Вы здесь

Медицинская физика. 4. Случайная величина. Закон распределения (В. А. Подколзина)

4. Случайная величина. Закон распределения

Определение случайной величины. Многие случайные события могут быть оценены количественно как случайные величины. Случайной называют такую величину, которая принимает значения в зависимости от стечения случайных обстоятельств. Различают дискретные и непрерывные случайные величины.

Распределение дискретной случайной величины. Дискретная величина считается заданной, если указаны возможные ее значения и соответствующие им вероятности. Обозначим дискретную случайную величину х, ее значения х1, х2…, в вероятности: Р (х1) =р2, Р (х2) = р2 и т. д.

Совокупность х и Р называется распределением дискретной случайной величины.

Так как все возможные значения дискретной случайной величины представляют полную систему, то сумма вероятностей равна единице:


Здесь предполагается, что дискретная случайная величина имеет n значений. Выражение называется условием нормировки.

Во многих случаях наряду с распределением случайной величины или вместо него информацию об этих величинах могут дать числовые параметры, получившие название числовых характеристик случайной величины. Наиболее употребительные из них: 1) математическое ожидание (среднее значение) случайной величины есть сумма произведений всех возможных ее значений на вероятности этих значений;

2) дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

Для непрерывной случайной величины математическое ожидание и дисперсия записываются в виде:


где f(x) – плотность вероятности или функция распределения вероятностей. Она показывает, как изменяется вероятность отнесения к интервалу dx случайной величины в зависимости от значения самой этой величины. Нормальный закон распределения. В теориях вероятностей и математической статистики, в различных приложениях важную роль играет нормальный закон распределения (закон Гаусса). Случайная величина распределена по этому закону, если плотность ее вероятности имеет вид:


где а = М(х) – математическое ожидание случайной величины;

σ – среднее квадратное отклонение; следовательно;

σ2– дисперсия случайной величины. Кривая нормального закона распределения имеет колоколообразную форму, симметричную относительно прямой х = а (центр рассеивания).