Вопрос 7. Функциональные единицы генома. Изменчивость бактериальной клетки
1. Функциональные единицы генома
IS-последовательности – короткие фрагменты ДНК. Они не несут структурных (кодирующих тот или иной белок) генов, а содержат только гены, ответственные за транспозицию (способность IS-последовательностей перемещаться по хромосоме и встраиваться в различные ее участки). IS-последовательности одинаковы у разных бактерий.
Транспозоны. Это молекулы ДНК – более крупные, чем IS-последовательности. Помимо генов, ответственных за транспозицию, они содержат и структурный ген, кодирующий тот или иной признак. Транспозоны легко перемещаются по хромосоме. Их положение сказывается на экспрессии как их собственных структурных генов, так и соседних хромосомных. Транспозоны могут существовать и вне хромосомы, автономно, но не способны к автономной репликации.
Плазмиды — это кольцевые суперспиралевидные молекулы ДНК. Их молекулярная масса колеблется в широких пределах и может быть в сотни раз больше, чем у транспозонов. Плазмиды содержат структурные гены, наделяющие бактериальную клетку разными, весьма важными для нее свойствами:
• R-плазмиды – лекарственной устойчивостью,
• Col-плазмиды – синтезировать колицины,
• F-плазмиды – передавать генетическую информацию,
• Hly-плазмида – синтезировать гемолизин,
• Tox-плазмида – синтезировать токсин,
• плазмиды биодеградации – разрушать тот или иной субстрат и другие.
Плазмиды могут быть интегрированы в хромосому (в отличие от IS-последовательностей и транспозонов, встраиваются в строго определенные участки), а могут существовать автономно. В этом случае они обладают способностью к автономной репликации, и именно поэтому в клетке может быть 2, 4, 8 копий такой плазмиды.
Многие плазмиды имеют в своем составе гены трансмиссивности и способны передаваться от одной клетки к другой при конъюгации (обмене генетической информацией). Такие плазмиды называются трансмиссивными.
2. Фактор фертильности
Наличие F-плазмиды (фактор фертильности, половой фактор) придает бактериям функции донора, и такие клетки способны передавать свою генетическую информацию другим, F-клеткам. Таким образом, наличие F-плазмиды является генетическим выражением пола у бактерий. С F-плазмидой связана не только донорская функция, но и некоторые другие фенотипические признаки. Это, в первую очередь, наличие F-пилей (половых ресничек), с помощью которых и устанавливается контакт между донорскими и реципиентными клетками. Через их канал и передается донорская ДНК при рекомбинации. На половых ресничках расположены рецепторы для мужских fi-фагов. F-клетки не имеют таких рецепторов и не чувствительны к таким фагам.
Таким образом, наличие F-ресничек и чувствительность к fi-фагам можно рассматривать как фенотипическое выражение (проявление) пола у бактерий.
3. Изменчивость
У бактерий различают два вида изменчивости – фенотипическую и генотипическую.
Фенотипическая изменчивость – модификации – не затрагивает генотип. Модификации затрагивают большинство особей популяции. Они не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу через большее (длительные модификации) или меньшее (кратковременные модификации) число поколений.
Генотипическая изменчивость затрагивает генотип. В ее основе лежат мутации и рекомбинации.
Мутации бактерий принципиально не отличаются от мутаций эукариотических клеток. Особенностями мутаций у бактерий является относительная легкость их выявления, так как имеется возможность работать с большими по численности популяциями бактерий. По происхождению мутации могут быть:
• спонтанными,
• индуцированными.
По протяженности:
• точечные,
• генные,
• хромосомные мутации.
По направленности:
• прямые,
• обратные мутации.
Рекомбинации у бактерий отличаются от рекомбинаций у эукариот:
• Во-первых, у бактерий имеется несколько механизмов рекомбинаций (обмена генетическим материалом).
• Во-вторых, при рекомбинациях у бактерий образуется не зигота, как у эукариот, а мерозигота (несет полностью генетическую информацию реципиента и часть генетической информации донора в виде дополнения).
• В третьих, при рекомбинациях у бактериальной клетки-рекомбината изменяется не только качество, но и количество генетической информации.
Трансформация – это обмен генетической информацией у бактерий путем введения в бактериальную клетку-реципиент готового препарата ДНК (специально приготовленного или непосредственно выделенного из клетки-донора). Чаще всего передача генетической информации происходит при культивировании реципиента на питательной среде, содержащей ДНК донора.
Для восприятия донорской ДНК при трансформации клетка-реципиент должна находится в определенном физиологическом состоянии (компетентности), которое достигается специальными методами обработки бактериальной популяции. При трансформации передаются единичные (чаще один) признаки. Трансформация является самым объективным свидетельством связи ДНК или ее фрагментов с тем или иным фенотипическим признаком, поскольку в реципиентную клетку вводится чистый препарат ДНК.
Трансдукция – это обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту с помощью умеренных (трансдуцирующих) бактериофагов.
Трансдуцирующие фаги могут переносить один или более генов (признаков). Трансдукция бывает:
• специфической (переносится всегда один и тот же ген),
• неспецифической (передаются разные гены).
Это связано с локализацией трансдуцирующих фагов в геноме донора. В первом случае они располагаются всегда в одном месте хромосомы, во втором – их локализация непостоянна.
Конъюгация – это обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту при их прямом контакте.
После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше контакт, тем большая часть донорской ДНК может быть передана реципиенту. Основываясь на прерывании конъюгации через определенные промежутки времени, можно определить порядок расположения генов на хромосоме бактерий – построить хромосомные карты бактерий (картирование бактерий). Донорской функцией обладают F+ клетки.