Вы здесь

Ложная память. Почему нельзя доверять воспоминаниям. 3. Танцы с пчелами. Транквилизаторы, моллюски и лазерные лучи. Как физиология мозга может стать причиной искажения воспоминаний (Джулия Шоу, 2016)

3

Танцы с пчелами

Транквилизаторы, моллюски и лазерные лучи

Как физиология мозга может стать причиной искажения воспоминаний

Значит, хотите почитать книжку про воспоминания, не слишком заморачиваясь насчет биологических особенностей мозга? Не вы одни. Что ж, тогда пропустите эту главу. Это ваше право, если вы не хотите оказаться по колено в биохимии, описаниях экспериментов на животных и теорий памяти. Вы поймете содержание последующих глав, не погружаясь в эти темы. Ну а если вам все-таки по душе все эти научные подробности, которые помогают продемонстрировать, что такое память на самом деле, тогда читайте дальше. И если вы решили продолжить, позвольте представить вам Кэтрин Хант.

Кэтрин Хант одета в костюм пчеловода, укрывающий ее с ног до головы. Она медленно пробирается к улью, который кишит созданиями под названием Bombus terrestris — земляными шмелями. Их там сотни, и Кэтрин начинает сомневаться, зачем ей все это нужно. Они выглядят очень мило – самые пушистые и кругленькие из пчел, – и обычно они совсем не агрессивны, но, приближаясь к такому огромному скоплению этих насекомых, сложно не почувствовать легкую тревогу. Сердце замирает от подобных занятий. Да и получится ли?

Кэтрин Хант не стоило беспокоиться: ее исследование оказалось революционным. Она провела его, будучи амбициозным молодым исследователем в Лондонском университете королевы Марии. Хант изучала механизмы принятия решений в поведении животных, обращая особое внимание на вопрос о том, меняется ли память предсказуемым образом, в зависимости от определенного поведения, или просто деградирует с возрастом. Ранее Хант исследовала особенности взаимодействия животных с окружающей средой и ее воздействия на них. В рамках этой области, когнитивной экологии, она изучала механизмы, определяющие выбор пищи у рыбок гуппи и поведение муравьев-листорезов, связанное с поиском пищи. Только после того, как она начала работать совместно с Ларсом Читткой, ведущим специалистом по поведению пчел, ее внимание привлекли шмели.

Хант и Читтка захотели узнать, смогут ли они внушить пчелам ложные воспоминания. Их исследование, опубликованное в 2015 г.[52] в британском журнале Current Biology, должно было продемонстрировать некоторые базовые физиологические процессы, которые, как предполагается, создают предпосылки для появления ложных воспоминаний. Пчелы обладают очень развитой системой социального взаимодействия и незаурядной способностью к усвоению новой информации. Их память, по-видимому, похожа на нашу, что делает это исследование значимым и в области изучения человеческой памяти.

Ранее уже было известно, что шмели того вида, с которыми они работали, а именно Bombus terrestris, очень хорошо удерживают в памяти цвета и узоры, в том числе отлично запоминают разные виды цветов. Кроме того, известно, что они способны помнить несколько вещей одновременно. В общем, у них очень хорошая пчелиная память. Исследователи хотели узнать, можно ли превратить ее из преимущества в недостаток.

Ученые предоставили шмелям один за другим два разных цветка, один – с черно-белыми кольцами, другой – ярко-желтый. В каждом из них находился вкуснейший нектар. Таким образом, они научили шмелей ассоциировать эти цвета с вкусным нектаром, который они обычно ищут. Во время следующего эксперимента шмелям предложили один за другим три разных цветка: один – с черно-белыми кольцами, другой – желтый, а третий – желтый с черными кольцами. Когда шмелей подвергали этому тесту через несколько минут после того, как они ознакомились с первыми двумя цветками, они редко выбирали третий, предпочитая один из тех цветков, в которых они до этого находили нектар. Они демонстрировали отличную кратковременную память.

Однако если их тестировали через два-три дня, некоторые шмели выбирали новый цветок «смешанного» цвета, хотя они ни разу не видели его во время обучения, а только во время теста, и никогда не находили в нем нектара. К концу эксперимента около половины шмелей стали предпочитать цветок «смешанного» цвета, а не тот, который следовало выбрать.

Возможно, вы уже успели сделать вывод, что ошибки в поведении шмелей означают, что они не смогли запомнить, какие цветы точно содержат нектар, или же запомнили, но потом забыли. Но если бы шмели просто забыли, в каких цветах стоит искать нектар, а в каких нет, они бы стали выбирать каждый из трех предложенных цветов одинаково часто, не выказывая конкретных предпочтений. Что касается Хант и Читтки, они интерпретировали такое поведение шмелей как признак выработавшегося у них ложного воспоминания – воспоминания о двух разных цветках смешались друг с другом, что в итоге и побудило насекомых выбирать цветок смешанной расцветки, поскольку он сочетал в себе сразу обе черты, которые шмели привыкли ассоциировать с нектаром. Исследователям удалось создать ложное воспоминание из двух обычных, и оно заметным образом отразилось на поведении насекомых.

Все создания на земле сталкиваются с похожими проблемами на пути к выживанию: необходимо находить еду, общаться с другими особями и находить партнеров для спаривания. Исследования показывают, что это ведет к определенному сходству в когнитивных функциях насекомых, животных и человека. Поэтому крайне вероятно, что совершать подобные ошибки свойственно не только пчелам. По словам Хант и Читтки: «Систематические ошибки памяти могут быть довольно распространенным явлением в животном царстве… «следы», оставленные в памяти различными возбудителями, могут сливаться, так что отрезки информации, полученные в разные моменты обучения, объединяются в сознании животного, вследствие чего в дальнейшем оно может вспомнить образ возбудителя, который никогда на него не воздействовал, но появился в результате слияния имеющихся отрезков информации». Вполне вероятно, что смешанные воспоминания следует считать нормой для самых разных животных.

Кажется невероятным, что пчелы, да и любое другое насекомое или животное, смогли в процессе эволюции обрести память, способную на подобные ошибки. В конце концов, естественный отбор вряд ли стал бы поощрять склонность к заблуждениям, потенциально невыгодным для выживания вида. Следовательно, те же самые механизмы, которые заставляют память совершать подобные ошибки, должны отвечать за преимущества, которые оправдывают потенциальные недостатки. Чтобы понять, что это за механизмы, нам нужно взглянуть на ситуацию в целом и подробнее поговорить о физиологической природе памяти.

Пластичный мозг

Вопрос о том, каким образом нам удается сохранять в голове определенную мысль или информацию о полученном опыте, волнует исследователей с тех пор, когда впервые было высказано предположение о том, что может не существовать так называемого духа или души (а если она и есть, то она не является продолжением мозга). Если это так, вся информация должна физически храниться в мозге. Движение от дуализма (веры в то, что разум и тело существуют раздельно) к монизму (вере в то, что все мысли рождаются в мозге) привело к настойчивому стремлению познать физическое устройство мозга.

Хотя философ Декарт, известный сторонник дуализма, считал, что душа и тело взаимодействуют при помощи шишковидной железы, органа размером с горошину, расположенного почти в самом центре головного мозга, сегодня большинство ученых полагают, что сознание – это не атрибут бестелесного духа, а скорее результат взаимодействия сложной системы физических механизмов (пусть мы до сих пор и не знаем, как именно все это работает). Благодаря современным технологиям, в том числе возможностям нейровизуализации, таким как фМРТ (функциональная магнитно-резонансная томография) и ЭЭГ (электроэнцефалография), для изучения этих механизмов больше не нужно вскрывать трупы и анализировать истории болезней; впервые за всю историю человечества у нас появилась возможность исследовать живой мозг в тот самый момент, когда он воспринимает мир.

Наш мозг очень легко адаптируется и поддается влиянию. Он развивался в условиях постоянной борьбы за выживание и приспособлен для существования в мире, полном неуверенности, где необходимо быстро принимать решения. Поэтому, как сказали упомянутые нами Хант и Читтка[53]: «Распространенность ложных воспоминаний ставит в тупик: учитывая влияние естественного отбора, который должен благоприятствовать точности памяти, как могли подобные систематические ошибки сохраниться в процессе эволюции? Можно предположить, что ошибки памяти – это побочный продукт нашей адаптивной памяти». Итак, возможно, это хорошо, что шмели перепутали воспоминания и забыли, в каком цветке стоит искать нектар, потому что смешение воспоминаний – побочный продукт развития мозга, способного изменяться, обучаться и делать выводы. Периодические искажения памяти – сравнительно небольшая цена за это.

Адаптивное свойство нашего мозга называется нейропластичностью, и только благодаря ей мы в принципе способны сохранять воспоминания. Клетки нашего мозга – нейроны – соединяются между собой, образуя связи, которые меняются в зависимости от вновь приобретаемого опыта. Если бы мы не могли внедрять новую информацию в существующие нейронные связи, мы бы не могли менять собственные мысли и поведение, чтобы подстроиться под меняющиеся обстоятельства, и нам было бы крайне трудно справиться даже с малейшими изменениями среды обитания. Кроме того, именно благодаря нейропластичности мы можем усваивать информацию как о позитивном, так и о негативном опыте общения с другими, что в конечном счете помогает нам отличать друзей от врагов.

Каждый раз, когда мы переживаем определенный опыт, мы можем создать о нем воспоминание, сохранив его в мозге в виде нейронной связи. Это может быть семантическое воспоминание о конкретном факте, например о том, что в 2015 г. Обама был президентом США. Или автобиографическое воспоминание о том, как вы ездили в Лондон посмотреть мюзикл. Или же это может быть воспоминание о процессе принятия решения, например, как вы решили головоломку. Чтобы определенный опыт, каким бы он ни был, сохранился в виде воспоминания, он должен принять определенную физическую форму в вашем мозге.

Сегодня мы знаем гораздо больше о том, как это происходит, потому что современные технологии, такие как фМРТ, позволяют нам фотографировать внутренние структуры мозга, и впервые в истории человечества мы можем непосредственно увидеть, как выглядят живые воспоминания. Благодаря технологическому прогрессу ученые теперь могут исследовать биологические и химические механизмы, на которых основана работа памяти, и проверить достоверность физиологических теорий формирования памяти. Сейчас мы знаем о памяти гораздо больше, чем десять лет назад, и можем наблюдать за формированием воспоминаний с момента их появления и до их исчезновения.

Запечатление воспоминаний

Процесс превращения воспоминаний о пережитом опыте в физическую структуру в мозге называется биологическим запечатлением. Чтобы сохранить полученный опыт в долговременной памяти, необходим биохимический синтез для образования связей между существующими в мозге нейронами.

У наших нейронов есть тонкие отростки – дендриты, благодаря которым они могут устанавливать физические связи с другими клетками. Имеющиеся на них ответвления служат узлами связи между этими отростками. Внутри каждого отдельного нейрона сообщения в основном передаются в виде электрических импульсов, но между собой нейроны, как правило, общаются при помощи химических соединений, передаваемых посредством синапсов. Синапс – это разрыв, или щель, между двумя нейронами. Синапсы представляют собой своеобразные передатчики и приемники. Яркие воспоминания – это во многом результат непрерывного богатого потока информации от одной клетки к другой. Это общение происходит при помощи химических посредников – нейромедиаторов, которые говорят нейронам, что делать: в большинстве случаев – нужно ли им активизироваться больше или меньше. Можно представить себе нейроны как аэропорты, между которыми курсируют самолеты-нейромедиаторы. В зависимости от того, какие взлетно-посадочные полосы (рецепторы) доступны на синапсе, до которого они добрались, некоторые самолеты смогут приземлиться, а некоторые – нет. Таким образом контролируется обмен информацией между нейронами, что позволяет нам не сжечь собственные нейроны в моменты сильного возбуждения.

Помню, как один из моих университетских преподавателей очень запоминающимся образом продемонстрировал принцип работы синапсов и соединенных с ними клеток. Он встал посередине аудитории, в которой находилось около 200 студентов, и терпеливо дождался, когда мы сконцентрируем на нем свое внимание.

«Я – нейрон», – констатировал он. Он раскинул руки в стороны, словно изображая букву Т: «Это мои дендриты». Потом он раскрыл ладони, которые до тех пор были сжаты в кулаки, и напряг пальцы: «Это ответвления на моих дендритах». Он подозвал одного из студентов и попросил его встать рядом в такой же позе. Он поднес кончики пальцев к ладони соседа, оставив между ними крошечный промежуток: «А это мои синапсы». В конце концов он пожал руку рядом стоящего студента, показывая, как импульс передается от одного нейрона к другому.

В человеческом мозге насчитывается около 86 миллиардов рабочих нейронов, поэтому запись воспоминания это скорее процесс создания и настройки связей между уже существующими клетками, чем формирование новых нейронов. Хотя все составляющие нейронных связей могут меняться, большинство ученых считают, что наибольшую роль в создании воспоминаний играют синапсы.

Долговременная потенциация – это усиление синаптической передачи между двумя нейронами, происходящее из-за того, что нейроны систематически активизируются по отношению друг к другу. Предположим, например, что вы находитесь на пляже в Испании и впервые за несколько лет можете по-настоящему расслабиться. В этой ситуации активизируются нейроны в «пляжной» сети, а также в сетях «Испания» и «отдых». Если переживаемый опыт достаточно сильно активизирует эти связи или же это происходит благодаря похожему, регулярно повторяющемуся опыту, между этими нейронными сетями установится прочная связь. То есть ваша ассоциативная память свяжет, к примеру, понятия «Испания», «пляж» и «отдых».

Мишель Бодри – один из самых выдающихся исследователей в этой области, заложивших основы нашего понимания биохимической природы воспоминаний[54]. В 2011 г. он опубликовал обзор результатов 25 лет работы, проведенной совместно с группой ученых из Университета Южной Калифорнии. Они фактически свели изучение биохимической природы памяти к двум вещам: исследованию процесса под названием «долговременная потенциация» и влиянию веществ кальпаинов – кальций-чувствительных протеаз. Бодри и его коллеги утверждают, что кальций необходим для стимуляции протеинов, которые позволяют синапсам претерпевать долгосрочные изменения, имеющие отношение к памяти. Когда связь между двумя нейронами регулярно и настойчиво активируется, как, например, связь между понятиями «парк» и «деревья», в этом конкретном месте активируются кальпаины. Затем они изменяют структуру синапсов, что приводит к образованию более сильной связи между активированными клетками памяти в мозге. Похоже, только когда в дело вступают кальпаины, мы можем наблюдать переход от простого новоприобретенного опыта к длительному воспоминанию.

Заднежаберные моллюски и крысиные мозги

Эрик Кандел – еще один исследователь, занимающийся этим феноменом. Я ни разу лично не встречалась с этим удивительным человеком, получившим Нобелевскую премию по медицине, одним из пионеров в мире исследований памяти. Однако я годами следила за его публикациями – читала его статьи, учебники, автобиографию и интервью. Поэтому мне кажется, будто я с ним знакома. Кандел впервые заинтересовался заднежаберными моллюсками в 1962 г., и вместе с коллегами и студентами из Колумбийского университета в Нью-Йорке он до сих пор продолжает исследовать представителей вида Aplysia. Термин Aplysia образовался в результате слияния древнегреческих слов, означавших «море» и «заяц». Этих крупных слизняков, похожих на улиток без раковин, назвали морскими зайцами из-за небольших рожек на головах, которые напоминают заячьи уши.

Кандел избрал аплизий в качестве объекта исследования, потому что они пользуются простой системой нейронов, чтобы запоминать переживаемый опыт и реагировать на него. Например, если в условиях эксперимента ущипнуть аплизию за жабру, она может научиться ее втягивать. Участвующие в процессе нейроны можно изолировать и извлечь, и растут они с огромной скоростью. В лабораторных условиях их можно сохранять живыми вне мозга хозяина in vitro, поместив их в жизнеобеспечивающую кислородосодержащую жидкость.

Так как единственное назначение нейронов – образовывать связи и формировать мозг, изолированные нейроны немедленно начинают искать другие нейроны, с которыми можно было бы взаимодействовать. Для этого они отращивают более длинные дендриты и дополнительные синапсы. По словам Кандела[55], «новые синапсы вырастают в течение дня прямо на ваших глазах». Этот удивительно быстрый рост нейронов, намного более быстрый, чем у людей, делает аплизий идеальными подопытными для исследования того, как внутри индивидуальных клеток и между ними образуются воспоминания. А так как люди фактически полагаются на такие же нейронные процессы, что и эти беспозвоночные, такие исследования напрямую связаны с изучением человеческой памяти.

За последние несколько десятилетий аплизии многому нас научили и помогли значительно расширить знания о работе памяти. Одно из самых недавних открытий, детально описанное в серии статей, опубликованных лабораторией Кандела в 2015 г.[56], заключается в том, что протеины, ответственные за работу долговременной памяти, отличаются от всех других видов протеинов. Это так называемые прионы.

Прионы, или белковые инфекционные частицы, могут менять форму, по-особому складываясь и видоизменяясь. Еще одно важное качество прионов состоит в том, что они могут либо существовать изолированно, либо образовывать цепи. Эти цепи вынуждают соседние клетки присоединяться, создавая физические связи. До появления новых данных в 2015 г. те, кто знал о существовании прионов, в первую очередь ассоциировали их с тяжелыми заболеваниями вроде болезни Альцгеймера или ГЭКРС (коровьим бешенством). У прионов была такая плохая репутация, что Кандел, предвидя негативную реакцию публики, написал: «Думаете, Бог создал прионы, только для того чтобы убивать?»[57], прежде чем рассказал о их ключевой роли в работе памяти.

Основная роль прионов при формировании воспоминаний, по-видимому, заключается в стабилизации синапсов, ответственных за долговременные воспоминания, что позволяет упрочить физические изменения, уже произошедшие в результате долговременной потенциации и поступления кальпаинов. Кальпаины – это своеобразные архитекторы синапсов, которые планируют, как должна протекать коммуникация между ними, в то время как прионы – это рабочие-строители, которые придают изменениям более постоянный характер.

Но то, что связь установлена, не означает, что она установлена навсегда. Кальпаины и прионы могут в любой момент вернуться и снова все изменить. В 2000 г. исследователи Карим Надер, Гленн Шаф и Жозеф Леду[58] из Нью-Йоркского университета изучили, как меняются фрагменты воспоминаний непосредственно на биохимическом уровне. Они провели эксперимент, в ходе которого крысам давали послушать звук определенной высоты, после чего их ударяли электрическим током. После того как им снова давали послушать тот же звук, животные в страхе замирали. Другими словами, исследователям удалось вызвать у них воспоминание, в котором определенный звук ассоциировался с болью.

Поскольку страх по отношению к определенной ситуации или месту – это по природе своей эмоциональная реакция, ученые предположили, что воспоминание крыс об ударе электрическим током сохранится в миндалевидном теле – части мозга, которая расположена в самом его центре, напоминает две половинки грецкого ореха (по одной в каждом полушарии) и во многом отвечает за эмоции. В ходе следующего эксперимента исследователи точно так же давали крысам послушать звук определенного тона, после чего ударяли их электрическим током, но после этого они вводили прямо в миндалевидное тело животных анизомицин – вещество, тормозящее выработку протеинов, в том числе кальпаинов. В этот раз крысы не выказывали страха при повторном прослушивании того же звука. Другими словами, они не смогли создать новое долговременное воспоминание о том, что их напугало, потому что введенное в их мозг вещество не позволило протеинам работать в привычном режиме, что подтверждает ключевую роль протеинов в формировании воспоминаний. Однако блокировать выработку протеинов в этом случае необходимо как можно быстрее, поскольку биохимические процессы запечатления воспоминаний начинаются практически сразу во время обучения или переживания личного опыта.

Конец ознакомительного фрагмента.