Вы здесь

Меня называют Капуцином. «Бесконечное, вот ответ…» (Д. И. Хармс, 2014)

«Бесконечное, вот ответ…»

«Бесконечное, вот ответ на все вопросы. Все вопросы имеют один ответ. А потому нет многих вопросов, есть только один вопрос. Этот вопрос: что такое бесконечное?» Я написал это на бумаге, перечитал и написал дальше: «Бесконечное, кажется нам, имеет направление, потому что мы всё привыкли воспринимать графически. Большему соответствует длинный отрезок, а меньшему – короткий отрезок. Бесконечное, это прямая, не имеющая конца ни вправо, ни влево. Но такая прямая недоступна нашему пониманию. Если на идеально гладком полу, лежит гладкий, плоский предмет, то овладеть этим предметом мы можем только в том случае, если мы доберемся до его краев; тогда мы сможем поддеть рукой под край этого предмета и поднять его. Бесконечную прямую не подденешь, не охватишь нашей мыслию. Она нигде не пронзает нас, ибо для того чтобы пронзить что-либо, должен обнаружиться ее конец, которого нет. Это касательная к кругу нашей мысли. Ее прикосновение так нематериально, так мало, что собственно нет никакого прикосновения. Оно выражается точкой. А точка, это бесконечно несуществующая фигура. Мы же представляем себе точку, как бесконечно маленькую точечку. Но это ложная точечка. И наше представление о бесконечной прямой – ложное. Бесконечность двух направлений, к началу и к концу, настолько непостижима, что даже не волнует нас, не кажется нам чудом и, даже больше, не существует для нас. Но бесконечность одного направления, имеющая начало, такая бесконечность потрясает нас. Она пронизывает нас своим концом или началом, и отрезок бесконечной прямой образующий хорду в кругу нашего сознания, с одной стороны постигается нами, а с другой стороны соединяет нас с бесконечным. Представить себе, что что-то никогда не начиналось и никогда не кончится мы можем в искаженном виде. Этот вид таков: что-то никогда не начиналось, а потому никогда и не кончится. Это представление о чем-то есть представление ни о чем. Мы ставим связь между началом и концом и отсюда выводим первую теорему: что нигде не начинается, то нигде и не кончается, а что где-то начинается, то где-то и кончается. Первое есть бесконечное, второе – конечное. Первое – ничто, второе – что-то».

Я записал это все, перечел и стал думать так:

«Мы не знаем явления с одним направлением. Если есть движение вправо, то должно быть и движение влево. Если есть направление вверх, то оно подразумевает в себе существование направления вниз. Всякое явление имеет себе обратное явление. Всякая теза – антитезу. Что бесконечно вверх, то бесконечно вниз, что конечно вверх, то конечно вниз. Это закон симметрии, закон равновесия. И если бы одна сторона направления потеряла бы вторую сторону, то равновесие нарушилось бы и вселенная опрокинулась бы. И до сего времени, 1932 года, в природе этот закон не был нарушен. Мы не видим предела повышения температур, но мы видим предел понижения, это абсолютный нуль, температура -273°. Но до сих пор мы ее не достигли. Как бы близко мы к ней ни приближались, мы ее не достигли. И мы не знаем что случается с природой, когда она достигает этого предела. Тут очень интересное положение: чтобы достигнуть нижнего предела, надо предполагать существование верхнего предела. В противном случае пришлось бы сделать следующие выводы: либо верхний предел где-то все же имеется, но пока нам еще неизвестен, либо температура -273° не есть нижний предел, либо достигнув нижнего предела природа видоизменяется настолько, что фактически перестает быть, либо теорема о концах бесконечности неверна. В последнем случае положение: «что-то никогда не начиналось и никогда не кончится» не может быть рассматриваемо как «что-то никогда не начиналось, а потому никогда и не кончится», и бесконечность двух направлений перестала бы быть ничем, а стала бы чем-то. Мы поймали бы бесконечность за хвост».

Я написал это с некоторыми перерывами, потом перечитал это с большим интересом и продолжал размышлять так:

«Вот числа. Мы не знаем что это такое, но мы видим, что по некоторым своим свойствам они могут располагаться в строгом и вполне определенном порядке. И даже многие из нас думают, что числа есть только выражение этого порядка, и вне этого порядка существование числа – бессмысленно. Но порядок этот таков, что началом своим предполагает единство. Затем следует единство и еще единство. Затем единство, еще единство и еще единство и т. д. без конца. Числа выражают этот порядок: 1, 2, 3 и т. д. И вот перед нами модель бесконечности одного направления. Это неуравновешенная бесконечность. В одном из своих направлений она имеет конец, в другом конца не имеет. Что-то где-то началось и нигде не кончилось, и пронзило нас своим началом, начиная с единицы. Несколько чисел первого десятка уложилось в кругу нашего сознания и соединило нас с бесконечностью. Но ум наш не мог вынести этого, мы уравновесили бесконечный числовой ряд другим бесконечным числовым рядом, созданным по принципу первого, но расположенным от начала первого в обратную сторону. Точку соединения этих двух рядов, одного естественного и непостижимого, а другого явно выдуманного, но объясняющего первый, – точку их соединения мы назвали нуль. И вот числовой ряд нигде не начинается и нигде не кончается. Он стал ничем. Казалось бы всё это так, но тут всё нарушает нуль. Он стоит где-то в середине бесконечного ряда и качественно разнится от него. То, что мы назвали ничем, имеет в себе еще что-то, что по сравнению с этим ничем есть новое ничто. Два ничто? Два ничто и друг другу противоречивые? Тогда одно ничто есть что-то. Тогда что-то, что нигде не начинается и нигде не кончается, есть что-то, содержащее в себе ничто».

Я прочитал написанное и долго думал. Потом я не думал несколько дней. А потом задумался опять. Меня интересовали числа и я думал так:

«Мы представляем себе числа как некоторые свойства отношений некоторых свойств вещей. И, таким образом, вещи создали числа».

На этом я понял, что это глупо, глупо мое рассуждение. Я распахнул окно и стал смотреть на двор. Я видел, как по двору гуляют петухи и куры.

2 августа 1932
Курск