмотря на относительное уменьшение количества носителя кислорода, ведет к улучшению снабжения организма кислородом. Изоволемическое снижение гематокрита благоприятно для человека. Повышение гематокрита существенно повышает вязкость крови. В связи с этим уменьшается сердечный выброс и количество кислорода, доставляемого тканям.

Известно, что хроническая анемия оказывает неблагоприятное влияние на работоспособность спортсменов. Время восстановления после выполнения стандартной нагрузки на велоэргометре при анемии значительно удлиняется.

Креатин содержится в крови в количестве 2,6–3,3 мг % до тренировки и повышается до 6,4 мг % после тренировки. С ростом тренированности содержание креатина в крови после нагрузки уменьшается. Адаптированный к физическим нагрузкам организм спортсмена реагирует на них меньшим повышением уровня креатина в крови, чем слабо тренированный. Длительное сохранение повышенного уровня креатина в крови свидетельствует о неполном восстановлении.

Мочевина в крови до тренировки содержится в количестве 19–22 мг %. После тренировки ее содержание повышается до 40 и более мг %.

При выполнении физических нагрузок в течение нескольких часов увеличивается содержание мочевины в крови и снижается содержание аминокислот. После очень высоких тренировочных нагрузок нормализация содержания мочевины не наступает. Происходит усиленное расщепление белков, поскольку поставка энергии за счет расщепления углеводов и жиров оказывается недостаточной.

При увеличении содержания мочевины в крови необходимо внимательно следить за спортсменами, так как они наиболее подвержены травмам.

Содержание мочевины в крови надо рассматривать как симптом очень сильного утомления и недостаточного восстановления.

Молочная кислота в норме содержится в крови в количестве 0,33–0,78 ммоль/л. После тренировки ее содержание увеличивается до 17,5 ммоль/л.

Молочная кислота – конечный продукт гликолиза. Уровень ее в крови позволяет судить о соотношении в работающих мышцах процессов аэробного окисления и анаэробного гликолиза (усиление последнего приводит к повышению содержания молочной кислоты в крови). При интенсивной физической работе содержание лактата в крови значительно возрастает. Он неблагоприятно действует на процесс быстрого сокращения мышц. Уменьшение внутриклеточного рН снижает ферментативную активность и этим самым тормозит физико-химические механизмы мышечного сокращения, т. е. отрицательно влияет на спортивные результаты.

Иммуноглобулины различных классов определяются для функциональной оценки В-системы лимфоцитов. Иммуноглобулины различных классов содержатся в периферической крови в количестве: IgA – 1,97±0,12 г/л; IgM – 1,19±0,05 г/л; IgG – 14,63±0,35 г/л.

Под влиянием предельных физических нагрузок отмечается исчезновение отдельных классов иммуноглобулинов, снижение иммунитета.

Применение ультрафиолетового облучения, массажа, гидропроцедур приводит к нормализации показателей иммуноглобулинов и иммунитета.

Ацетилхолин у здоровых лиц содержится в крови в количестве 86,6±5,5 мкг/мл. Он влияет на тонус гладкой мускулатуры бронхов, внутренних органов, сосудов легких. При больших физических нагрузках содержание ацетилхолина повышается. Это связано, по-видимому, с нарушением медиаторного баланса, что, в свою очередь, приводит к гипоксемии и гипоксии тканей.

Эти нарушения вызывают метаболические сдвиги, характер и выраженность которых прямо зависят от продолжительности и интенсивности физических нагрузок.

У спортсменов при хроническом переутомлении отмечается повышение уровня ацетилхолина в крови в состоянии покоя, что может свидетельствовать о функциональных нарушениях вегетативной нервной системы.

Увеличение содержания ацетилхолина в крови затрудняет доставку кислорода тканям, оказывая влияние в первую очередь на трансмембранные процессы клеток путем изменения ц-ГМФ, концентрации глюкозы, активности пируваткиназы, что способствует сдвигу рН (метаболический ацидоз) и изменению кривой диссоциации кислорода.

Исследование слюны проводится для характеристики функционального состояния организма при мышечной деятельности. Определяют титр лизоцима в слюне и рН, амилазу, молочную кислоту. У спортсменов в состоянии высокой спортивной формы титр лизоцима выше, чем при неудовлетворительной спортивной форме. Выраженные физические нагрузки приводят к снижению титра лизоцима, сдвигам рН слюны в кислую сторону, Повышению активности амилазы, увеличению содержания молочной кислоты.