Вы здесь

Краткий курс по статистике. 8. Основные виды средних величин ( Коллектив авторов, 2015)

8. Основные виды средних величин

1. Для определения средней арифметической необходим ряд вариантов и частот, т. е. значения х и f

Средняя гармоническая взвешенная тождественна средней арифметической: когда произведения fx одинаковы или равны единице (m = 1), то применяется средняя гармоническая простая:




где х1 – отдельные варианты.

Если имеется n коэффициентов роста, то формула среднего коэффициента:




Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего. Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число:




Средняя квадратическая взвешенная:




2. Выделяют следующие основные виды средних величин:

☞ по наличию признака-веса: невзвешенная и взвешенная;

охвату совокупности: групповая, общая;

☞ форме расчета: средняя арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т. д. величины.


Данные средние выводятся из формулы степенной средней:




где xi– величины, для которых исчисляется средняя;

– средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;

n – частота (повторяемость индивидуальных значений признака).


При при k = – средняя гармоническая; при k = 0 – средняя геометрическая; при k = 2 – средняя квадратическая.

При k = 1 формула расчета степенной средней превращается в формулу расчета средней арифметической:




3. Выделяют следующие основные виды средней арифметической величины: средняя арифметическая невзвешенная, средняя арифметическая взвешенная.

Средняя арифметическая невзвешенная величина наиболее распространена; рассчитывается путем деления значений признака каждого элемента совокупности на число элементов совокупности:




Средняя арифметическая взвешенная величина рассчитывается, если имеются сведения о количестве или доле единиц совокупности каждым значением осредняемого признака:




Выделяют следующие основные свойства средней арифметической величины:

☞ сумма всех отклонений каждого значения признака от среднего арифметического значения равна нулю:




Если отклонения каждого из вариантов от средней величины суммировать, то получится ноль, что свойственно арифметическим невзвешенным и взвешенным средним значениям;

☞ произведение каждого значения признака на соответствующую ему частоту равно произведению средней величины на сумму частот:




Средняя величина есть результат распределения объема совокупности поровну между всеми ее элементами;

☞ сумма квадратов отклонения индивидуальных значений признака от средней арифметической меньше суммы квадратов отклонения от любой другой величины:




если увеличить или уменьшить все варианты осредняемого признака на какое-либо одно и то же число, то объем средней соответственно увеличится или уменьшится на это же число;

☞ если увеличить или уменьшить все варианты осредняемого признака в какое-либо число раз, то объем средней соответственно увеличится или уменьшится в это же количество раз;

от увеличения или уменьшения веса каждого варианта признака в какое-либо число раз величина средней не изменится. Применение данного свойства удобно, если необходимо проанализировать совокупность со значительным количеством элементов, а частота элементов выражена многозначными числами. Если частоты элементов равны между собой, то среднюю можно рассчитать как невзвешенную;

вследствие предыдущего свойства величина средней зависит не от абсолютных значений весов отдельных элементов, а от их доли в общей сумме весов, т. е. если не известны абсолютные выражения весов элементов, а известны пропорции между ними, то они могут использоваться для расчета средней;

средняя арифметическая совокупности, состоящей из постоянных величин, равна этой постоянной:




4. Приведем также формулы расчета средней гармонической, средней геометрической, средней квадратической и средней степенной величин.

Формула расчета степенной средней:




где xi– величины, для которых исчисляется средняя;

– средняя, где имеет место осреднение индивидуальных значений;

n – частота (повторяемость индивидуальных значений признака).

При к = формула превращается в формулу расчета средней гармонической.

Средняя гармоническая простая (невзвешенная) величина взаимосвязана со средней арифметической невзвешенной как величина, обратная средней арифметической, рассчитанная из обратных значений признака:




Средняя гармоническая взвешенная величина:




где ω – значения сводного, объемного, выступающего как признак-вес показателя.

Рассчитывается, когда имеются данные об объеме определяющего показателя, т. е. произведения осредняемого признака и признака-веса.

Также рассчитывается при наличии сведений об индивидуальных значениях осредняемого признака при отсутствии отдельных значений признака-веса.

Средняя степенная при показателе степени к = 0 становится средней геометрической величиной.


5. К основным видам средних геометрических величин относятся средняя геометрическая невзвешенная и средняя геометрическая взвешенная величины. Расчет средней геометрической невзвешенной величины: если показатель степени k = 0, то формула средней степенной




где П(хi) – произведение индивидуальных значений осредняемого признака.


Применяется при наличии n коэффициентов роста. Индивидуальные значения признаков при этом становятся относительными величинами динамики (построены в виде цепных величин как отношение к предыдущему уровню каждого уровня в ряду динамики).

Средняя геометрическая невзвешенная величина характеризует средний коэффициент роста.

Средняя геометрическая взвешенная применяется в случае, если темпы роста остаются неизменными в течение нескольких периодов:




где – средняя геометрическая взвешенная (средний темп прироста);

х – количество периодов, при которых темпы роста оставались неизменными.


6. Средняя квадратическая – средняя степенная при показателе степени k = 2.

Различают следующие основные виды средних квадратических величин: средняя квадратическая невзвешенная, средняя квадратическая взвешенная.

Средняя квадратическая невзвешенная




используется при расчете степени колеблемости индивидуальных значений признака вокруг средней арифметической. Средняя квадратическая взвешенная:




Все формы средней (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая и т. д.) образованы от единой степенной средней и отличаются друг от друга показателями степени k.

Правильность расчета средней величины можно проверить с помощью правила мажорантности: чем выше степень рассчитываемой формы средней величины, тем больше значение средней: