Глава I
Астрономия до телескопа: от мифов до науки
1. Зарождение науки
Звездное небо, как и любое явление природы, рано или поздно должно было стать предметом человеческого любопытства. Произошло это, судя по всему, очень давно – ведь явления, происходящие на небе, имели для древних людей вполне практический смысл. Прежде всего, они помогали измерять большие отрезки времени – часы, сутки, месяцы, годы. Пастухи, земледельцы и охотники давно обратили внимание на периодичность лунных фаз, на то, что в разные сезоны года видны разные приметные группы звезд…
Первый утренний восход самой яркой звезды ночного неба, которую мы знаем сейчас как Сириус – происходил незадолго до разлива Нила, на что обратили внимание жрецы Древнего Египта. Другие «небесные приметы» помогали определить время сезонных миграций птиц и зверей, сроки посева и уборки урожая…
Со временем знаний становилось все больше. Заметные группы звезд – созвездия – получили свои названия. Появились мифы, объясняющие их появление на небе. Появилась и потребность объяснить непонятные и редкие явления – такие, например, как солнечные и лунные затмения, кометы. Среди неподвижных и неизменных созвездий обнаружилось несколько «блуждающих звезд», меняющих свое положение. В Древней Греции их назвали планетами – в переводе «странниками», но знали о них еще раньше в Вавилоне и Древнем Египте.
Древнейшие цивилизации Египта и Междуречья уже вели лунный календарь, им были знакомы такие явления, как летнее и зимнее солнцестояния, весеннее и осеннее равноденствия.
Вавилонские жрецы составили множество астрономических таблиц. Они ввели разделение полного угла на 360 градусов, заложили основы для развития тригонометрии, создали лунный календарь. Они впервые ввели разделение года на месяцы и недели.
Активно проводились астрономические наблюдения в Древнем Китае. Китайские астрономы оставили больше всего в истории Древнего мира сообщений о необычных явлениях на небе: затмениях, кометах, метеорных дождях, новых звездах. Первая запись о появлении кометы в китайских хрониках относится к 631 г. до н. э., о лунном затмении – к 1137 г. до н. э., о солнечном – к 1328 г. до н. э., первый метеорный поток описан в 687 г. до н. э… Благодаря китайским астрономам мы можем проследить историю возвращений к Солнцу кометы Галлея более чем за две тысячи лет! Самое раннее однозначно идентифицируемое сообщение о ней датируется 240 г. до н. э. Возможно, что комета, наблюдавшаяся в 466 г. до н. э. также являются кометой Галлея. Начиная с 87 г. до н. э. отмечены все последующие появления. В 301 г. впервые замечены пятна на Солнце (крупные пятна видны невооруженным глазом в сильно задымленном или запыленном воздухе, а также у горизонта на восходе или заходе Солнца). Позже они регистрировались неоднократно.
2. В Древней Элладе
Астрономия Древней Греции создала наиболее совершенную научную (вернее философскую) картину мира в тот период. Ученые Эллады старались понять общее устройство Вселенной, одновременно совершенствуя методы наблюдений и вычислений.
До появления телескопа основным инструментом астронома были его собственные глаза, которым помогали угломерные инструменты, позволяющие измерить высоту светил над горизонтом, угловое расстояние между ними. Простейший из таких инструментов – гномон – представлял собой всего лишь вертикальный шест, воткнутый в землю. Однако, по длине отбрасываемой им тени можно вычислить высоту Солнца над горизонтом, определить, когда наступает полдень, а производя наблюдения изо дня в день – определить день солнцестояния. В Древней Греции была изобретена астролябия – один из основных угломерных инструментов древности, позволяющий не только измерить высоту светила в градусах, но и определить широту места наблюдения.
Как же представляли себе древние ученые устройство Вселенной?
Почти везде картина мира была основана на видимых кажущихся явлениях, происходящих на небе. Вначале Земля представлялась огромным плоским диском, лежащим в центре Вселенной, и покрытым куполом неба. Однако позже появилась идея (одним из первых ее высказал Пифагор), что Земля – вовсе не диск, а шар. Впоследствии этому нашлось много подтверждений: например, то, что из-за горизонта первыми показываются мачты корабля, верхушки деревьев и гор (по мере приближения). Доказательством шарообразности Земли служит и ее тень на лунном диске во время лунных затмений. Края тени всегда имеют округлую форму.
Древнегреческие ученые смогли многое узнать и понять. Например, Эратосфен в 240 г. до н. э. довольно точно определил длину земной окружности и наклон земной оси. Величайший астроном древности Гиппарх (ок. 190 до н. э. – ок. 120 до н. э.) уточнил длину года, длительность синодического и сидерического лунных месяцев[1] (с точностью до секунды), измерил средние периоды обращения планет. По таблицам Гиппарха можно было предсказывать солнечные и лунные затмения с неслыханной для того времени точностью – до 1–2 часов. Именно он ввёл географические координаты – широту и долготу. Но главным достижением Гиппарха стало открытие смещения небесных координат – «предварения равноденствий». Изучив данные наблюдений за 169 лет, он нашёл, что положение Солнца в момент равноденствия сместилось на 2°, или на 47” в год (на самом деле – на 50,3”). Другими словами, каждый год равноденствие наступает немного раньше, чем в предыдущем году – примерно на 20 минут 24 секунды. Основная причина предварения равноденствий – прецессия, периодическое изменение направления земной оси под влиянием притяжения Луны, а также (в меньшей степени) Солнца. Изменения направления земной оси приводит к изменению положения на небосводе точек небесных полюсов: так, Полярная звезда раньше находилась дальше от полюса, чем сейчас, а в будущем снова удалится от него. Это смещение является периодическим, и примерно каждые 26 000 лет точки равноденствия возвращаются на прежние места, а небесные полюсы, описав на фоне звезд окружность, тоже занимают прежнее положение.
В 134 году до н. э. в созвездии Скорпион появилась новая яркая звезда. Это побудило Гиппарха задуматься об отслеживании изменений на небе. Для облегчения этой задачи он составил каталог для 850 звёзд, разбив их на 6 классов по яркости: от самых ярких – звезд первой величины – до самых слабых, едва заметных невооруженным глазом – шестой величины. В усовершенствованном виде эта шкала яркости звезд существует до сих пор. Для слабых звезд, которые видны только в телескоп, введены величины 7, 8 и т. д. Самый слабый объект, снятый с помощью космического телескопа «Хаббл», имеет 31 звездную величину. Для особенно ярких светил яркость выражается отрицательным числом: например, блеск полной Луны – минус 12, а Солнца – минус 26. Отрицательную звездную величину могут иметь планеты Венера, Марс, Юпитер и Сатурн, ее также имеют 4 ярчайшие звезды на небе – Сириус, Канопус, Арктур и Альфа Кентавра. Есть также несколько звезд нулевой величины: Вега, Капелла, Ригель, Бетельгейзе и др. Кроме того, звездная величина сейчас практически всегда выражается дробным числом: скажем, яркость Сириуса минус 1,46, Мицара – плюс 2,23.
Итог всему развитию античной астрономии подвел великий александрийский астроном, математик, оптик и географ Клавдий Птолемей. Он значительно усовершенствовал сферическую тригонометрию, составил таблицу синусов. Но главное его достижение – трактат «Мегале синтаксис» («Большое построение»); арабы превратили это название в «Аль Маджисти» (отсюда позднейшее искаженное «Альмагест»). Этот труд содержит фундаментальное изложение геоцентрической системы мира. Она не была придумана Птолемеем, но он описал ее с максимальной точностью.
Всякую теорию необходимо согласовывать с наблюдениями. Астрономам древности требовалось объяснить неравномерность движения планет, в частности, попятное движение, когда планета движется назад, описывая «петлю» (в действительности, в это время Земля «обгоняет» ее, двигаясь по своей орбите), а также объяснить изменение их видимой яркости, связанное с изменением расстояния от Земли.
В рамках геоцентрической системы невозможно было правильно объяснить эти явления. Была придумана искусственная модель, согласно которой, всякая планета равномерно движется по кругу (эпициклу), центр которого, в свою очередь, движется по другому кругу, который называется деферентом. Как ни странно, для этой, не имеющей ничего общего с действительностью схемы удавалось подобрать такие значения, которые вполне совпадали с наблюдаемыми явлениями и позволяли предсказывать их в будущем (в пределах, которые можно было измерить без оптических приборов).
Будучи принципиально неверной, система Птолемея, тем не менее, позволяла с достаточной для того времени точностью предвычислять положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение многих веков.
3. Средние века
Средневековье – это время упадка европейской науки. В VII–XIV веках центром научного мира становятся города Арабского Востока. В 20-е годы IX века в Багдаде был основан «Дом Мудрости», по сути, академия наук. При нем была богатая библиотека старинных рукописей и астрономическая обсерватория. Арабские ученые перевели «Альмагест» Птолемея, труды Аристотеля и других древнегреческих ученых и индийские астрономические сочинения.
Многие ученые арабского средневековья оставили заметный след в истории астрономии.
Мухаммед Аль-Хорезми (783–850 гг.) составил астрономические и тригонометрические таблицы для нужд теоретической и практической астрономии, описал разные календарные системы, устройство и применение основных астрономических инструментов.
Аль-Баттани (858–929 гг.) проверил таблицы Птолемея, уточнил величину прецессии и угла между эклиптикой[2] и небесным экватором[3].
Абу Райхан аль-Бируни (973–1048 гг.) вел многолетние наблюдения небесных объектов, самостоятельно, по оригинальной методике, определил размеры Земли и уже тогда догадывался о её вращении вокруг Солнца.
Омар Хайям занимался созданием астрономических таблиц, разработкой математического обеспечения практической астрономии и составлением календарей. Созданный им в 1079 г. персидский солнечный календарь был значительно точнее григорианского и применялся в Иране и ряде других государств до середины XIX века.
Насреддин Туси (1201–1277 гг.) основал в Мараге обсерваторию с большой библиотекой, в сотрудничестве с учеными Индии и Китая составил «Ильханские таблицы» движения Луны, Солнца и планет.
Улугбек
Мухаммед-Тарагай Улугбек (1394–1449 гг.), внук и наследник великого завоевателя Тимура (Тамерлана), построил крупнейшую в XV веке астрономическую обсерваторию с главным инструментом – гигантским квадрантом радиусом 40,2 м, с помощью которого были с большой точностью определены продолжительность года и угол наклона оси Земли. Главным трудом Улугбека стал «Зидж Гурагани» («Новые таблицы» – каталог 1018 звезд, включавший различные системы летоисчисления, основы сферической и практической астрономии, теорию затмений, движения планет и другие сведения). Книга Улугбека стала астрономической энциклопедией XV века и неоднократно переиздавалась в других странах.
Самарканд. Развалины обсерватории Улугбека
4. Возрождение
В XIII веке астрономия стала одной из обязательных учебных дисциплин во всех западноевропейских университетах, но вплоть до середины XVI века астрономия оставалась приложением к математике (и, через астрологию, к медицине).
Николай Кузанский (1401–1463 гг.), выдающийся немецкий философ и теолог, кардинал и викарий Папы римского был ученым, намного опередившим в своих взглядах эпоху. Он первым порвал с аристотелево-птолемеевой теорией Вселенной, утверждая подвижность Земли в пространстве, её вращение вокруг своей оси и вещественное единство Земли и всех небесных тел.
Коперник
Крепость Фромборка
Памятник Копернику
Следующий решающий шаг к новой теории устройства Вселенной сделал Николай Коперник (1473–1543 гг.) Он родился в городе Торунь, который всего за несколько лет до его рождения стал частью Польши, а до того принадлежал Пруссии. Мать Коперника была немкой, отец – скорее всего, поляком.
Коперник учился в Болонском и Падуанском университетах. Вернувшись на родину, он стал каноником (служителем церкви) в небольшом городке Фромборке. Исполняя свои обязанности, в свободное время он вел астрономические наблюдения и работал над научными трудами. Северо-западная башня крепости Формборка стала его обсерваторией.
Он стал одним из создателей новой астрономии. В книге «О вращении небесных сфер» Коперник изложил гелиоцентрическую теорию. В этом труде на основе двух основных действительных движений Земли – годичного и суточного – объяснялись все главные особенности видимого суточного вращения небесной сферы и движения планет. Впервые получила объяснение смена времен года.
Размышляя о Птолемеевой системе мира, Коперник поражался её сложности и искусственности и, изучая сочинения древних философов, пришёл к выводу, что не Земля, а Солнце должно быть неподвижным центром Вселенной. Исходя из этого предположения, Коперник весьма просто объяснил всю кажущуюся запутанность движений планет, но, не зная ещё истинной формы планетных орбит и считая их идеальными окружностями (в соответствии с учением Аристотеля), он был вынужден сохранить эпициклы и деференты древних для объяснения неравномерности движений. Позже, после открытия законов Кеплера, они перестанут быть нужны.
Кроме того, Коперник еще сохранил в своей теории центр Вселенной (только теперь в нем находилось Солнце) и «сферу неподвижных звезд», которой были ограничены ее размеры. Но, несмотря на это, именно теория Коперника послужила толчком к революции в науке, которая началась после 1600 года. На памятнике Н. Копернику в Варшаве высечена надпись: «Он остановил Солнце и сдвинул Землю».
Для многих людей, любящих науку, последней вехой на пути к новому этапу ее развития служит трагическая гибель Джордано Бруно (1548–1600 гг.).
Он родился в итальянском городе Нола, и в возрасте 15 лет поступил послушником в францисканский монастырь. Только таким путем юноша из бедной семьи мог получить образование.
Бруно
В 1572 году 24-летний Джордано становится католическим священником. Однако позже, обвиненный в ереси, он бежит в Швейцарию, становится кальвинистом… но и там его обвиняют во взглядах, неприемлемых теперь уже для протестантской веры.
Вся жизнь Бруно – это непрерывные скитания, публичные философские диспуты и научные споры. В его философских взглядах причудливо сочетались мистическое и естественнонаучное мировоззрения, но для людей последующих поколений важны его гениальные предвидения в астрономии.
Развивая гелиоцентрическую теорию Коперника и философию Николая Кузанского, Бруно высказывал ряд догадок: об отсутствии материальных небесных сфер, о безграничности Вселенной, о том, что звёзды – звёзды – это далёкие солнца, вокруг которых обращаются планеты, о существовании неизвестных в его время планет в пределах нашей Солнечной системы. В противоположность бытовавшим в то время мнениям, он считал кометы небесными телами, а не испарениями в земной атмосфере. Бруно отвергал средневековые представления о противоположности между Землёй и небом, утверждая физическую однородность мира (учение о 5 элементах, из которых состоят все тела, – земля, вода, огонь, воздух и эфир). Он предположил возможность жизни на других планетах.
Бруно создал свою естественно-философскую картину бесконечной Вселенной со множеством обитаемых планетных миров, «единое безмерное пространство, лоно которого содержит все… в котором все пробегает и движется… В нем – бесчисленные звезды, созвездия, шары, солнца и земли, чувственно воспринимаемые; разумом мы заключаем о бесчисленном множестве других. Все они имеют свои собственные движения, независимые от того мирового движения, видимость которого вызывается движением Земли… одни кружатся вокруг других… Поверхность нашей Земли меняется, только через большие промежутки времени эпох и столетий, в течении которых моря превращаются в континенты, а континенты в моря»…
Трагическая судьба Бруно, сожженного инквизицией за свои убеждения, навеки осталась в истории науки. На месте его казни в Риме на памятнике высечена надпись: «От столетия, которое он предвидел».