3. Структура раздела физики
Перейдем к конкретизации полученной выше галилеевской модели «ядра раздела науки» (схема 2.1) для случая физики.
Система понятий и постулатов, образующих ЯРН в физике, имеет общую для всех разделов физики структуру теоретической части (схема 3.1). В этой структуре можно выделить два слоя: математический (Матем) и модельный (Мод). Модельная часть содержит два главных понятия: физическая система (A) и ее состояния в данный момент времени t (SA (t))). С их помощью, как уже было сказано, осуществляется теоретическое описание обобщенного движения (процесса) как перехода физической системы из одного состояния в другое (при этом если в качестве физической системы выступает ПИО – простейшая физическая система данного раздела, то схема 3.1 выступает как схема ЯРН, а если в качестве физической системы выступает ВИО, то центральная часть схема 3.1 выступает как схема теории ВИО). Связь между состояниями задается с помощью математического слоя (в этом его смысл и его функция), содержащего соответствующие математические образы A и SA (t) (будем подчеркиванием обозначать принадлежность к математическому слою), а также уравнение движения (УД) – центральный элемент математического слоя. Уравнение движения содержит в том или ином виде математические образы физической системы A и внешнего воздействия F(t) (оно не выписано в модельном слое, чтобы не загромождать схему). Уравнение движения и задает в математическом слое связь между состояниями в различные моменты времени9.
Уравнение движения наряду с «диахроническими» свойствами, описывающими рассматриваемый переход из одного состояния в другое, определяет также и «синхронические» свойства системы – множество возможных ее состояний.
Схема 3.1. Ядро раздела науки в физике
Набор возможных состояний является важнейшей характеристикой физической системы. Состояние – это понятие, описывающее изменение (движение) системы и дающее полную возможную в данном разделе физики информацию о системе в данный момент времени, а посредством уравнения движения – и в другие моменты времени. Такое понятие состояния физической системы тесно связано с другими элементами структуры, изображенной на схеме 3.1. К другим элементам относятся понятия внешнего воздействия и взаимодействия (при построении многочастичных систем), каковыми в классической механике являются силы.
Кроме указанных элементов теоретической части физическая система и ее исходное состояние должны иметь материальную реализацию в эмпирическом слое, а измеримые величины (расстояние, скорость, масса и т. п.), которые входят в физическую модель системы и ее состояний, должны иметь соответствующие эталоны и операции сравнения с эталоном. Это обеспечивают рассмотренные выше операциональные элементы ЯРН – процедуры приготовления (<П|) и измерения (|И>), составляющие «операциональную» часть. При этом в рамках ЯРН речь идет об идеальных проектах приготовления и измерения, которые реализуются в рамках конкретных материалов и технических возможностей с определенной точностью. В результате структура ЯРН является гетерогенной – она имеет теоретическую и операциональные части.
Все эти понятия задаются совместно и неявно в рамках ядра раздела науки подобно тому, как задаются основные понятия геометрии в рамках системы аксиом геометрии. Один раздел от другого отличается содержательным наполнением элементов структуры ЯРН, изображенных на схеме 3.1. Так вводятся понятия физики, которые возникли начиная с электродинамики10 Максвелла. Их нельзя адекватно воспринять, не используя явно или неявно структуру базовой системы исходных понятий и постулатов раздела физики (ЯРН), изображенную на схеме 3.1, т. е. структуру оснований раздела физики, которая естественным образом возникает в теоретической физике.
Используя схемы (3.1) и (2.1), задающие структуру физического знания, можно выделить четыре уровня концептуальных изменений (различий) в естественных науках. Первые два уровня отражают иерархию между «первичными» (ПИО) и «вторичными» (ВИО) идеальными объектами:
1) уровень различных теорий явлений, вытекающих из соответствующих моделей (ВИО). Сюда относится, например, теория сверхпроводимости, вытекающая из модели куперовских пар, которые являются ВИО внутри раздела физики «квантовая механика»;
2) уровень различных разделов одной науки (скажем, физики), отличающихся различным содержательным наполнением функциональных мест, указанных на схеме 3.1.
Над ними расположен третий уровень, отвечающий различным наукам (дисциплинам): физике, химии… отличающимся уже самой структурой теоретической части основной схемы.
Четвертый уровень соответствует уровню научной революции XVII в., породившей исходную схему естественнонаучного эксперимента (схеме 1.1), а с ним и естественную науку вообще.
Центральным в физике является слой физических моделей (Мод). Он связан, с одной стороны, с математическим слоем, где со всеми элементами модельного слоя посредством определенных процедур (на сх. 3.1 обозначены вертикальными стрелками внутри теоретической части Т) сопоставляются соответствующие математические образы. С другой стороны, слой физических моделей связан с нетеоретическими операциональными элементами, где должны быть заданы процедуры измерения, эталоны и система отсчета (|И>) для всех используемых в модельном слое измеримых величин, а также прочие «конструктивные элементы», задающие систему и ее исходное состояние (<П|).
«И-тип» работы начинается с построения моделей. При этом, в отличие от математики, где основная деятельность – дедукция (вывод теорем и следствий), в физике, задав модель, мы задали и отвечающее ей уравнения движения (их решение и преобразование и есть аналог дедукции в математике), которые вытекают из сочетания ПИО, входящих в ВИО. Законы природы в виде уравнений движения оказываются элементами ЯРН, а через него и ПИО. Ведь ПИО определяется всем ЯРН и поэтому «несет его на себе». Законы электродинамики являются свойствами заряженных частиц и электромагнитного поля – уравнения Максвелла описывают электромагнитное поле (ПИО электродинамики), которое появляется вместе с этими уравнениями. В физике строят физические модели различных объектов – ВИО, поведение которых определяет соответствующие явления. То есть модель явления – это модель объектов, порождающих это явление.
Конечно, математический слой нельзя изолировать от модельного слоя, они, естественно, связаны внутри теоретического Т-блока «ядра раздела науки». Но разводить их полезно, поскольку связи внутри слоев значительно сильнее, чем между слоями, и проекция всей теоретической части на модельный слой (а не математический) позволяет в модельном слое дать представление о «первичных идеальных объектах» (и составляемых из них вторичных идеальных объектах), физической системе, ее состояниях и соответствующем движении как переходе из одного состояния в другое, и уже во вторую очередь рассматривать характер этого движения (например, конкретную траекторию). Но хотя ведущим в естествознании является модельный слой, существует весьма интенсивное взаимодействие между двумя слоями. Во-первых, от уравнения движения зависит, чем будет определяться состояние физической системы (так то, что в классической механике состояние частицы задается ее положением и скоростью в некий момент времени, связано с тем, что здесь уравнение движения – уравнение Ньютона – дифференциальное уравнение второго порядка). Во-вторых, преобразования в математическом слое могут натолкнуть на новую модель (типичный пример – переход от частиц к квазичастицам в квантовой механике, где вид математического образа системы (гамильтониана) диктует вид квазичастиц). В-третьих, уравнение движения для данной системы может оказаться слишком сложным для решения (и это весьма типичный случай). Тогда начинают упрощать модель так, чтобы, не потеряв сути, прийти к решаемым уравнениям.
В заключение этой главы отметим, что в рамках эмпиристского взгляда на науку ответ на вопрос «Что такое физика (химия, биология)?» сводится к перечислению того, чем занимаются физики (химики, биологи). В данном курсе лекций развивается неэмпиристский взгляд на науку: наука определяется теми типами моделей, с помощью которых она описывает окружающий мир. Для физики это, во-первых, модель движения как переход физической системы из одного состояния в другое, а во- вторых – весьма ограниченный набор общих моделей, которые лежат в основе «первичных идеальных объектов» различных разделов физики. К ним прежде всего относятся ньютоновская модель частицы в пустоте и силы и декарто-эйлеровская модель непрерывной (сплошной) среды. Если сюда добавить вырастающие из последней модели силового поля и волны, то мы получим, по сути, весь спектр общих («архетипических») моделей, используемых в физике. При этом целостными единицами являются разделы физики, состоящие из ЯРН, задающих ПИО, и строимых из последних моделей (теорий) явлений. ЯРН задает (и выделяет) раздел физики.
Существует специфика «неклассической» физики XX в. В XX в. новые ЯРН и ПИО рождались из решения парадоксов, возникающих из столкновения новых и старых разделов физики (столкновение классической механики с электродинамикой порождает специальную теорию относительности, столкновение последней с теорией тяготения Ньютона ведет к общей теории относительности, столкновение волнового и корпускулярного описаний приводит к современной квантовой механике) 11. Другая ее особенность состоит в том, что модели квантовой механики и теории относительности активно используют модели классической физики, модифицируя их, а не создавая совершенно новые (см. «метод затравочной классической модели» в гл. 7).