НАПРАВЛЕНИЕ 2
НАУЧНО-ТЕХНИЧЕСКОЕ ТВОРЧЕСТВО СТУДЕНТОВ И МОЛОДЫХ УЧЕНЫХ
2.1 ТЕХНОЛОГИЯ СОЗДАНИЯ И ОБРАБОТКИ ПОЛИМЕРОВ И ЭЛАСТОМЕРОВ
THE OXIDATION OF SODIUM SULFIDE USING TRANSITION METAL OXIDES DEPOSITED ON THE POLYMER MATRIX
Kazan is a large center of the Russian chemical industry. Production of polysulfide rubbers and hermetics occupy a special place in Kazan. In 2000 production of polysulfide hermetics for double-glazed windows was organized.
Thiocol production is extremely adverse in the ecological relation. It is well known that the odors from thiocol production are obnoxious. Many methods for eliminating Na2S have been reported due to industrial need. There will be some problems, however, if these methods are applied to wastewater treatment. The most interesting method of sodium sulfide detoxification is the oxidation of the toxic sulfur compounds in the waste by the use of atmospheric oxygen. In the absence of catalysts, this process is performed at temperatures of 90-110 0C and pressures of 0.3-0.5 MPa. The use of catalysts can give a significant acceleration of the oxidation process, so that it can be performed at 40-50 0C. Homogeneous catalysts, including transition metal oxides can dissolve in alkaline solution. Heterogeneous catalysts were synthesized by introducing transition metal oxides into the polymer matrix. The heterogeneous catalyst has a high level of chemical stability, mechanical strength, and stable catalytic activity.
In this paper is proposed the catalytic efficiency of transition metal oxides deposited on the polymer matrix in the sodium sulfide oxidation and investigation of kinetic parameters in presence of copper and manganese oxides catalyst.
The effect of transition metal oxides deposited on the polymer matrix in the sodium sulfide oxidation is given in Figure 1.
Fig. 1 The effect of transition metal oxides deposited on the polymer matrix in the sodium sulfide oxidation.
It is apparent from the Figure that copper and manganese oxides show maximum activity in the sodium sulfide oxidation, in this case intial rate of reaction is, respectively, about 1,4 and 1,35 times higher than intial rate of no catalyst. Oxides of NiO, Co3O4, Cr2O3, TiO2 – show insignificant activity, a part from the tested oxides: V2O5, Fe2O3 – don't influence rate of reaction, and catalysts based on the MoO3 oxide- even inhibit sodium sulfide oxidation.
Fig. 2 The effect of mixed compositions by different concentration of copper and manganese oxides in the sodium sulfide oxidation.
Catalytic activity of mixed compositions, which were synthesized by different concentration of copper and manganese oxides shows that CuO5/MnO2-15 possesses highest activity for sodium sulfide oxidation (Fig. 2).
Influence of the heterogeneous catalyst amount on the rate of reaction shows that increasing catalyst amount to 5,0 g leads to increase the rate of sodium sulfide oxidation. The further increases in catalyst amount don't influence rate of reaction (Fig. 3).
Fig. 3 Influence of the heterogeneous catalyst amount on the rate of sodium sulfide oxidation
Fig. 4 Influence of temperature on the rate of sodium sulfide oxidation
Influence of temperature on the rate of reaction shows that the maximum rate of sodium sulfide oxidation is observed at temperature 600С, above and below 60 0С rate of reaction is decreased (Fig. 4).
Kinetic methods show that all reactions are first order with respect to the [O2] and zero – to the concentration of sulfur compounds (Fig. 5).
Fig. 5 Logarithmic dependence of rate of sodium sulfide oxidation on concentration О2
IMIDAZOLIUM BASED POLYMERIC IONIC LIQUIDS AS POLYMER ELECTROLYTE MEMBRANES
Ionic liquids are defined as molecules containing a permanent charge and a melting point below 100 oC [1]. Although it is not a requirement, in general, the more common ionic liquids possess an organic cation and an inorganic anion. Ionic liquids are receiving an upsurge of interest for their unique physicochemical properties such as high thermal stability, negligible vapor pressure, relatively high ionic conductivity, and good electrochemical stability.
Ionic liquids have also been quite popular recently due to their potential application as green chemical reaction solvents and water treatment agents. The permanent charge provides many useful applications, such as electroactive devices and actuators. They serve as charge exchange films in electroactive devices or ionic liquids and can be used to improve existing films upon swelling, which leads to enhance the conductivity of the actuator.
Solid electrolytes play an important role in the development of new energy sources, like solid state batteries, fuel cells, photoelectrochemical solar cells, sensors and electrochromic displays [2,3]. Obtaining high ionic conductivity over a wide temperature range becomes crucial for the realization of these technological applications. Traditional ion-conducting polymers such as poly(ethylene oxide) – based polymer electrolytes, are solid solutions of salts in polymers [4-7]. Ionic motion in these polymer electrolytes is coupled with the local segmental motion of the polymer. In this type of electrolytes an increase of carrier-ion density and mobility are difficult to achieve because both, depend on the interaction of polymer segments with the ions. Various research groups [8–11] have been involved actively to synthesize polymer electrolytes with high conductivities, but up to now the desired conductivities, particularly at high temperatures, have not been attained. Hydrated perfluorosulfonic polymer shows superior performance in fuel cells operating at moderate temperature (<90 ◦C), however, the properties of such polymer membranes are insufficient at higher temperatures. This puts new demands on the development of alternative polymeric proton exchange membranes [12]. Based on this concept, the use of ionic liquids appears to be promising with respect to high ion conductivity in polymers. Due to an ionic liquid’s ability to facilitate electron or ion motion, they are now enabling electroactive devices. Commercially available conductive membranes are swollen with ionic liquids to enhance their conductivity; alternatively, conductive membranes are synthesized from novel ionic liquid monomers, also termed polymerizable ionic liquids. The imidazole ring has gained much attention for its ability to tune the properties of the resulting ionic liquid. The imidazole ring is a very versatile scaffold for ionic liquids. The ring is easily ionized upon quaternization of the tertiary nitrogen atom, resulting in a permanent positive charge. A unique combination of various alkyl substituents and counteranions enables tuning of the physical properties of the liquid such as the melting point, the boiling point, and the viscosity to meet the demands of the application. The structure is uniquely tunable because of the inherent amphoteric behavior, i.e. the imidazole ring both accepts and donates protons. Finally, the imidazolium cation is associated with a mobile counteranion, which can be exchanged to further tune solubility and conductivity [13].
1. Visser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R., Sheff, S., Wierzbicki, A., Davis, J. H., Rogers, R. D. Environ. Sci. Technol. 2002, 36 (11), 2523–2529.
2. F.M. Gray, Solid Polymer Electrolytes, VCH, New York, 1992.
3. A.M. Anderson, C.G. Granquist, J.R. Stevens, Appl. Opt. 28 (1989) 3295.
4. M.B. Armand, Ann. Rev. Mater. Sci. 16 (1986) 245.
5. C.A.Vincent, Prog. Solid State Chem. 17 (1987) 145.
6. M.Watanabe, N. Ogata, Br. Polym. J. 20 (1988) 181.
7. M.A. Ratner, D.F. Shriver, Chem. Rev. 88 (1988) 109.
8. D.E. Fenton, J.M. Parker, P.V. Wright, Polymer 14 (1973) 589.
9. M.B. Armand, J.M. Chabagno, M. Duclot, 2nd International Conference on Solid Electrolytes, St. Andrews, 1978, p. 651.
10. C.A. Bruce, P.G. Vincent, Trans. Faraday Soc. 89 (1993) 3187.
[11] G.B. Appetecchi, F. Croce, B. Scrosati, J. Power Source 66 (1997) 77.
12. O. Savadogo, J. New Mater. Electrochem. Syst. 1 (1998) 47.
13. Marcilla, R., Blazquez, J. A., Rodriguez, J., Pomposo, J. A., Mecerreyes, D. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (1), 208–212.
BIODEGRADABLE POLYMERS FOR TISSUE ENGINEERING APPLICATIONS
Tissue engineering is an interdisciplinary field that blends classical engineering and the life sciences to repair or replace damaged tissues. The most common strategy to achieve this goal is to culture of patient’s own cell onto a three dimensional support matrix, so called scaffold, and then implant this construct to the patient. The function of a degradable scaffold is to act as a temporary support matrix for transplanted or host cells so as to restore, maintain, or improve tissue. The design of a polymeric scaffold plays a significant role in proper cell growth. Therefore, several important properties must be considered: fabrication, structure, biocompatibility, biodegradability, and mechanical strength.
Scaffolds may be created from various types of materials, including polymers. There are two sources of polymers used in tissue engineering: synthetic and natural. The main biodegradable synthetic polymers include polyesters, polyanhydrides, polyorthoesters, polycaprolactone, polycarbonate, and polyfumarate, while the natural origin polymers include collagen, alginate, agarose, hyaluronic acid derivatives, and chitosan. Among the man-made polymers, polyglycolide, polylactides, poly(caprolactone), and poly(dioxanone) constitute the major polymer groups that have been studied as matrix materials.
Natural polymers are typically biocompatible and enzymatically biodegradable. The main advantage for using natural polymers is that they contain bio-functional molecules that aid the attachment, proliferation, and differentiation of cells. However, disadvantages of natural polymers do exist. Depending upon the application, the previously mentioned enzymatic degradation may inhibit function. Further, the rate of this degradation may not be easily controlled. Since the enzymatic activity varies between hosts, so will the degradation rate. Therefore it may be difficult to determine the lifespan of natural polymers in vivo. Additionally, natural polymers are often weak in terms of mechanical strength but cross-linking these polymers have shown to enhance their structural stability.
Polymers that are chemically synthesized offer several notable advantages over natural-origin polymers. A major advantage of synthetic polymers is that they can be tailored to suit specific functions and thus exhibit controllable properties. Furthermore, since many synthetic polymers undergo hydrolytic degradation, a scaffold’s degradation rate should not vary significantly between hosts. A significant disadvantage for using synthetic polymers is that some degrade into unfavorable products, often acids. At high concentrations of these degradation products, local acidity may increase, resulting in adverse responses such as inflammation or fibrous encapsulation.
There are several methods to produce 3D scaffolds from polymers, such as particulate leaching combined with compression moulding or solvent casting, freezing drying, fiber bonding, electrospinning and rapid prototyping, etc.
Particulate leaching is an inexpensive method based on dispersing certain size particles within a polymeric solution or fine polymer powder and then moulding this mixture by solvent casting or compression moulding techniques. The final porous stucture is achieved by removal of porogen from polymeric construct.
Freeze-drying is the most common and simple method to produce scaffolds, especially from natural polymers. The scaffolds, with different pore size and porosity, can be formed by the simple procedure of freezing a polymer solution in a suitable mould and subsequently lyophilizing the frozen structure. The freezing process provides the nucleation of ice crystals from solution and further growth along the lines of thermal gradients. Ice removal by lyophilization generates a porous material.
Fiber-based scaffolds can be obtain with fiber bonding followed by commercial fiber production methods, such as melt spinning, dry spinning and wet spinning.
Electrospinning is a relatively simple and efficient method to produce polymeric fibers on a nano scale. It has been used in polymer processing technology for more than 70 years and recently had much attention from the biomedical field, particularly in tissue engineering due to the structural properties of fabricated fibrous structures having diameters in the range close to the collagen fibers found in the natural extracellular matrix of about 30–130 nm.
Rapid prototyping is a common name for a group of techniques, such as fused deposition modeling (FDM), laminated object manufacturing (LOM), three-dimensional printing (3DP), multiphase jet solidification (MJS) and 3D plotting, that can generate a physical model directly from computer aided design data. It is an additive process in which each part is constructed in a layer-by-layer manner. This technology allows one to produce a complex 3D structure of scaffolds with controlled architecture which means desired pore size, porosity and pore distribution.
POLYMER/CLAY NANOCOMPOSITES BY IN SITU METHODS
Polymer/clay nanocomposite materials, in which nano-sized silicate plates of clay are uniformly dispersed in the polymer matrix, exhibit superior physical properties such as high dimensional stability, gas barrier performance, flame retardancy, and mechanical strength that cannot be achieved by pure polymer or conventional composites (micro- and macro composites) [1-3]. Furthermore, polymer layered silicate nanocomposites (PLS) avoid processing techniques (e.g. extrusion) which are used for materials with a higher content of reinforcement. This polymer/clay nanocomposites can be prepared in several ways, namely, solution exfoliation, melt intercalation, in situ polymerization and template synthesis [4]. Solution exfoliation can be only used with water-soluble polymers to produce mostly intercalated nanocomposites, because of the need of large amounts of solvent to ensure a good clay dispersion [5]. Melt intercalation is a solvent-free method which enables mixing of the layered silicate with the polymer matrix in the molten state. However, very careful attention has to be paid to finely tune the processing conditions to increase the compatibility of clay layer surfaces with the polymer matrix. In the in situ polymerization technique, the monomer, together with the initiator and/or catalyst, is intercalated within the silicate layers and the polymerization is initiated by external stimulation such as thermal, photochemical or chemical activation [6-10]. The chain growth in the clay galleries triggers the clay exfoliation and hence the nanocomposite formation. Unlike melt intercalation, the low viscosity of the monomer (if compared with the polymer) in the in situ polymerization makes it more easy to break up particle agglomerates by using high shear devices, resulting in a more uniform mixing of particles in the monomer. In template synthesis clay layers are formed by crystallization in an aqueous polymer gel. However, the layers show a limited length and the size are not comparable to pristine clays. Furthermore, it is possible to control nanocomposite morphology through the combination of reaction conditions and clay surface modification.
Since the discovery of polymer/clay nanocomposites by the Toyota research group [11] in the early 1990s, over 5.000 papers have been published up to now with the concept of clay as filler for polymer matrices. In the work of the Toyota group, ε-caprolactam monomers were polymerized between silica layers resulting in polyamide/clay nanocomposites showing highly improved thermal rheological and mechanical properties of the polymer.
Fig 1. Schematic representation of polymer/clay nanocom posites by various in situ polymerization techniques (A. monomer immersion, B. intercalation, C. exfoliation).
Various different living and controlled/living polymerization methods were used in the production of well-dispersed silicate layers, including atom transfer radical polymerization (ATRP) [12-20], nitroxide mediated polymerization (NMP) [21,22], and reversible additionfragmentation chain transfer (RAFT) polymerization [23-26] , ring-opening polymerization (ROP) [27-32], ring-opening metathesis polymerization (ROMP) [33-35] , living cationic polymerization [10,36] and living anionic polymerization (Figure 1) [37,38]. The common approach throughout the literature is to immobilize polymerization initiators in between the clay layers. This can be done by replacing the cations of the clay surface with silane coupling agents or with organic salts, mainly quaternary ammonium salts which comprise functional groups. During the polymerization step the layers exfoliate and a highly dispersed nanocomposite can be gained [22].
In this presentation, we will focus on the recent progress of the in situ synthesis of polymer/clay nanocomposites with well-defined structures and highly exfoliated morphologies. The methods used for the preparation were classified according to the individual polymerization mechanisms. Other possibilities such as multi-mode polymerization combining different polymerization methods and click chemistry are also described. A special emphasize is devoted to the structures and morphologies of the obtained nanocomposites rather than their practical properties.
1. Giannelis, E. P. Adv. Mater. 1996, 8, 29-35.
2. Okamoto, M. Mater. Sci. Tech. Lond. 2006, 22, 756-779.
3. Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539-1641.
4. Alexandre, M.; Dubois, P. Mat. Sci. Eng. R. 2000, 28, 1-63.
5. Ma, J.; Xu, H.; Ren, J.H.; Yu, Z.Z.; Mai, Y.W. Polymer 2003, 44, 46194624.
6. Akat, H.; Tasdelen, M. A.; Du Prez, F.; Yagci, Y. Eur. Polym. J. 2008, 44, 1949-1954.
7. Nese, A.; Sen, S.; Tasdelen, M. A.; Nugay, N.; Yagci, Y. Macromol. Chem. Phys. 2006, 207, 820-826.
8. Yenice, Z.; Tasdelen, M. A.; Oral, A.; Guler, C.; Yagci, Y. J. Polym. Sci. Polym. Chem. 2009, 47, 2190-2197.
9. Oral, A.; Tasdelen, M. A.; Demirel, A. L.; Yagci, Y. Polymer 2009, 50, 3905-3910.
10. Oral, A.; Tasdelen, M. A.; Demirel, A. L.; Yagci, Y. J. Polym. Sci. Polym. Chem. 2009, 47, 5328-5335.
11. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J. Mat. Res. 1993, 8, 1179-1184.
12. Bottcher, H.; Hallensleben, M. L.; Nuss, S.; Wurm, H.; Bauer, J.; Behrens, P. J. Mat. Chem. 2002, 12, 1351-1354.
13. Zhao, H. Y.; Argoti, S. D.; Farrell, B. P.; Shipp, D. A. J. Polym. Sci. Polym. Chem. 2004, 42, 916-924.
14. Zhao, H.Y.; Farrell, B.P.; Shipp, D.A. Polymer 2004, 45, 4473-4481.
15. Wang, Y. P.; Pei, X. W.; Liu, X. J.; Kun, Y.; Zhang, D. X.; Li, Q. L.; Wang, Y. F. Polym. Comp. 2005, 26, 465-469.
16. Datta, H.; Bhowmick, A. K.; Singha, N. K. J. Polym. Sci. Polym. Chem. 2008, 46, 5014-5027.
17. Datta, H.; Singha, N.K.; Bhowmick, A.K. Macromolecules 2008, 41, 50-57.
18. Oral, A.; Shahwan, T.; Guler, C. J. Mat. Res. 2008, 23, 3316-3322.
19. Behling, R. E.; Williams, B. A.; Staade, B. L.; Wolf, L. M.; Cochran, E. W. Macromolecules 2009, 42, 1867-1872.
20. Karesoia, M.; Jokinen, H.; Karalainen, E.; Pulkkinen, P.; Torkkeli, M.; Soininen, A.; Ruokolainen, J.; Tenhu, H. J. Polym. Sci. Polym. Chem. 2009, 47, 3086-3097.
21. Weimer, M. W.; Chen, H.; Giannelis, E. P.; Sogah, D. Y. J. Am. Chem. Soc. 1999, 121, 1615-1616.
22. Konn, C.; Morel, F.; Beyou, E.; Chaumont, P.; Bourgeat-Lami, E. Macromolecules 2007, 40, 7464-7472.
23. Salem, N.; Shipp, D. A. Polymer 2004, 46, 8573-8581.
24. Zhang, B. Q.; Pan, C. Y.; Hong, C. Y.; Luan, B.; Shi, P. J. Macromol. Rapid Commun. 2006, 27, 97-102.
25. Ding, P.; Zhang, M.; Gai, J.; Qu, B.J. J. Mat. Chem. 2007, 17, 11171122.
26. Samakande, A.; Sanderson, R. D.; Hartmann, P. C. Eur. Polym. J. 2009, 45, 649-657.
27. Kubies, D.; Pantoustier, N.; Dubois, P.; Rulmont, A.; Jerome, R. Macromolecules 2002, 35, 3318-3320.
28. Lepoittevin, B.; Pantoustier, N.; Devalckenaere, M.; Alexandre, M.; Kubies, D.; Calberg, C.; Jerome, R.; Dubois, P. Macromolecules 2002, 35, 8385-8390.
29. Viville, P.; Lazzaroni, R.; Pollet, E.; Alexandre, M.; Dubois, P. J. Am. Chem. Soc. 2004, 126, 9007-9012.
30. Di, J. B.; Sogah, D. Y. Macromolecules 2006, 39, 5052-5057.
31. Messersmith, P. B.; Giannelis, E. P. Chem. Mat. 1993, 5, 1064-1066.
32. Messersmith, P. B.; Giannelis, E. P. J. Polym. Sci. Polym. Chem. 1995, 33, 1047-1057.
33. Yoonessi, M.; Toghiani, H.; Daulton, T. L.; Lin, J. S.; Pittman, C. U. Macromolecules 2005, 38, 818-831.
34. Yoonessi, M.; Toghiani, H.; Kingery, W. L.; Pittman, C. U. Macromolecules 2004, 37, 2511-2518.
35. Yoonessi, M.; Toghiani, H.; Pittman, C. U. J. Appl. Polym. Sci. 2006, 102, 2743-2751.
36. Tasdelen, M. A.; Van Camp, W.; Goethals, E.; Dubois, P.; Du Prez, F.; Yagci, Y. Macromolecules 2008, 41, 6035-6040.
37. Zhou, Q. Y.; Fan, X. W.; Xia, C. J.; Mays, J.; Advincula, R. Chem. Mat. 2001, 13, 2465-2467.
38. Fan, X. W.; Zhou, Q. Y.; Xia, C. J.; Cristofoli, W.; Mays, J.; Advincula, R. Langmuir 2002, 18, 4511-4518.
SYNTHESIS OF MACROMOLECULAR PHOTOINITIATORS AND THEIR EFFECTS ON PHOTOINDUCED FREE RADICAL POLYMERIZATION
Photoinduced free radical polymerization is a widely used technology with a wide range of industrial applications such as curing of coatings on various materials, adhesives, printing plates, inks, electronics and photoresist and has recently been recognized as also having great potential in the biomedical fields [1]. In the development of photopolymerization, photoinitiator systems play a very important role since even the most reactive acrylate monomers hardly polymerize when exposed to the pure form of UV light [2]. Free radical photoinitiators can be classed as α-cleavage (Type I) and H-abstraction (Type II) initiators. Type II photoinitiators are the most studied free radical photoinitiators. The most widely used free radical Type II photoinitiators include benzophenone and derivatives, thioxanthones, benzyl, quinines while alcohols, ethers, amines and thiols are used as hydrogen donors [3-6]. Thioxanthones are among one of the most widely used bimolecular photoinitiators in vinyl polymerization because of their absorption characteristics at near UV-vis range and whose triplet excited states readily react with hydrogen donors such as amine, alcohol, ether, acid or thiol functional compounds (Scheme 1) thereby producing initiating radicals [49].
Low molecular weight photoinitiators have a main drawback in that their photolysis products might migrate onto the coating surface and may create yellowing and unpleasant odors with serious problems of contamination. Therefore, much effort has been spent on the development of polymeric photoinitiators, which have some advantages such as low migration, reduced yellowing, higher reactivity and low volatility with respect to low molecular weight analogues.
Scheme 1. Photoinitiation mechanism of thioxanthone in the presence of a coinitiator.
Polymeric Photoinitiators: Polymeric photoinitiators have attracted much attention in the past years, for they combine the properties of polymers with those of low molecular weight photoinitiators [10-26]. Solubility and miscibility problems, often observed with coatings containing low molecular weight photoinitiators, do not occur with the polymeric ones since polymers are easily miscible with the resin to be cured as well as with the final cured film. Moreover, odor and toxicity problems do not occur with macrophotoinitiators owing to the low volatility of the large molecules. The low migration tendency of polymeric photoinitiators and of photoproducts means that cured coatings are less prone to yellowing [27-31].
Macrophotoinitiators possessing chromophoric groups either in the main chain or as pendant groups can be prepared in two ways: (i) synthesis and polymerization of monomers with photoreactive groups or (ii) introduction of photoactive groups into polymer chains (Scheme 2). In the latter case, macrophotoinitiators were synthesized either by using functional initiators and terminators in a particular polymerization or by reacting functional groups of a preformed polymer with other functional groups of low molecular weight compounds also possessing photoreactive groups. Macrophotoinitiators, analogues to the low molecular weight photoinitiators, are divided into two classes, according to their radical generation mechanism, namely cleavage type (type I) and hydrogen abstraction type (type II) macrophotoinitiators.
Scheme 2. Preparing the “Side Chain” and “In Chain” polymeric photoinitiators according to different pathways.
[1] N.S. Allen, Ed., Photopolymerization and Photoimaging Science and Technology Elsevier Applied Science, London, 1987.
[2] J.P. Fouassier, Photoinitiation, Photopolymerization and Photocuring, Hanser, Munich, 1995.
[3] N.S. Allen, F. Catalina, J.L. Mateo, R. Sastre, Photochemistry of novel water-soluble para-substituted benzophenone photoinitiators – a photocalorimetric and photoreduction study, J. Photochem. Photobiol. A: Chem. 44 (1988), pp. 171-177.
[4] N.S. Allen, S.J. Hardy, A.F. Jacobine, D.M. Glaser, B. Yang, D. Wolf, F. Catalina, S. Navaratnam, B.J. Parsons, Photochemistry and photopolymerization activity of perester derivatives of benzophenone, J. Appl. Polym. Sci. 42 (1991), pp. 1169-1178.
[5] J.P. Fouassier, Photochemistry and UV Curing: New Trends,Research Signpost, 2006.
[6] L. Cokbaglan, N. Arsu, Y. Yagci, S. Jockusch, and N.J. Turro, 2Mercaptothioxanthone as a novel photoinitiator for free radical polymerization, Macromolecules 36 (2003), pp. 2649–2653.
[7] M. Aydin, N. Arsu, Y. Yagci, One-component bimolecular photoinitiating systems, 2-Thioxanthone acetic acid derivatives as photoinitiators for free radical polymerization, Macromol. Rapid Commun. 24 (2003), pp. 718-723.
[8] D.K. Balta, N. Arsu, Y. Yagci, S. Jockusch, N.J. Turro, Thioxanthoneanthracene: a new photoinitiator for free radical polymerization in the presence of oxygen, Macromolecules 40 (2007), pp. 4138–4141.
[9] M. Aydin, N. Arsu, Y. Yagci, S. Jockusch, and N.J. Turro, Mechanistic study of photoinitiated free radical polymerization using thioxanthone thioacetic acid as one-component type II photoinitiator, Macromolecules 38 (2005), pp. 4133–4138.
[10] X. Jiang, J. Yin, Dendritic macrophotoinitiator containing thioxanthone and coinitiator amine, Macromolecules 37 (2004), pp. 78507853.
[11] X. Jiang, H. Xu, J. Yin, Copolymeric dendritic macrophotoinitiators, Polymer 46 (2005), pp. 11079–11084.
[12] X. Jiang, H. Xu, J. Yin, Polymeric amine bearing side-chain thioxanthone as a novel photoinitiator for photopolymerization, Polymer 45 (2004), pp. 133-140.
[13] Jiang X, Yin J, Study of macrophotoinitiator containing in-chain thioxanthone and coinitiator amines, Polymer 45 (2004), pp. 5057-5063.
[14] X. Jiang, J. Yin, Water-soluble polymeric thioxanthone photoinitiator containing glucamine as coinitiator, Macromol. Chem. Phys. 209 (15), pp. 1593-1600.
[15] X. Jiang, J. Yin, Polymeric photoinitiator containing in-chain thioxanthone and coinitiator amines, Macromol. Rapid Commun. 25 (2004), pp. 748–752.
[16] X. Jiang, J. Yin, Copolymeric photoinitiators containing in-chain thioxanthone and coinitiator amine for photopolymerization, J. Appl. Polym. Sci. 94 (2004), pp. 2395–2400.
[17] J. Wei, H. Wang, X. Jiang, J. Yin, Effect on photopolymerization of the structure of amine coinitiators contained in novel polymeric benzophenone photoinitiators, Macromol. Chem. Phys. 207 (2006), pp. 1752-1763.
[18] H. Wang, J. Wei, X. Jiang, J. Yin, Highly efficient sulfur-containing polymeric photoinitiators bearing side-chain benzophenone and coinitiator amine for photopolymerization, J. Photochem. Photobiol. A: Chem. 186 (2007) 106-114.
[19] H. Wang, J. Wei, X. Jiang, J. Yin, Novel chemical-bonded polymerizable sulfur-containing photoinitiators comprising the structure of planar N-phenylmaleimide and benzophenone for photopolymerization, Polymer 47 (2007), pp. 4967-4975.
[20] H. Wang, J. Wei, X. Jiang, J. Yin, Novel polymerizable sulfurcontaining benzophenones as free-radical photoinitiators for photopolymerization, Macromol Chem. Phys. 207 (2006), pp. 1080-1086.
[21] R.S. Davidson, The chemistry of photoinitiators – some recent developments, J.Photochem. Photobiol.A: Chem. 73 (1993), pp. 81-96.
[22] C. Carlini, L. Angiolini, Polymeric photoinitiators, Radiat Curing Polym. Sci. Tech. 2 (1993), pp. 283-320.
[23] G. Temel, N. Arsu, Y. Yagci, Polymeric side chain thioxanthone photoinitiator for free radical polymerization, Polymer Bulletin 57 (2006), pp. 51-56.
[24] B. Gacal, H. Akat, D.K. Balta, N. Arsu, Y. Yagci, Synthesis and characterization of polymeric thioxanthone photoinitatiors via double click reactions, Macromolecules 41 (2008), pp. 2401-2405.
[25] F. Karasu, N. Arsu, Y. Yagci, 2-Mercapto thioxanthone as a chain transfer agent in free-radical polymerization: A versatile route to incorporate thioxanthone moieties into polymer chain-ends, J. Appl. Polym. Sci. 103 (2007), pp. 3766-3770.
[26] G. Temel, N. Arsu, One-pot synthesis of water soluble polymeric photoinitiator via thioxanthonation and sulfonation process, J. Photochem. Photobiol. A: Chem. (2008), in press.
[27] S.P. Pappas, UV Curing Science and Technology, Technology Marketing Corp., Norwalk, CT, 1978.
[28] J.P. Fouassier, Photoinitiation, Photopolymerization and Photocuring, Hanser, Munich, 1995.
[29] K. Dietliker, Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints Vol. III, SITATechnology Ltd, London, 1991.
[30] R.S. Davidson, Exploring the Science, Technology and Applications of UV and EB Curing, SITA Technology Ltd., London, 1999.
[31] M.K. Mishra, & Y. Yagci, Handbook of radical vinyl polymerization, Marcel Dekker, New York, 1998, Chapter 7, p. 233.
ОЦЕНКА ПОДВИЖНОСТИ МАКРОМОЛЕКУЛЯРНЫХ ЦЕПЕЙ ФТОРСОДЕРЖАЩЕГО ПОЛИЭТИЛЕНТЕРЕФТАЛАТА ПО ДАННЫМ ДИФФЕРЕНЦИАЛЬНОЙ СКАНИРУЮЩЕЙ КАЛОРИМЕТРИИ
Применение полиэтилентерефталата (ПЭТ) для производства материалов широкого профиля использования требует универсальных способов его стабилизации, что не достигается в настоящее время существующими органическими и минеральными модификаторами [Брукс Д., Джайлз Дж. Производство упаковки из ПЭТ: Пер. с англ. Под ред. О.Ю. Сабсая. СПб.: 2006. 368 с.]. Поли- и перфторированные соединения для этих целей представляют несомненный интерес, поскольку позволяют добиваться существенного улучшения ряда свойств (термо-, свето-, износостойкость, гидролитическая устойчивость) гетероцепных полимеров уже при малом их содержании (10-3 ÷ 5 % масс. [Кудашев С.В. Влияние полифторированных модификаторов на структуру и свойства гетероцепных полимеров: Автореф. канд. дис. Волгоград, 2011. 24 с.].
Цель работы – оценка подвижности макромолекулярных цепей ПЭТ-гранулята, модифицированного фторсодержащими уретанами (ФУ), методом дифференциальной сканирующей калориметрии (ДСК, калориметр Netzsch DSC 204 F1 Phoenix, Германия).
Так подвижность структурных единиц макромолекулярной цепи ПЭТ оценивается коэффициентами температурных переходов [1, 2]:
1) α-переход – связан с уменьшением подвижности структурных единиц макромолекул вследствие начала кристаллизации;
2) β-переход – характеризует усиление вращательного движения метиленовых групп гликольного остатка и ароматического ядра;
3) γ-переход – описывает прекращение вращательного движения метиленовых групп гош– и транс-конформаций в аморфной фазе полиэфира; этот низкотемпературный переход влияет на барьерные свойства и газопроницаемость полимера.
ДСК-анализ модифицированного ПЭТ указывает на возрастание температуры α-перехода на 24 0С для ПЭТ-образца, содержащего 2 % ФУ , что указывает на ассоциацию ~C=O (ПЭТ) ∙∙∙ H-N~ (ФУ), а также на межмолекулярные взаимодействия между атомами фтора перфторуглеродной цепи модификатора и метиленовыми группами гликольного остатка, приводящие к стабилизации надмолекулярной полиэфирной структуры. Уменьшение значения γ-перехода фактически на 11 0С свидетельствует о том, что ФУ могут являться центрами нуклеации (зародышеобразования) и агентами разветвления макромолекулярной цепи.
Важно, что введение 2 % ФУ в ПЭТ приводит к уширению интервала температуры стеклования и ее сдвигу в сторону более низких температур, что рядом авторов связывается с некоторым повышением молекулярной массы полиэфира за счет его модификации по концевым группам. Однако столь же выраженного эффекта в случае температуры плавления модифицированного полимера не наблюдается.
Таким образом, совокупность полученных результатов свидетельствует о формировании «вторичных» надмолекулярных структур в поверхностных областях модифицированного полиэфира, существенно отличающихся по длине складок макромолекулярных цепей в кристаллитах по сравнению с исходным ПЭТ.
ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ УДАРОПРОЧНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ПОЛИПРОПИЛЕНА
На сегодняшний день разработка композиционных материалов на основе термопластичных связующих является актуальной задачей. Такие материалы имеют ряд преимуществ по сравнению с композитами, имеющими термореактивную матрицу: высокие ударопрочность, трещиностойкость, низкое водопоглощение и др. Однако они имеют более низкую адгезию к наполнителю и требуют более высоких температур и давления формования. Полипропилен (ПП) и его сополимеры среди большого ряда термопластов особенно интересны благодаря достаточно высоким эксплуатационным свойствам и невысокой стоимости.
Целью данной работы являлось получение ряда наполненных ПКМ на основе полипропиленов с повышенными эксплуатационными свойствами, оптимизация их составов и разработка технологических режимов их получения.
В качестве объектов исследования был выбран широкий ряд промышленных полипропиленов и сополимеров ПП: гомополимеры (марки: PP1500J, РР1525J); статистический сополимер пропилена и этилена (марка PP4345S); блок-сополимеры пропилена и этилена (марки: PP8300N, PP9240М, PP9240К, PP8300G).
В качестве наполнителя использовали древесную муку (ГОСТ 1636187) марок 180 и 560, изготавливаемую из древесины хвойных, лиственных пород и их смеси.
В качестве совмещающего агента использовали водный раствор натриевой соли полиаминополифосфоновой кислоты (ПАФ-13А) производства ОАО «Химпром» (ТУ 2439-360-05763441-2001).
Разработка способа совмещения включала в себя следующие этапы:
– выбор методики введения совмещающего агента (функционального полимера) обработкой гранул полипропилена или древесной муки;
– выбор температурно-временного режима сушки обработанного компонента;
– выбор температурно-временного режима смешения компонентов в миксере.
Гомогенизацию компонентов проводили в смесителе Plastograph® EC plus с номинальным объемом камеры 120 см3 при 190 ºС с частотой вращения 50 об/мин в течение 15 мин.
Изменение вязкости расплава (показатель текучести расплава, ПТР) при 2.16 г/230 ºС) определяли на пластометре CEAST 7027.
Температуру размягчения по Вика в жидкой среде определяли на приборе BASIC VICAT/HDT-Tester (Coesfeld GmbH & Co.KG) в соответствии с ГОСТ 15088-83. Ударную вязкость образцов определяли на маятниковом копре CEAST 9050 (IMPACTOR II) в соответствии с ГОСТ 19109-84.
Из полученных результатов следует, что композиты на основе гомополимеров (РР1525J и РР1500J) и статистического сополимера (РР4345S) имеют не высокие значения ударной вязкости при комнатной температуре. Выявленный характер изменения ударной вязкости образцов при пониженных температурах позволил сделать вывод, что наименьшей морозостойкостью в этой группе обладают композиты на основе гомополимера РР1525J, наибольшей – сополимера РР4345S. Вторую группу образуют композиты на основе блок-сополимеров (PP9240К, PP9240М, PP8300G и PP8300N) с высокими значениями ударной вязкости.
Использование полиамфолита ПАФ-13А в качестве компаундирующего агента улучшает адгезию наполнителя с полимерной матрицей выбранных марок гомо- и сополимеров полипропилена.
Определение температур стеклования и плавления полимерных композитов на основе полипропилена различных марок осуществляли методом дифференциальной сканирующей калориметрии (ДСК) с использованием дифференциального сканирующего калориметра DSC 204 F1 Phoenix (Netzsch, Германия).
Для всех изученных образцов было зафиксировано плавление полимерного компонента при температурах выше 150ºС. При температурах выше 200ºС наблюдалось термическое разложение (деструкция) образцов.
Таким образом, в результате выполненной работы:
– разработан способ получения древопластиков на основе полипропилена и древесной муки с высоким содержанием наполнителя (до 70 мас.%) с использованием полиамфолита ПАФ13А в качестве совмещающего агента;
– определены температуры стеклования, плавления, текучести и деструкции композитных материалов на основе разных марок полипропилена при различных степенях наполнения, полученным с применением дифференциальной сканирующей калориметрии в режиме термомодуляции.
Полученные композиты могут быть использованы для получения изделий различного назначения.
Работа выполнена при поддержке Минобрнауки РФ (ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы», ГК № 16.552.11.7008).
ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТРИХЛОРАЛКИЛФОСФАТОВ НА МОРОЗОСТОЙКОСТЬ РЕЗИНЫ НА ОСНОВЕ БУТАДИЕН-НИТРИЛЬНЫХ КАУЧУКОВ
Интенсивное освоение районов Сибири и Крайнего Севера потребовало создания эластомерных материалов, которые могли бы надежно эксплуатироваться при низких температурах (до – 55ºС). Существует широкий круг резиновых изделий, для которых основным требованием, предъявляемым к резине, является морозостойкость. Более половины случаев выхода из строя машин и механизмов в этих условиях связаны с разрушением или потерей работоспособности резиновых уплотнительных деталей. Резины на основе бутадиеннитрильных каучуков с небольшим содержанием акрилонитрила, особенно СКН-18 ПВХ 30, в определенной степени приближаются к требованиям, предъявляемым к уплотнительным резинам, эксплуатирующимся в районах Крайнего Севера, сочетая удовлетворительную маслобензостойкость, хорошие технологические и физико-механические свойства. Однако нельзя ограничиться только использованием каучуков, эксплуатирующихся при низких температурах. Широко применимым приемом улучшения морозостойкости и физико-механических свойств резин является введение в их состав пластификаторов. Под пластификаторами подразумеваются вещества, главный эффект действия которых проявляется в снижении вязкости и температуры стеклования и улучшении морозостойких и эластических свойств резин. Наиболее эффективными пластификаторами резин являются сложные эфиры дикарбоновых кислот – себациновой, адипиновой, фталевой, используемые в основном составе морозостойких рецептур. К числу таких пластификаторов относится дибутилсебацинат (ДБС), использование которого экономически не выгодно из-за его высокой стоимости. Поэтому актуальной проблемой является возможность замены дорогостоящего ДБС на новые пластификаторы.
В настоящее время на рынке сырья появились новые пластификаторы трихлорэтилфосфат (ТХЭФ) и трихлорпропилфосфат (ТХПФ), выпускаемые на ОАО «Химпром» г. Новочебоксарск, которые улучшают эластические свойства и способны повышать морозостойкость полимерных материалов за счет входящих в их состав атомов хлора и фосфора.
Поэтому представляет интерес изучение эффективности использования ТХЭФ и ТХПФ в качестве пластификаторовантифризов в составе резины на основе бутадиен-нитрильных каучуков (БНК) для повышения их морозостойкости.
Цель данной работы: разработка морозостойкой резины на основе бутадиен-нитрильных каучуков БНКС-18АН и СКН-18 ПВХ30, с высокими физико-механическими и эксплуатационными свойствами, за счёт замены ДБС на трихлоралкилфосфаты и совершенствования состава резиновой смеси.
Задачи работы:
1. Изучение влияния ТХЭФ и ТХПФ в составе исследуемой резины на основе бутадиен-нитрильных каучуков на пластоэластические свойства резиновой смеси; морозостойкость, физикомеханические свойства резины; тепло- и агрессивостойкость резины.
2. Разработка рецептуры резины на основе БНК с применением ТХЭФ и ТХПФ с повышенной морозостойкостью, улучшенными упруго-прочностными свойствами и стойкостью к воздействию агрессивных сред при повышенных температурах.
Основные результаты научного исследования:
Проведены исследования по замене дибутилсебацината (ДБС) на трихлоралкилфосфаты в резиновой смеси на основе полярных каучуков БНКС-18 АН и СКН-18 ПВХ 30 с изучением ее реологических, низкотемпературных, физико-механических и эксплуатационных свойств. Установлено, что наиболее морозостойкой является резина, содержащая трихлорэтилфосфат, которая по пласто-эластическим и упруго-прочностным свойствам также превосходит резину, содержащую в качестве пластификатора дорогостоящий пластификатор ДБС.
Результаты исследования по применению трихлорэтилфосфата в резиновой смеси на основе бутадиен-нитрильных каучуков БНКС-18 АН и СКН-18 ПВХ 30, используемой для изготовления формовых деталей для автомобилей, переданы для внедрения в производство на ОАО «Чебоксарское производственное объединение им. В.И. Чапаева».
ИССЛЕДОВАНИЕ ПРОЦЕССОВ СТРУКТУРООБРАЗОВАНИЯ В Pb(ZrxTi1-x)O3 ПЛЕНКАХ ИНТЕГРАЛЬНЫХ СЕГНЕТОЭЛЕКТРИКОВ
Незаменимыми материалами для применения в электротехнике, радиотехнике, приборостроении и других областях являются оксидные материалы. Однако широкое использование таких материалов часто сдерживаются трудностями их производства. Поиск и разработка новых методов синтеза оксидных материалов, способных привести к высокопроизводительным, неэнергоемким и экологически чистым технологическим процессам, весьма актуальны.
В проекте объектом исследований являются интегральные сегнетоэлектрические пленки, которые могут быть использованы для изготовления энергонезависимой памяти со сверхвысокой плотностью записи информации.
Цель проекта: разработка технологии получения сегнетоэлектрических покрытий с заданными свойствами на основе синтеза ультрадисперсных и наноразмерных ЦТС порошков.
Многокомпонентность сегнетоэлектриков усложняет процессы структурообразования, увеличивает фазовую и структурную неравновесность. В связи с этим, в рамках настоящего проекта предполагается выполнение следующих научно-исследовательских работ:
• Создание технологии получения порошковых наноматериалов цирконата-титаната свинца (ЦТС) с заданными свойствами.
• Установление взаимосвязи между качеством порошковых наноматериалов и условиями синтеза, изучение свойств покрытий, полученных на их основе с помощью электрофоретического метода, их структурных особенностей и областей применения.
• Разработка физико-химических основ новой керамической технологии создания наноматериалов с использованием алкоксидов металлов и покрытий на их основе.
Результаты работы:
• Созданы научные и практические предпосылки синтеза пленочных оксидных материалов с заданными свойствами: проведено комплексное изучение процессов синтеза, структуры и свойств органозолей металлов, что позволило показать пути практической реализации полученных экспериментальных результатов.
• Разработан и исследован новый вариант золь-гель метода, основанный на гидролизе алкоксидов металлов в процессе электрофоретического осаждения. Рассмотрены конкретные примеры получения одно и трехкомпонентных пленочных оксидных материалов и определены физико-химические основы их формирования.
• Показана взаимосвязь между структурой синтезированных тонких пленок, механизмом их формирования, а также физикохимическими характеристиками.
• Представленные фундаментальные и материаловедческие аспекты исследований золь-гель метода на основе алкоксидов металлов подтвердили возможность получения функциональных тонкопленочных материалов с регулируемым комплексом технически ценных свойств.
Научная значимость работы состоит в разработке воспроизводимого метода получения функциональных сегнетоэлектрических пленочных материалов.
ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ ГРАДИЕНТНЫХ МАТЕРИАЛОВ И ПОКРЫТИЙ НА ОСНОВЕ ЭПОКСИДНЫХ ОЛИГОМЕРОВ
Традиционно наполнитель в покрытиях распределен равномерно по всему объему, что сильно повышает вязкость композиций, ухудшает смачиваемость и адгезию покрытия к подложке. Избежать этих недостатков позволяет получение функциональных покрытий, в которых наполнитель распределен градиентно. В гомогенных системах наполнители либо выделяются из низковязких разбавителей в виде отдельной фазы, либо остаются в высоковязком олигомере и потому получить градиентное распределение наполнителя в таких системах невозможно.
Для получения градиентных функциональных покрытий был предложен ряд технологических приемов. Большое значение здесь имеет последовательность введения наполнителя. В работе [Кандырин Л.Б. Структура и свойства смесей олигомеров. Дисперсные системы на их основе / Л.Б. Кандырин, П.В. Суриков, В.Н. Кулезнев // Пластические массы. – 2010. – № 9. – С. 3-9.] было показано, что смешение наполнителя с индивидуальными компонентами эмульсии или с непосредственно приготовленной заранее эмульсией приводит к различным распределениям наполнителя в матрице.
В данной работе наполнитель предварительно смешивали с тем олигомером, который в ходе расслоения будет «перемещать» его к нужной поверхности покрытия. Такой технологический прием позволил получить оптимальные свойства функциональных покрытий (антифрикционных, антиадгезионных, огнезащитных, теплоизоляционных).
Антиадгезионные покрытия применяются в различных областях промышленности, основной недостаток существующих покрытий – низкая адгезия к подложке. Градиентные антиадгезионные покрытия позволяют сочетать высокие антиадгезионные свойства поверхности покрытия с высокой адгезией покрытия к поверхностям различным природы: металлы, пластики, древесина, керамика, стекло. В докладе приведены эксплуатационные свойства разработанных антиадгезионных градиентных покрытий, показана возможность получения покрытий с высокой теплостойкостью (200-250 ºС). Приведены результаты испытания разработанных составов в качестве антиадгезионных покрытий форм для автоклавного формования углеи стеклопластиков. Показана возможность многократного использования покрытий, а также их ремонтоспособность. Предложенные антиадгезионные покрытия, кроме их высоких эксплуатационных свойств, отличает простота нанесения на формы.
На основе саморасслаивающихся олигомер-олигомерных систем предложены высоконаполненные составы для антифрикционных покрытий. Изучено распределение состава, в том числе антифрикционного наполнителя, по сечению покрытий, показано концентрирование наполнителя у поверхности покрытия. Предложены области применения разработанных составов, в частности, в качестве твердой смазки в процессе обработки давлением изделий из титановых сплавов.
Второй технологический прием получения функциональных градиентных материалов – различная растворимость целевой добавки в эпоксидных олигомерах, был использован для получения саморасслаивающейся грунтовки-преобразователя ржавчины.
На примере всех представленных функциональных градиентных материалов показаны принципиальная возможность получения покрытий с целенаправленным распределением функциональных добавок по сечению и достижение соответствующих необходимых свойств.
МЕТАКРИЛОВЫЕ ПРОИЗВОДНЫЕ ТРИХЛОРФОСФАЗОДИХЛОРФОСФОНИЛА ДЛЯ МОДИФИКАЦИИ ПОЛИМЕРНЫХ СТОМАТОЛОГИЧЕСКИХ КОМПОЗИЦИЙ
В настоящее время большинство стоматологических восстановительных материалов создано на основе полимерной композиции бис-ГМА/ТГМ-3 [1, 2]. Причиной её широкого использования является комплекс свойств, среди которых: низкая полимеризационная усадка, быстрое отверждение при свободнорадикальном инициировании и низкая летучесть. Однако, высокая вязкость, относительно низкая конверсия двойных связей при полимеризации, а также склонность полимеризатов к хрупкому излому и недостаточно высокая биосовместимость заставляют проводить новые исследования по улучшению свойств полимерных стоматологических матриц.
Одним из путей решения проблемы является создание модификаторов, способных вступать в химическое взаимодействие с полимерной основой стоматологической композиции и придавать ей комплекс недостающих свойств. Наиболее интересным представляется использование синтетических элементорганических олигомеров и полимеров (например, фосфазенов), обладающих одновременно свойствами органических и минеральных соединений, за счет чего их физико-химические характеристики максимально близки к зубной ткани.
Примером подобного подхода может служить создание метакриловых производных фосфазенов, способных сополимеризоваться с полимерной матрицей, образуя единую сшитую и прочную структуру, обладающую высокой биосовместимостью.
Цикло- и полифосфазены (фосфонитрилы) – наиболее известные и подробно изученные соединения со связями фосфор-азот, содержащие по два заместителя у каждого атома фосфора и не имеющие заместителей у атомов азота. Общие формулы циклических фосфазенов и линейных полимеров имеют вид I и II.
Типичными представителями подобных соединений являются гексахлорциклотрифосфазен (далее ГХФ) (III) в случае R=Cl и n=1 в формуле I, полидихлорфосфазен (IV), полиорганофосфазен (V).
Несмотря на то, что трихлорфосфазодихлорфосфонил (далее ТХДФ) (VI), как и большинство галогенфосфазенов, гидролитически неустойчив, его метакриловые производные значительно более стабильны, а композиционные материалы на их основе способны создавать трехмерную структуру в физиологических условиях, и образовывать не только механическую, но и химическую связь с тканями организма.
Нам представляется интересным создание модификаторов полимерных матриц стоматологических композиций на основе метакриловых производных ТХДФ, содержащих –POH группу, существенно повышающую адгезию пломбировочного состава к гидроксиапатиту в составе зуба, и обладающих высокой биологической совместимостью с живыми тканями.
В связи с этим исследование включало следующие этапы:
– Синтез ТХДФ;
– Алкоголиз ТХДФ 2-гидроксиэтилметакрилатом (β-ГЭМ);
– Применение метакриловых производных ТХДФ.
Методы исследований, использованные в работе: ЯМР 1H- и 31Р-спектроскопия, элементный анализ, Матричная лазерная десорбционная ионизационная масс-спектрометрия MALDI-TOF.
Синтезированы и охарактеризованы производные трихлорфосфазо-дихлорфосфонила (ТХДФ), содержащие метакриловые фрагменты. Изучена реакция алкоголиза ТХДФ монометакриловым эфиром этиленгликоля и установлено, что в процессе замещения атомов хлора в присутствии пиридина происходит фосфазен-фосфазановая перегруппировка, которая практически исчезает при выборе триэтиламина в качестве акцептора гидрохлорида. Механические испытания композиций с использованием полученных продуктов в качестве модификаторов стоматологической матрицы показали значительное улучшение физико-механических и адгезионных свойств, что позволяет использовать их при разработке реставрационных стоматологических материалов и цементов.
Конец ознакомительного фрагмента.