Вы здесь

Краткий курс по статистике. 9. Медиана и мода. Абсолютные и относительные показатели вариации ( Коллектив авторов, 2015)

9. Медиана и мода. Абсолютные и относительные показатели вариации

1. Второй большой класс средних величин – структурные средние, используемые для определения структуры совокупности. К ним относятся мода и медиана. В отличие от степенных средних, рассчитывающихся на основе использования всех вариантов значений признака, медиана и мода характеризуют величину варианта, занимающего определенное среднее положение.

Для определения понятий моды и медианы требуется определение вариационного ряда. Построение ряда – процесс упорядочения количественного распределения элементов совокупности по значениям признака с последующим подсчетом числа элементов совокупности с этими значениями.

Выделяют следующие основные виды вариационного ряда по количественному признаку:

ранжированный;

дискретный;

интервальный вариационный.

Ранжированный ряд – распределение отдельных элементов совокупности в порядке возрастания или убывания исследуемого признака. Дискретный ряд – распределение, основу которого составляют признаки с прерывным изменением, так называемые дискретные признаки – признаки, принимающие только конечное число определенных значений. Интервальный вариационный ряд – распределение признаков, имеющих непрерывное изменение, которые в определенных границах могут принимать любые значения.

Медиана (Ме) – величина, соответствующая находящемуся в середине ранжированного ряда варианту.

Для нахождения медианы необходимо определить ее положение в ранжированном ряду.

Положение медианы (NМе) в ранжированном ряду определяется:




где n – число единиц в совокупности.


В медианном интервале сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений. Численное значение медианы:




где х0 – нижняя граница интервала;

h – величина интервала;

n – число членов ряда;

Σ(m – 1) – сумма накопленных членов ряда, предшествующих медианному;

nМе– частота медианного интервала.

Мода (Мо) – значение признака, наиболее часто встречающегося у единиц совокупности.

В дискретном ряду модой будет вариант с наибольшей частотой. Для определения моды сначала определяют модальный интервал, т. е. интервал, имеющий наибольшую частоту.

Значение моды определяется по формуле:




где x0 – нижняя граница модального интервала;

h – величина модального интервала;

nm– частота модального интервала;

nm—1 – частота интервала, предшествующего модальному;

nm+1 – частота интервала, следующего за модальным.


2. Вариация – одна из важнейших категорий, применяемых в статистической науке, поскольку явления неизменные в статистике не рассматриваются. Также под вариацией понимают изменчивость только явлений, на которые оказывают влияние внешние факторы.

Вариация (лат. variatio – различие, изменение, колеблемость) – числовые значения признаков единиц совокупности, отличающиеся друг от друга.

Исследование вариации позволяет определить уровень зависимости изучаемого явления от прочих факторов (оценить степень устойчивости явления к внешним воздействиям); определить уровень однородности изучаемого явления; изучить явления, протекающие в обществе, характерные высоким уровнем их изменчивости.

3. В статистике принято различать следующие основные виды вариации:

☞ альтернативная – признак может принять только одно из двух, противоположных по своей сути, значений;

☞ систематическая – изменение признака в определенном направлении, не обусловленное внутренними законами развития исследуемого явления;

☞ случайная – изменчивость признака непредсказуема.

Показатели вариации бывают относительными и абсолютными (непосредственно характеризующими изменчивость исследуемой совокупности).

Выделяют несколько основных групп абсолютных показателей вариации.

Размах вариации (R), или амплитуда вариации, показывает пределы изменчивости признака; это разность между максимальной величиной признака (xmax) и минимальной величиной признака (xmin):


R = xmaxxmin.


К группе средних величин (групповых и общих) относятся: степенные средние величины (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая и т. д.); структурные средние величины (мода и медиана).

Среднее линейное отклонение () учитывает различия всех единиц исследуемой совокупности. Определяется как средняя арифметическая из абсолютных значений отклонений, взятых по модулю, от средней. Различают простое (невзвешенное) и взвешенное среднее линейные отклонения.

Среднее линейное отклонение невзвешенное:




где xi– величины совокупности;


– средняя;


n – частота (повторяемость индивидуальных значений признака).


Среднее линейное отклонение взвешенное:




Недостаток среднего линейного отклонения заключается в том, что приходится иметь дело не только с положительными, но и с отрицательными величинами.

Также выделяют дисперсии (групповые, межгрупповые, общие) и среднее квадратическое отклонение.


4. Информативность показателей вариации повышается, если они рассчитываются для целей сравнительного анализа. Показатели, рассчитанные по одной совокупности, сопоставляются с показателями, рассчитанными по другой аналогичной совокупности или по той же самой, но относящейся к другому периоду времени. Например, исследуется динамика вариации курса доллара по недельным или месячным данным.

Показатели вариации можно использовать не только в анализе колеблемости или изменчивости изучаемого признака, но и для оценки степени воздействия одного признака на вариацию другого признака, т. е. в анализе взаимосвязей между показателями.

Для измерения вариации признака используют абсолютные и относительные показатели.

Абсолютные показатели вариации – размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия.

Относительные показатели вариации (коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение и др.) – результат сопоставления абсолютных показателей. Их суть состоит в соотнесении абсолютных показателей вариации со значением средней величины как характеристики центра распределения.


5. Различают следующие относительные показатели вариации: коэффициент осцилляции, коэффициенты вариации.

Коэффициент осцилляции (VR):




где R – размах вариации;

– средняя. Обычно имеет значение больше единицы, поскольку размах вариации в основном бывает больше средней величины.


Линейный коэффициент вариации () показывает, какую часть в размере средней величины (или в объеме медианы) составляет размер среднего линейного отклонения:




или




где – среднее линейное отклонение;

Ме – медиана.


Коэффициент вариации (Vσ) определяет удельный вес среднего квадратического отклонения в размере средней величины и служит мерой однородности совокупности:




где σ – среднее квадратическое отклонение. Совокупность считается однородной, если значение данного показателя не превышает 33 %.


Эмпирический коэффициент детерминации2) отражает определенную изменением признака-фактора долю вариации результативного признака:


η2= δ2: δ2общ,


где δ2 – межгрупповая дисперсия;

δ2общ – общая дисперсия.


Эмпирическое корреляционное отношение (η) определяет тесноту связи между изменением признака-фактора и последующим изменением признака-результата – корень из коэффициента детерминации:




Чем ближе к единице значение эмпирического корреляционного отношения, тем теснее связь между изменением признака-фактора и признака-результата.