Вы здесь

Коннектом. Как мозг делает нас тем, что мы есть. Часть первая. Имеет ли значение размер? (Себастьян Сеунг, 2012)

Часть первая

Имеет ли значение размер?

Глава 1 Гениальность и безумие

В 1924 году близ Тура, города на реке Луаре, умер Анатоль Франс. Пока французский народ скорбел о знаменитом писателе, анатомы из местного медицинского кол леджа исследовали его мозг и обнаружили, что весит он всего 1 килограмм – примерно на 25 % меньше средней для человека массы. Поклонников писателя огорчило это известие, однако не думаю, чтобы им следовало так уж удивляться. На фотографии (см. рис. 5) череп Анатоля Франса кажется совсем крошечным по сравнению с головой Тургенева.

Артур Кит, один из наиболее видных антропологов Англии, так выразил свое недоумение:

Хотя мы ничего не знаем о более тонкой структуре мозга Анатоля Франса, нам всё же известно, что с его помощью он совершал гениальные деяния, тогда как миллионы его соотечественников, с мозгом на 25 % или даже на 50 % крупнее, могли похвастаться лишь средними способностями обычного повседневного труженика.

Анатоль Франс, отмечает Кит, был «человеком средних габаритов», так что небольшие размеры его мозга нельзя списать на малые размеры всего тела. Далее Кит поясняет свое удивление:

Недостаточная связь между массой мозга и умственными способностями… всегда была для меня загадкой. Я знавал… людей с чрезвычайно массивной головой и с наружностью мудреца, которые оказывались неспособны справиться с любыми испытаниями, какие им посылал мир; и я знал людей с небольшой головой, которые, подобно Анатолю Франсу, добивались в жизни выдающихся успехов.

Это признание Кита в собственном невежестве поразило меня своей откровенностью. Мысль об Анатоле Франсе как о нейро-Давиде, торжествующем над миром большеголовых голиафов, заставила меня улыбнуться. Как-то раз, на одном из научных семинаров, я вслух зачитал эти слова Кита. Присутствовавший на семинаре французский физиктеоретик лукаво заметил: «В конце концов, Анатоль Франс не был таким уж великим писателем». Аудитория рассмеялась – и рассмеялась снова, когда я напомнил, что его «дилетантская писанина» принесла ему в 1921 году Нобелевскую премию по литературе.


Рис. 5. Два знаменитых писателя, чей мозг после их смерти взвесили и исследовали


* * *

Случай Анатоля Франса показывает, что для отдельного человека размер мозга и уровень интеллекта не связаны между собой. Иными словами, нельзя использовать первый параметр, чтобы с уверенностью предсказывать второй, если речь идет о каком бы то ни было человеке. Однако, как выясняется, эти две характеристики имеют статистическую связь: она проявляется при анализе средних величин для большого количества людей. В 1888 году английский ученый Фрэнсис Гальтон, человек многостороннего таланта, опубликовал статью «К вопросу о размерах головы у студентов Кембриджского университета». Он разделил студентов на три категории по тем оценкам, которые они получали, и продемонстрировал, что средний размер головы у лучших студентов чуть больше, нежели у худших.


Рис. 6. Поперечное сечение мозга, полученное с помощью МРТ


В последующие годы проводилось много аналогичных исследований, методы которых становились всё более изощренными. На смену анализу оценок за учебу пришли стандартные тесты на интеллектуальные способности – тесты на IQ, как их обычно называют. Гальтон оценивал величину головы, измеряя ее длину, ширину и высоту, а затем перемножая полученные числа. Другие исследователи измеряли окружность головы при помощи ленты-сантиметра. Самые отважные предпочитали извлекать мозг умерших и взвешивать его. Сейчас все эти методы кажутся примитивными, ведь в наше время ученые могут видеть живой мозг прямо сквозь череп, используя магнитно-резонансную томографию (МРТ). Эта потрясающая технология дает возможность получать изображения поперечных сечений мозга на заданной глубине (рис. 6).

В сущности, МРТ как бы виртуально рассекает голову на ломти и создает двухмерное (2D-) изображение каждого из них. Получается целый набор 2D-картинок, и по нему специалисты воссоздают форму всего мозга в трех измерениях, получая уже 3D-изображение. А затем можно весьма точно вычислить объем мозга. Благодаря МРТ стало гораздо легче проводить работы по сопоставлению IQ и объема мозга. За прошедшие два десятка лет осуществлено множество таких исследований. Ученые пришли к единому мнению: в среднем у людей с более крупным мозгом IQ выше.

Иными словами, современные исследования, сделанные с помощью усовершенствованных методов, подтвердили правоту Гальтона.

Однако это подтверждение не противоречит случаю Анатоля Франса. Размеры мозга все-таки почти бесполезны, когда речь идет об оценке IQ конкретного человека. Почему я говорю «почти»? Если две переменные связаны между собой статистически, о них говорят, что они коррелируют между собой. Статистики оценивают величину такой корреляции так называемым коэффициентом корреляции Пирсона. Этот коэффициент может принимать значения от −1 до +1. Когда это число (обычно его обозначают буквой r) близко к упомянутым пределам, говорят, что корреляция сильная: если вы знаете одну переменную, то с высокой точностью можете предсказать значение другой. Если коэффициент r близок к нулю, то корреляция слабая, и при попытке вывести из одной переменной другую ваша оценка будет отличаться крайне низкой точностью. Так вот, для корреляции между IQ и объемом мозга коэффициент r = 0,33. Это довольно слабая корреляция.

Мораль сей басни такова: статистические утверждения касательно средних не следует безоглядно применять к отдельным индивидуумам. Неверную интерпретацию легко сделать и еще легче принять на веру. Вот откуда взялась знаменитая острота насчет того, что существуют три вида лжи: просто ложь, наглая ложь и статистика.

Научные статьи в этой сфере обычно пишутся сложным ученым языком, они пестрят цитатами и сносками, однако невозможно избавиться от ощущения, что все эти измерения голов – занятие немного смешное. Да и сам Гальтон был человеком, мягко говоря, чудаковатым. Его девиз – «Измерить и сосчитать всё, что можно» – выдает его неумеренное, почти абсурдное пристрастие к количественной оценке всего на свете. В своих воспоминаниях он пишет о том, как пытался создать «Британскую карту красоты». Прогуливаясь по улицам больших городов, он тайком проделывал дырки в листе бумаги, который прятал в кармане. Эти отверстия на свой лад отражали красоту проходящих женщин. Существовало три градации: «привлекательная», «невыразительная» и «отталкивающая». Каков же оказался результат исследования? «Я обнаружил, что на первом месте по женской красоте стоит Лондон, на последнем же – Абердин».

Помимо всего прочего, в таких исследованиях кроется нечто оскорбительное. Карл Пирсон, знаменитый ученый-статистик, протеже Гальтона, как раз и введший в статистику тот самый коэффициент Пирсона, расположил всех людей на линейной шкале, разбив их на девять категорий: гении, высокоодаренные, одаренные, умные, недостаточно умные, глупые, весьма глупые, чрезвычайно глупые, дебилы. Свести человека к одной-единственной цифре или категории по уму, красоте или какой-нибудь другой личной характеристике – это, воля ваша, отдает редукционизмом и дегуманизацией. Некоторые горе-ученые в свое время перешли грань между оскорбительным и безнравственным, пытаясь с помощью своих изысканий оправдать радикальную политику евгеники и расовой дискриминации.

Впрочем, ошибкой было бы с порога отвергать находку Гальтона лишь потому, что она кажется простодушной, или потому, что ее можно неправильно использовать, или потому, что корреляция между упомянутыми параметрами прослеживается слабо. У его наблюдения есть и положительная сторона. Гальтон заложил основу для вполне убедительной гипотезы: различия в мозгу – вот причина различия умственных способностей. Гальтон воспользовался наилучшим методом из всех, какие оказались ему доступны, и рассмотрел зависимость между успеваемостью и размерами головы. Современные исследователи обращаются к IQ и размерам мозга. Эти методы оценки уже лучше, но все равно они довольно грубы. Если продолжать усовершенствование методов, можно ли надеяться обнаружить еще более сильные корреляции?

* * *

Свести всю структуру мозга к одному-единственному показателю вроде общего объема или веса – какой-то слишком уж поверхностный подход, не так ли? Даже беглый осмотр мозга покажет, что в нем имеется множество зон и все они выглядят разными даже для невооруженного взгляда. Конечный мозг[5], мозжечок и ствол мозга (рис. 7) легко можно увидеть, если аккуратно извлечь мозг из черепной коробки, как проделывали при посмертном вскрытии тел Анатоля Франса и Тургенева.


Рис. 7. Три части мозга (конечный мозг, мозжечок, ствол мозга)


Ствол поддерживает конечный мозг, подобный плоду на стебле, а мозжечок украшает место их соединения, словно лист. Мозжечок отвечает за плавность и изящество наших движений, однако его удаление сказывается главным образом на умственных способностях. Повреждение ствола может убить, поскольку он управляет многими жизненно важными функциями, в том числе дыханием. Обширное поражение конечного мозга оставляет жертву живой, но в бессознательном состоянии. Конечный мозг обычно считают наиболее важной из этих трех частей, если речь идет об уровне человеческого интеллекта: она имеет важнейшее значение для всех типов наших умственных способностей. Кроме того, это самая крупная из трех частей мозга, она занимает около 85 % его общего объема.


Рис. 8. Конечный мозг делится на полушария (слева), а каждое полушарие делится на доли (справа)


Почти вся поверхность конечного мозга покрыта слоем особой ткани, имеющим толщину всего несколько миллиметров. Это кора головного мозга или просто кора. Занимая площадь не меньше полотенца для рук, кора помещается в черепную коробку лишь благодаря своей складчатости. Эти складки как раз и придают полушариям мозга сморщенный вид. Самая четкая граница, имеющаяся в коре, видна сверху: это большая борозда, идущая от передней части мозга к задней (рис. 8, слева). Эта борозда, именуемая продольной щелью, разделяет левое и правое полушария конечного мозга, «левый мозг» и «правый мозг», как их называют в поп-психологии.

Менее очевидно, как разделить каждое полушарие. Один из довольно убедительных вариантов такого разделения предлагает опять же ориентироваться на бороздки коры. После продольной щели наиболее заметная борозда – так называемая сильвиева щель (латеральная борозда) (рис. 8, справа). Затем – центральная борозда, идущая вертикально от сильвиевой щели к верхней части мозга. Эти две крупные борозды делят каждое полушарие на четыре доли: лобную, теменную, затылочную и височную. (Кстати, стоит получше запомнить названия и месторасположение этих долей: в дальнейшем я буду их часто упоминать.)

На поверхности мозга существует множество других бороздок, поменьше. Некоторые из них у всех людей расположены примерно одинаково. У них есть названия, и сегодня эти бороздки используются как своего рода ориентиры на местности. Но имеет ли смысл такое разделение коры по бороздкам? Они действительно представляют собой значимые границы – или же это просто какой-то незначительный побочный результат того, что коре пришлось смяться складками, чтобы поместиться внутрь черепа?

С проблемой разделения коры на участки впервые столкнулись в XIX веке. До этого считалось, что кора служит лишь для того, чтобы прикрывать остальной мозг. (Об этом говорит сам термин «кора»: в русском языке он близок по значению к ботаническому понятию «кора»; английское слово cortex происходит от латинского слова, означающего кору дерева.) В 1819 году австрийский врач Франц Йозеф Галль опубликовал работу, где изложил свою теорию «органологии». Он отмечал, что каждый орган тела выполняет определенную функцию: желудок служит для переваривания пищи, легкие – для дыхания и т. п. Галль заявлял: мозг слишком сложно устроен, чтобы являться единичным органом, а сознание – чересчур сложная вещь, чтобы являться единичной функцией. Он предложил разделить на части и мозг, и ум. В частности, он признал важную роль коры и разделил ее на ряд областей, которые и назвал «органами» сознания.

Иоганн Спурцхайм, ученик Галля, позже ввел термин френология, более знакомый нам, чем то название, которое дал этой теории Галль. Френологическая карта (см. рис. 9) показывает участки мозга, соответствующие функциям «восприимчивости», «твердости», «идеализма» и т. п. Конкретно эти соответствия ныне признаны пустыми фантазиями, основанными на шатких доказательствах, однако френологи в конечном счете все-таки оказались скорее правы, чем неправы. Их идея об особой роли коры сейчас признана повсеместно, а их подход, основанный на привязке умственных и психических функций к определенным областям коры, по-прежнему встречает серьезное и уважительное отношение ученых. Теперь он называется кортикальным или церебральным локализационизмом.


Рис. 9. Френологическая карта


Первое реальное доказательство такой локализации появилось позже, хотя и в том же XIX столетии. Это доказательство ученые получили, наблюдая больных с травмами мозга. В то время многие французские нейрофизиологи работали в двух парижских больницах – в Сальпетриере, на левом берегу Сены, обитали пациентки-женщины, а больные-мужчины размещались подальше от центра города, в больнице Бисетр. Оба заведения были основаны еще в XVII веке и сочетали в себе также функции тюрьмы и лечебницы для душевнобольных. (Различие между этими функциями невольно стер самый знаменитый постоялец Бисетра – маркиз де Сад.) В обеих больницах впервые начали применять гуманные методы лечения умалишенных – в частности, их перестали заковывать в цепи. Но мне почему-то кажется, что эти заведения все-таки оставались весьма мрачными и безрадостными.

В 1861 году французский врач Поль Брока был вызван в хирургическое отделение Бисетра на осмотр 51-летнего пациента, страдавшего от какой-то инфекции. Судя по истории болезни, этот человек находился в заключении с тридцатилетнего возраста. К моменту поступления в больницу он успел практически полностью утратить дар речи и способен был произносить лишь односложное «тан», которое и стало его кличкой. Поскольку Тан мог общаться с другими при помощи жестов, представлялось, что он понимает человеческий язык, хоть и не может говорить.


Рис. 10. Мозг Тана с поврежденным центром Брока


Через несколько дней после врачебного осмотра инфекция все-таки доконала Тана, он умер, и Брока произвел вскрытие трупа. Он распилил черепную коробку, извлек мозг и заспиртовал его для сохранности. Самым значительным повреждением мозга бедняги (рис. 10) оказалась обширная полость в левой лобной доле.

На другой же день Брока сообщил о своем открытии в Антропологическом обществе. Он заявил, что поврежденный участок мозга Тана отвечал за произнесение слов и что эту функцию следует отличать от функции понимания речи. Сегодня мы называем утрату речевых навыков афазией. Утрата собственно дара речи называется афазией Брока, а поврежденный участок коры головного мозга Тана – центром Брока. Эта находка позволила Брока разрешить спор, который длился десятилетиями. Френолог Галль еще в начале XIX века предполагал, что лингвистические функции сосредоточены в лобной доле мозга, но современники отнеслись к его идее скептически. Брока же наконецто сумел обеспечить для нее хоть какое-то убедительное доказательство и даже указал, где именно в лобной доле находится соответствующий участок.

В дальнейшем ученому встретились и другие случаи, аналогичные случаю Тана. Брока обнаружил, что все они связаны с повреждением левого полушария. Два полушария мозга выглядят очень похожими друг на друга, и современникам Брока трудно было поверить, что они могут так отличаться по своим функциям. Однако доказательства множились, и Брока, в своей статье 1865 года, заключил, что левое полушарие в значительной мере специализируется на речевых способностях и навыках. Последующие исследователи подтвердили, что этот вывод верен практически для всех людей. Таким образом, открытия Брока поддерживают теорию не только кортикальной, но и церебральной латерализации – идеи о том, что умственные и психические функции сосредоточены либо в левом, либо в правом полушарии.

В 1874 году немецкий нейрофизиолог и психоневропатолог Карл Вернике описал иной тип афазии. В отличие от Тана его пациент мог свободно говорить, однако фразы получались бессмысленные. Кроме того, больной не понимал тех вопросов, которые ему задавали. Посмертное вскрытие выявило повреждения части височной доли левого полушария. Вернике пришел к выводу, что эта утрата понимания – первичное следствие повреждений упомянутой зоны. Вторичное же следствие – бессмысленные речи: возможно, человеку необходимо самому понимать, что он говорит, дабы произносить нечто осмысленное. Совокупность симптомов, вызванных повреждением так называемого центра Вернике, сегодня называют афазией Вернике.

Брока и Вернике совместно заложили базу для концепции двойной диссоциации речи (произнесения слов) и понимания (восприятия обращенных к человеку слов). Повреждение центра Брока препятствует произнесению слов, однако понимание при этом сохраняется; повреждение центра Вернике уничтожает понимание, при этом щадя дар речи. Перед нами важное свидетельство того, что сознание человека имеет модульную структуру. Пожалуй, кажется вполне очевидным, что речевые способности отличаются от других умственных способностей, поскольку из всех животных речью владеют лишь люди; однако менее очевидно (или было менее очевидно до открытий Брока и Вернике), что эти способности можно подразделить на отдельные модули – производства речи и ее восприятия.

Брока и Вернике продемонстрировали, как картировать кору путем привязки симптомов заболеваний к конкретным поврежденным участкам мозга. Используя этот метод, их последователи сумели выявить функции многих других областей коры. Они построили карты, аналогичные тем, что вычерчивали френологи, но основанные на куда более надежных данных. Можно ли с помощью этих сведений о кортикальной локализации попытаться выяснить причины умственных и психических различий между людьми?

* * *

Когда в 1955 году Альберт Эйнштейн умер, его тело кремировали, а мозг – нет: в ходе вскрытия этот орган извлек патологоанатом Томас Харви. Спустя несколько месяцев патологоанатома уволили из Принстонской больницы, однако мозг Эйнштейна он оставил при себе. Несколько десятилетий, переезжая из города в город, он возил с собой 240 фрагментов этого мозга в особом сосуде. В 1980-х и 1990-х годах Харви рассылал образцы мозговой ткани Эйнштейна некоторым специалистам, одержимым, как и он, мыслью выяснить, чем мозг гения отличается от мозга обычного человека.

Харви сразу установил, что вес мозга Эйнштейна был средним или даже чуть меньше среднего. Таким образом, сам по себе размер мозга не мог объяснить, почему Эйнштейн обладал такими необычайными способностями. Сандра Вителсон и ее коллеги в 1999 году предложили другое объяснение. На основании фотографий, которые Харви делал при вскрытии, они предположили, что у Эйнштейна был увеличен участок коры, именуемый нижней теменной долькой (это часть теменной доли мозга). Возможно, Эйнштейн был гением, потому что имел необычно большую часть мозга. Сам Эйнштейн рассказывал, что зачастую мыслит скорее образами, чем словами, а специалистам известно, что теменная доля мозга как раз и отвечает за визуальное и пространственное мышление.

Анатоль Франс и Альберт Эйнштейн принадлежат к тем гениям, чьим мозгом общество зачаровано с давних пор. Интерес к мозгу гениев возник не вчера. Энтузиасты XIX века сохранили для вечности мозг таких знаменитостей, как Байрон и Уитмен. Их мозг и по сей день покоится в пыльных склянках, задвинутых в музейные запасники. Мне кажется странно воодушевляющим тот факт, что Тан и Поль Брока, бессловесный пациент и наблюдавший его нейрофизиолог, теперь являются компаньонами в вечности: мозг того и другого хранится в одном и том же парижском музее. Нейроанатомы сберегли и содержимое черепной коробки Карла Гаусса, одного из величайших математиков всех времен и народов. Они обратили внимание на необычно крупную теменную долю, объясняющую, по их мнению, гениальность покойного. Тем самым они предвосхитили объяснение талантов Эйнштейна, которое дала Вителсон.

Стратегия изучения размеров определенных участков мозга, а не размеров всего мозга, отнюдь не нова. Вообще-то ее придумали еще френологи. Франц Йозеф Галль, отец-основатель френологии, так озаглавил свой трактат 1819 года: «Анатомия и физиология нервной системы в целом, а также мозга в частности, с присовокуплением наблюдений касательно возможности оценивания некоторых умственных и нравственных качеств человека и животного по конфигурации головы». Галль утверждал, что каждое умственное или психическое «качество» связано с размерами соответствующего участка коры. Менее уверенно он предполагал, что форма черепа отражает очертания коры и по форме черепа можно судить о качествах натуры его носителя. Френологи колесили по миру, предлагая родителям предсказать судьбу их чад, подбирая женихов и невест, отсеивая кандидатов, пришедших наниматься на работу, и всё это – ощупывая шишки и выступы на голове.

Галль и его ученик Спурцхайм делали предположения о функциях тех или иных участков коры на основании распространенных мнений о «крайних» проявлениях того или иного качества. К примеру, если у гения большой лоб, то ум, по-видимому, содержится в передней части мозга. Если у мошенника голова раздута по бокам, это означает, что за склонность к обману отвечает височная доля мозга. Эти забавные методы привели к выстраиванию локализаций, которые в большинстве своем оказались абсурдными и противоречащими здравому смыслу. Ко второй половине XIX века френология повсеместно превратилась в объект насмешек.

Сегодня мы обладаем технологиями, о которых френологи могли только мечтать. МРТ позволяет нам с высокой точностью измерять размеры участков коры, и при этом нет нужды обращаться к глупому методу ощупывания шишек на черепе. Сканируя мозг множества людей, ученые могут получить куда больше информации, чем Вителсон в ходе своего простодушного изучения мозга Эйнштейна. Что же обнаружили неофренологи?

Они продемонстрировали, что IQ действительно связан с размерами лобной и теменной долей мозга. Как выяснилось, эта корреляция несколько сильнее, чем корреляция между IQ и общим размером мозга, что вполне согласуется с идеей, согласно которой эти доли имеют большее значение для оценки степени интеллектуальности. (Затылочная и височная доли отвечают главным образом за наше восприятие – зрение, слух и другие чувства.) Но, увы, эта корреляция все-таки слаба.

Впрочем, такие работы не во всем следуют духу френологии, которая делила не только мозг на области, но и ум человека на отдельные способности. Все мы знаем, что математически одаренные люди меньше преуспевают в словесных искусствах – и наоборот. Сегодня многие ученые отвергают идею об IQ и интеллекте «в целом», считая ее упрощенной. Они предпочитают говорить о «множественных интеллектах», и эти интеллекты, как выясняется, действительно коррелируют с размерами определенных областей мозга. Так, у лондонских таксистов увеличен правый задний отдел гиппокампа – участок коры, отвечающий, как полагают, за ориентацию на местности. У музыкантов больше мозжечок и толще некоторые участки коры. (Увеличенные размеры мозжечка понятны: считается, что этот орган важен для тонкой моторики.) У двуязычных людей утолщена кора нижней части левой теменной доли.

Да, это удивительные открытия, но они имеют лишь статистический характер. Если начать внимательно разбираться в результатах этих исследований, вы увидите, что упомянутые области мозга крупнее лишь в среднем. Изучение размера отдельных участков мозга по-прежнему бесполезно, когда речь идет об оценке и предсказании способностей отдельного человека.

* * *

Несходства в умственных способностях могут вызывать какие-то трудности, но обычно все-таки не являются катастрофическими. Однако другие типы умственно-психических различий связаны с ужасными страданиями и чрезвычайно дорого обходятся обществу. Среди населения развитых стран в среднем шесть человек из каждых ста имеют острое психическое расстройство, а почти каждый второй хоть раз в жизни испытывал менее значительное психическое недомогание. Большинство таких недугов лишь частично поддаются фармацевтическому лечению или поведенческой терапии, а для многих душевных болезней вообще пока нет методов лечения. Почему же так трудно бороться с психическими расстройствами?

Первооткрыватель того или иного заболевания обычно и первым описывает его симптомы. В 1530 году итальянский врач Джироламо Фракасторо использовал для этого необычную форму – эпической поэмы, которую он назвал «Syphilis sive morbus Gallicus» («Сифилис, или Французский недуг»). Он назвал болезнь в честь первого мужчины, который ее подхватил: согласно мифам и легендам, это был пастух Сифилус, и его покарал этим недугом сам бог Аполлон. В трех томах латинских гекзаметров Фракасторо описывает симптомы сифилиса, признает, что болезнь эта передается половым путем, и предлагает некоторые лекарства.

Сифилис вызывает отвратительные повреждения кожи и ужасные физические изменения. На более поздних стадиях может появляться еще один страшный симптом: умопомешательство. Мопассан в своем рассказе «Орля» (1887) описывает сверхъестественное существо, терзающее повествователя поначалу телесной, а затем и душевной болезнью: «Я погиб! Кто-то завладел моей душой и теперь управляет ею! Кто-то повелевает всеми моими действиями, движениями, мыслями. Я больше ничего для себя не значу, я лишь порабощенный и устрашенный зритель всего, что сам же совершаю». Рассказчик в конце концов решается положить конец своим страданиям, покончив с собой. По-видимому, история носит отчасти автобиографический характер, так как Мопассан сам страдал от сифилиса, которым заразился в двадцать с лишним лет. В 1892 году он попытался совершить самоубийство, перерезав себе горло. Писателя поместили в лечебницу для душевнобольных, где он через год и умер. Ему было всего сорок два года.

Художник Поль Гоген и поэт Шарль Бодлер, возможно, также страдали от сифилиса. Но твердого доказательства у нас нет, ибо никакое заболевание нельзя с уверенностью диагностировать, основываясь лишь на симптомах. У двух человек с одним и тем же недугом могут проявляться разные симптомы, а у двух человек с разными заболеваниями симптомы могут быть одни и те же. Бактерии, вызывающие сифилис, ученые открыли только в 1905 году. Вскоре появились и первые лекарства, уничтожающие эти бактерии. Такие лекарства оказались эффективны лишь на ранних стадиях развития болезни, однако не помогали избавиться от сифилиса, когда тот уже успевал вторгнуться в нервную систему. В 1927 году австрийский врач Юлиус Вагнер Яурегг получил Нобелевскую премию по физиологии и медицине за необычный способ лечения нейросифилиса. В дополнение к вводимым медикаментам он намеренно заражал пациентов малярией. Возникающая лихорадка каким-то образом расправлялась с бактериями сифилиса, после чего врач вводил больному антималярийные препараты. После Второй мировой на смену методу Вагнера-Яурегга пришел пенициллин и другие антибактериальные средства, названные антибиотиками. В наше время сифилис больше не является основной причиной заболеваний мозга.

Инфекционные заболевания сравнительно легко излечиваются, поскольку мы знаем их причину. Но как насчет других видов болезней? Болезнь Альцгеймера (БА), обычно поражающая пожилых людей, начинается с потери памяти, а затем приводит к деменции – старческому слабоумию и общей деградации умственных способностей. На более поздних стадиях развития болезни мозг усыхает, оставляя пустое пространство внутри черепа. Френологи, живи они сегодня, объясняли бы БА уменьшением размеров мозга, но это объяснение оказалось бы неудовлетворительным. Усыхание мозга происходит спустя долгое время после того, как появляются первые симптомы недуга – в частности, потеря памяти. Более того, сжатие мозга – скорее симптом, нежели причина болезни. Оно происходит из-за отмирания мозговых тканей, но что служит причиной их отмирания?

В поисках ответа ученые исследовали ткани, полученные при посмертном вскрытии тел пациентов, страдавших БА, и обнаружили микроскопические кусочки «мусора» – тромбы и бляшки, засоряющие мозг. Та или иная аномальность мозговых клеток, связанная с каким-то заболеванием, именуется нейропатологией. Тромбы появляются в мозгу задолго до гибели клеток, близко к тому моменту, когда у пациента начинают проявляться симптомы БА. Сегодня эти нейропатологии считаются определяющими характеристиками БА, поскольку деградация памяти и старческое слабоумие могут возникать и при других заболеваниях. Ученые пока не выяснили, что вызывает образование бляшек и тромбов, но они надеются, что снижение количества этих нейропатологий поможет при лечении БА.

Наиболее загадочные психические отклонения не связаны с какой-то конкретной и неизменной нейропатологией. Здесь мы пока в тупике. Такие недуги, по-прежнему определяемые лишь по психологическим симптомам, явно будут дольше всех прочих ждать методов исцеления. Возможно, к числу подобных симптомов принадлежит повышенная тревожность (как при панических состояниях или маниакально-депрессивном психозе) или резкие перепады настроения (как при депрессии или биполярных расстройствах не слишком острого характера). Среди наиболее разрушительных и изнурительных заболеваний – шизофрения и аутизм.

Симптомы аутизма весьма запоминающимся образом изложены в следующей клинической картине:

В три года Дэвиду поставили диагноз «аутизм». В этот период он почти не смотрел на людей, не говорил и, казалось, заблудился где-то в собственном мире. Он любил часами прыгать на батуте и великолепно собирал пазлы. К десяти годам Дэвид отличался хорошим физическим развитием, однако на эмоциональном уровне остался весьма незрелым. У него было очень красивое лицо с тонкими чертами… Он был и остается чрезвычайно упрямым в своей приязни и неприязни к кому-то или чему-то… Его мать часто вынуждена идти навстречу его настойчивым и неоднократным требованиям, легко переходящим во вспышки раздражения.

Дэвид научился говорить в пять лет. Сейчас он ходит в спецшколу для детей-аутистов, там он счастлив. У него выработался ежедневный график, который он никогда не меняет… Чему-то он учится чрезвычайно быстро и успешно. Например, читать он научился совершенно самостоятельно. Теперь он свободно читает, однако не понимает прочитанное. Кроме того, он обожает арифметические подсчеты. Однако другие навыки он осваивает крайне медленно: взять хотя бы прием пищи за общим семейным столом или одевание…

Сейчас Дэвиду двенадцать. Он никогда не вступает в игру с другими детьми, поддавшись минутному порыву. Он испытывает явные трудности в общении с малознакомыми людьми… Он не уступает их желаниям, не учитывает их интересы и точку зрения. В этом смысле Дэвид равнодушен к социуму, он продолжает пребывать в собственном мирке.

Этот характерный клинический случай включает в себя все три главных симптома аутизма: социальную неполноценность, языковые трудности и склонность к шаблонному (ритуализованному) или неуступчивому поведению. Симптомы эти обычно появляются еще до трехлетнего возраста и с годами часто слабеют, однако большинство взрослых аутистов неспособно нормально функционировать без какого-то внешнего надзора, присмотра и контроля. Среди известных на сегодня методов и лекарств для лечения аутизма нет ни одного по-настоящему эффективного.

Юта Фрит описывает аутизм более поэтично: она говорит о «прекрасном ребенке, заключенном в стеклянную скорлупу». Дети, страдающие многими другими врожденными недугами, надрывают сердце зримыми физическими дефектами. С аутистами не так: они зачастую выглядят отлично, а некоторые из них очень красивы. Их внешность обманывает родителей, которым трудно поверить, что с их детьми что-то не так. Родители тщетно надеются пробиться сквозь «стеклянную скорлупу» – социальную изоляцию аутиста – и высвободить из нее нормального ребенка. Но здоровое обличье ребенка-аутиста прячет под собою ненормальный мозг.

Наиболее документированная аномалия здесь – сами размеры мозга. Американский психиатр Лео Каннер одним из первых дал определение этого синдрома в своей эпохальной статье 1943 года. Он мимоходом заметил, что среди одиннадцати детей, типичных аутистов, у пятерых была крупная голова. В последующие годы специалисты изучили куда больше детей-аутистов и обнаружили, что их голова и мозг действительно крупнее среднего, особенно лобные доли, которые содержат много зон, отвечающих за социальное и языковое поведение.

Означает ли это, что размер мозга позволяет успешно предсказывать аутизм? Если бы это было так, мы могли бы с уверенностью утверждать, что френологи шли по верному пути, пытаясь найти объяснение причин аутизма. Но следует проявлять осторожность, иначе можно попасть в обычную статистическую западню, грозящую нам при рассмотрении редких категорий. Возьмем весьма особый тип людей – профессиональных футболистов. Они заметно крупнее среднего человека. Можем ли мы вывернуть это рассуждение наизнанку и предсказать: любой человек крупнее средних габаритов – скорее всего, профессиональный футболист? Такие умозаключения хорошо работают с так называемыми сбалансированными выборками населения – к примеру, с такими, где число футболистов равно количеству прочих людей. Если в такой выборке рассортировать население по росту, предсказания на его основе окажутся довольно точными. Но если рассматривать население в целом и заявлять, что любой его крупный представитель – футболист, вы окажетесь, скорее всего, неправы. Выяснится, что люди высоки, мускулисты или массивны по каким-то другим причинам, не связанным с игрой в футбол. Точно так же ненадежно и предсказание, согласно которому все дети с крупным мозгом являются аутистами. Чтобы играть в премьер-лиге, мало иметь впечатляющие физические габариты. Чтобы являться аутистом, недостаточно иметь крупный мозг.

Впрочем, СМИ частенько сообщают об исследованиях, чьи авторы претендуют на точное предсказание редких психических расстройств на основе того или иного свойства мозга. При тщательном изучении такие работы, как правило, оказываются менее впечатляющими, чем на первый взгляд, ибо подобные прогнозы надежны лишь для сбалансированной выборки, а не для населения в целом. Но если вам действительно известна причина недуга, то эта причина позволит ставить безошибочный диагноз даже в случае, когда вы имеете дело с населением в целом. Так и происходит для множества инфекционных заболеваний: их можно обнаружить благодаря анализу крови, выявляя наличие в ней определенных микробов.

* * *

Шизофрения – такое же загадочное отклонение, как и аутизм, она зачастую ставит ученых в тупик. Обычно она начинает проявляться в двадцать с чем-то лет – с внезапных острых галлюцинаций (обычно слуховых: больной слышит воображаемые голоса), маний (обычно это мания преследования) и хаотического мышления. Вот яркое описание подобных симптомов (в совокупности их именуют психозом) из первых рук:

Не могу вспомнить, что подтолкнуло меня к этому, но помню, что однажды, сидя в туалете, я почувствовал, как меня захлестывает волна адреналина. Сердце у меня застучало как бешеное. В моей голове зазвучали голоса ниоткуда, и мне показалось, что я словно бы мысленно настроился на какой-то всемирный телеканал, где рок-звезды и ученые свергали правительства посредством компьютеров, биологии, психологии и ритуала вуду. Именно сейчас!

Люди, беседовавшие на экране, объявляли о своих намерениях установить в мире новый порядок и о причинах, которые побуждают их это сделать. Похоже, я присутствовал при главной дискуссии между рок-героями и учеными. Участники этой беседы скрывались где-то в тайных местах по всему миру.

Психоз может привести жертву в ужас, вызвать беспокойство и тревогу окружающих. Такой психоз – наиболее очевидный признак шизофрении, однако им сопровождаются и другие психические заболевания. Поэтому для точной диагностики шизофрении необходимы и другие симптомы: например, недостаточная мотивированность поступков, слабо выраженные эмоции, деградация речи. Это «негативные» симптомы шизофрении: существуют и «позитивные», психотические. (Слова «негативные» и «позитивные» здесь не означают оценку, а указывают на беспорядочность мышления и на относительное отсутствие эмоций соответственно.) Шизофрению лечат препаратами, избавляющими от психоза, однако эти лекарства не дают полного исцеления. Большинству шизофреников, несмотря на терапию, все-таки не удается вести независимую, нормальную жизнь, обходясь без внешнего контроля и присмотра.

Как и в случае с аутизмом, наиболее документированная аномалия мозга шизофреников просто обязана иметь какое-то отношение к его размерам. Исследования с помощью МРТ показывают, что у таких больных общий объем мозга уменьшен в среднем всего на несколько процентов. Уменьшение гиппокампа – значительнее, но и оно невелико. Специалисты также получили изображение системы желудочков головного мозга – полостей, наполненных жидкостью. Боковой и третий желудочки у таких больных увеличены в среднем на 20 %. Так как желудочки представляют собой, по сути, пустоты в мозгу, их увеличение, возможно, как раз и связано с наблюдаемым сокращением объема собственно мозга. Мысль о том, что какое-то зримое различие все-таки нашли, очень обнадеживает, но эта корреляция слаба. Здесь та же история, что и со статистическими выкладками для аутистов. Диагностика шизофрении для конкретного человека по размерам его мозга, величине гиппокампа или объему мозговых желудочков будет чрезвычайно неточной.

Чтобы по-настоящему продвинуться в лечении аутизма и шизофрении, не помешало бы отыскать четкие, недвусмысленные и неизменные нейропатологии, связанные с этими недугами, подобно бляшкам и тромбам в случае болезни Альцгеймера. Но в мозгу аутистов и шизофреников, как правило, не происходит подобного неуклонного накопления «мусора», они не показывают и других признаков отмирания или дегенерации клеток. Неофренологи предполагают, что в мозгу таких больных существуют некие аномалии, но пока их обнаружить не удалось. В 1972 году нейрофизиолог Фред Плам в отчаянии написал: «Шизофрения – кладбище невропатологов». С тех пор исследователи нашли некоторые ключи к разгадке тайны, но реального прорыва, к сожалению, не произошло.

Большинство из нас убеждено: различие умов связано с различием мозгов. Но пока доказательств этого утверждения получено мало. Френологи пытались найти доказательство, изучая размеры мозга и его отдельных участков, но лишь недавно МРТ позволила осуществлять эту стратегию как следует. Неофренология подтвердила, что умственно-психические различия между людьми статистически связаны с размерами мозга, выявив слабые корреляции для групп людей. Однако эти различия в размерах не позволяют точно предсказывать гениальность, аутизм или шизофрению для отдельного человека.

Хочется, чтобы нейронаука выиграла этот поединок более убедительно. Ставки в игре высоки. Обнаружение нейропатологий для аутизма и шизофрении, возможно, будет способствовать успешному поиску эффективных путей лечения этих недугов. Понимание того, что делает мозг умным, могло бы помочь нам разрабатывать более действенные педагогические методы и другие инструменты для того, чтобы делать людей смышленее. Мы хотим не просто понять мозг. Мы хотим изменить его.

Глава 2 Пограничные конфликты

Господи, дай мне спокойствие, чтобы принять то, что я не могу изменить, храбрость, чтобы изменить то, что могу, и мудрость, чтобы отличать одно от другого.

Молитву о ниспослании спокойствия и прочего с давних пор взяли на вооружение «Анонимные алкоголики» и другие организации, помогающие своим участникам избавляться от пагубных зависимостей. Эти четыре строчки ясно показывают, почему мы так зачарованы собственным мозгом: мы постоянно надеемся изменить его. Окиньте взглядом шкаф с «самоучителями жизни» в ближайшем книжном магазине. Вы увидите сотни томов, где объясняется, как меньше пить, как соскочить с наркотиков, как правильно питаться, как обращаться с деньгами, как воспитывать детей, как сохранить брак. Как будто ничего сложного, но на деле все оказывается совсем не так уж просто… Конечно же, и нормальным, здоровым взрослым людям тоже порой хочется изменить собственное поведение, но эта цель имеет куда более важное значение для тех, кто страдает психическими заболеваниями и расстройствами. Можно ли молодого человека излечить от шизофрении – если не в наши дни, то когда-нибудь? Может ли дедушка, перенесший инсульт, снова научиться говорить? Кроме того, все мы хотим, чтобы школьное обучение и внешкольное воспитание формировали юные умы, совершенствуя их. Можно ли улучшить методы такого формирования?

Молитва о спокойствии просит храбрости и мудрости по отношению к переменам. Сумеет ли более четкие ответы дать нейронаука? В конце концов, изменение ума и сознания – это же в конечном счете изменение мозга. Впрочем, нейронаука не поможет нам в самосовершенствовании, не ответив прежде на основополагающий вопрос: каким именно образом меняется мозг, когда мы учимся вести себя по-новому?

Родители восторгаются быстротой развития своих чад, торжественно отмечая каждое новое действие или слово, которым те научились, словно это некое волшебство. Мозг маленького ребенка растет весьма стремительно, он достигает взрослых размеров к двухлетнему возрасту. Отсюда простенькая мысль: возможно, обучение – это не более чем рост мозга, и детей можно сделать умнее, этому росту способствуя.

Эта идея тоже родилась еще у френологов. Иоганн Спурцхайм заявлял, что умственная гимнастика способствует увеличению кортикальных органов, подобно тому как мышцы вздуваются от физических упражнений. На основании своей теории Спурцхайм создал целую философию образования как для детей, так и для взрослых.

Его теория подверглась научной проверке лишь спустя век с лишним. К тому времени психологи успели разработать методы изучения воздействия разного рода стимуляции на сознание животных. Так, подопытных крыс помещали в две разных среды: одна – «скучная», вторая – «обогащенная». В скучной клетке существование одинокой крысы скрашивали лишь емкости с водой и пищей. В обогащенном жизненном пространстве множество крыс жили вместе, и каждый день им давали новые игрушки. Гоняя крыс по несложным лабиринтам, ученые выяснили, что крысы из «обогащенной» среды явно смышленее своих товарок из простых клеток. Вероятно, мозг у них отличается, но как именно?

В 1960-х годах Марк Розенцвейг с коллегами решили это выяснить. Они применяли необычайно простой метод: взвешивали кору головного мозга подопытных крыс. Как выяснилось, пребывание в обогащенной среде, как правило, приводит к небольшому увеличению объема коры. Так впервые было экспериментально показано, что жизненный опыт вызывает изменения структуры мозга.

Скорее всего, вас это не удивило. В конце концов, мы с вами уже знаем о МРТ-исследованиях, которые показали, что у лондонских таксистов, у музыкантов и у двуязычных людей некоторые участки мозга увеличены по сравнению с прочим населением. Но не следует слишком полагаться на подобные статистические выкладки. Анализ методом МРТ выявил корреляцию, но не доказал прямую причинно-следственную связь.

Действительно ли вождение такси, игра на музыкальном инструменте или владение вторым языком вызывают увеличение мозга или его отдельных частей, как предполагает теория Спурцхайма? Можно было бы заявлять о причинно-следственной связи, если бы мозг музыкантов и немузыкантов вообще не отличался до начала занятий музыкой, а различия появлялись лишь после таких занятий. Но МРТ получала лишь данные касательно этого «после», а потому не исключена и альтернативная интерпретация: возможно, у некоторых с рождения имеется определенным образом увеличенный мозг, способствующий музыкальным талантам, и эти одаренные люди с большей вероятностью становятся впоследствии музыкантами. Именно увеличенный мозг – причина того, что эти люди начинают заниматься музыкой, а не наоборот.

Среди музыкантов можно проводить отбор по врожденному таланту, что и делают преподаватели или организаторы конкурсов. Музыканты могут и сами себя отбирать: человек обычно предпочитает заниматься тем, что у него хорошо получается. Такая проблема, названная погрешностью отбора, усложняет интерпретацию результатов многих статистических исследований. Розенцвейг устранял погрешность отбора, случайным образом рассаживая крыс по клеткам – «обогащенной» и «скучной». Таким образом, можно с уверенностью сказать, что в начале эксперимента обе группы крыс были статистически идентичны, что позволило ученому заключить: любые изменения, возникшие у них после пребывания в клетках, вызваны этим пребыванием.

Для более непосредственной демонстрации такой причинно-следственной связи можно с помощью МРТ сравнить человеческий мозг до и после какого-то переживания, до и после приобретения какого-нибудь опыта или навыка. Исследователи установили, что при обучении жонглированию шариками утолщается кора теменных и височных долей головного мозга. При обследовании группы студентов-медиков выяснилось, что усиленная подготовка к экзаменам вызывает у них увеличение объема коры в теменной области и увеличение объема гиппокампа.

Это впечатляющие результаты, но хотим мы все-таки другого. Таких данных недостаточно, чтобы продемонстрировать: приобретаемый опыт действительно меняет наш мозг. Кроме того, хотелось бы знать, являются ли изменения мозга причиной совершенствования наших способностей. Чтобы понять, отчего четких доказательств пока не получено, рассмотрим следующую аналогию. Допустим, обучение музыке делает музыкантов более тучными, поскольку они ведут сидячий образ жизнь, постоянно репетируя с утра до вечера. Ошибкой было бы заключить, что эта полнота служит причиной развития музыкальных талантов. Точно так же, показав, что занятия музыкой увеличивают мозг музыкантов, мы не доказываем, что этот рост мозга служит причиной того, что они лучше играют на своем инструменте.

Розенцвейг продемонстрировал, что обитание в обогащенной клетке делает крыс смышленее и при этом утолщает кору их головного мозга. Однако он не доказал, что именно это утолщение служит причиной роста уровня крысиного интеллекта. Вообще-то такая связь кажется маловероятной, если вспомнить то, что нам известно о функциях кортикальных участков мозга. Как полагают специалисты, лобные доли играют важную роль в таких навыках, как умение ориентироваться в лабиринте, но как раз лобные доли у этих крыс не увеличивались или же увеличивались весьма незначительно. Больше всего увеличивалась затылочная доля, а она отвечает за зрительное восприятие.

И потом, нельзя однозначно связать утолщение коры с обучением. Можно сказать лишь, что эти два явления коррелируют между собой. Да и корреляция эта слаба, она существует лишь на уровне усредненных данных по группам подопытных объектов. Кортикальное утолщение не позволяет делать надежные предсказания касательно обучения, когда речь идет об отдельных существах.

* * *

А возможно, такое изучение бега крыс по лабиринту или жонглирования – подход неверный. Не исключено, что нам следовало бы рассматривать более существенные и резкие изменения. Так, непосредственно после инсульта больной часто испытывает слабость или вообще оказывается парализован. Он может утратить дар речи и другие умственные способности. Многие пациенты в течение нескольких месяцев достигают значительного улучшения. Что при этом происходит с мозгом? Исследования, призванные дать ответ на этот вопрос, имеют очевидное практическое значение, поскольку они могут помочь нам разработать более эффективные методы лечения.


Рис. 11. Кора мозга. Карта Бродмана


Инсульт возникает при закупорке или разрыве кровеносных сосудов мозга. Симптомы болезни часто указывают на то, какая сторона мозга повреждена. Если пациент отчаянно пытается контролировать одну сторону тела (как часто бывает при инсульте), это означает, что затронута другая сторона мозга, так как каждая половина мозга управляет мышцами противоположной стороны тела. Неврологи могут иногда и более точно указать, какой участок мозга пострадал. Чтобы описать местонахождения кортикального повреждения, специалист точно укажет долю, а если нужна более высокая точность, то и определенную складку доли. Складки носят причудливые имена – к примеру, «верхняя височная извилина»: это самая верхняя складка височной доли. Кортикальный участок, напротив, обозначают обычно цифрой, а не словами. При этом используют карту, опубликованную в 1909 году немецким нейроанатомом Корбинианом Бродманом (рис. 11). Далее я буду использовать термин поле, говоря об областях на карте Бродмана, и участок, когда речь пойдет о любых других подразделениях мозга.

Причиной деградации памяти после инсульта может служить повреждение полей 4 и 6. Поле 4 – самая задняя полоска лобной доли, оно расположено перед центральной бороздой. Поле 6 находится перед полем 4. Оба, как выяснили ученые, играют важную роль в контроле движений. Инсульт часто разрушает и речевые навыки, что служит признаком повреждения центра Брока (поля 44 и 45) или центра Вернике (задняя часть поля 22), оба центра находятся в левом полушарии.

Друзья и близкие больных мучительно хотят узнать, насколько возможно какое-то восстановление после инсульта. Будет ли дедушка снова ходить? А разговаривать? Двигательные функции жертв инсульта имеют тенденцию улучшаться со временем, но после трех месяцев это улучшение практически прекращается. Речевые навыки также восстанавливаются быстрее всего именно в ходе этих первых трех месяцев, хотя процесс может продолжаться еще месяцами или даже годами. Неврологам известно о важности этого трехмесячного периода, однако они толком не знают, почему в эти три месяца происходят столь интенсивные процессы. Но главное – они понятия не имеют, какие изменения происходят в мозгу пациента во время послеинсультной реабилитации.

Очевидно, при этом восстанавливаются функции пораженного участка мозга, целиком или частично. Однако при инсульте некоторые клетки мозга, расположенные близ поврежденного кровеносного сосуда, попросту отмирают, тем самым нанося непоправимый и необратимый ущерб организму. Могут ли уцелевшие участки мозга взять на себя задачу дефектного участка? Представим себе, что во время футбольного матча один из игроков получил мучительную травму, и его унесли с поля. На скамейке не осталось запасных, так что команда, которой теперь не хватает рабочих рук (вернее, ног), будет действовать хуже. Однако по ходу дальнейшего матча оставшиеся футболисты могут адаптироваться к возникшей ситуации. Если до травмы их товарищ занимал атакующую позицию, защитники могут компенсировать утрату, начав выступать и как нападающие.

Таким образом, возникает чрезвычайно важный вопрос: может ли какая-то кортикальная область взять на себя новые функции после повреждения мозга? Есть некоторые свидетельства, подтверждающие, что такое возможно после инсульта. Более веские доказательства дают случаи детских черепно-мозговых травм и заболеваний. Так, эпилепсия характеризуется постоянными спонтанными припадками – эпизодами избыточной нейронной активности. Детей, страдающих особенно частыми и изнурительными припадками, иногда пытаются лечить, целиком удаляя одно полушарие головного мозга. Это едва ли не самая радикальная процедура в нейрохирургии, и поразительно уже то, что большинство детей после нее отлично восстанавливается: они ходят и даже бегают, хотя рука с противоположной удаленному полушарию стороны двигается у них плохо. Умственные способности при этом остаются не затронутыми и могут даже улучшиться после такой операции – если от припадков удалось избавиться.

Кое-кто может заметить, что успешное восстановление после удаления одного полушария – не самая удивительная вещь. Возможно, это как утрата одной почки. Оставшейся почке нет нужды заниматься чем-то новым для себя, она в общем-то действует, как раньше. Но вспомните, что некоторые из умственных функций латерализованы (привязаны к конкретному полушарию мозга), так что левая и правая стороны мозга не эквивалентны. Поскольку левое полушарие специализируется на речевых навыках, его удаление почти наверняка вызовет у взрослого человека афазию. Но для ребенка это не так: лингвистические функции переместятся в правое полушарие, тем самым демонстрируя, что области коры головного мозга действительно способны менять свои функции.

С учетом того, что нам известно о локализации, не стоит удивляться тому, что неврологи умеют догадываться о мес то нахождении поврежденного участка мозга по симптомам. Впрочем, тут есть важное «да, но», которое вас, возможно, удивит. Да, можно построить карту, делящую кору на области с определенными функциями, но эта карта не будет постоянной. Пораженный мозг способен вычертить эту карту заново.

* * *

Такое перекраивание карты коры головного мозга после инсульта или операции, осуществляемое самим же мозгом, оказывается куда радикальнее, чем просто утолщение коры, о котором сообщают неофренологи. Может ли перестраивание коры происходить и в здоровом мозгу? Опять-таки, ответ на этот вопрос помогает получить изучение серьезных повреждений – но тела, а не мозга. Вот что пишет в одной из своих статей нейробиолог Мигель Николелис:

Как-то утром, когда я был на четвертом курсе медицинского колледжа, хирург из Университетской больницы бразильского Сан-Паулу, специализировавшийся по сосудистым заболеваниям, пригласил меня посетить ортопедическую палату. «Сегодня будем общаться с призраком, – пообещал врач. – Но не бойтесь. Постарайтесь сохранять спокойствие. Пациент еще не сумел принять то, что с ним случилось, и сильно потрясен».

В этой палате я увидел мальчика двенадцати лет, у него были мутно-голубые глаза и курчавые светлые волосы. Он сидел передо мной. Капли пота усеивали его лицо, искаженное гримасой ужаса. Он весь корчился от боли неизвестного происхождения. «Ужасно больно, доктор. Жжет. Мне как будто ногу дробят», – пожаловался мальчик. Горло у меня стиснуло от жалости. «Где болит?» – спросил я. Он ответил: «Левая ступня, левая лодыжка, вся нога ниже колена!»

Подняв простыни, которые прикрывали его тело, я с ошеломлением увидел, что ноги ниже колена у него вообще нет: оказывается, ее ампутировали, после того как он попал под машину. Я понял, что это фантомная боль – от части тела, которой больше не существует. Когда мы вышли из палаты, хирург заметил: «С нами говорил не он, а его призрачная конечность».

Методы ампутации, применяемые и по сей день, изобрел еще в XVII веке Амбруаз Паре, усовершенствовавшийся в своем искусстве во время службы хирургом при французской армии. Паре родился во времена, когда операции делали брадобреи, поскольку эти процедуры казались грубой мясницкой работой, недостойной врача. Работая на поле битвы, Паре научился перехватывать крупные артерии, чтобы пациент не истек кровью. В дальнейшем Паре стал придворным хирургом при французских королях (он пережил их несколько). Учебники истории называют его «отцом современной хирургии».

Паре первым сообщил о пациентах, подвергшихся ампутации и жалующихся на то, что по-прежнему ощущают боли в воображаемой конечности, причем на том месте, где когда-то болела настоящая. Несколько столетий спустя американский врач Сайлас Вейр Митчелл ввел термин «фантомная конечность», описывая такое же явление у ветеранов Первой мировой войны. Он разбирает множество характерных случаев, показывавших, что фантомные конечности у инвалидов – скорее правило, чем исключение. Почему же этот феномен так долго не замечали? Дело в том, что до хирургических новшеств, внедренных Амбруазом Паре, после ампутации выживали весьма немногие, а жалобы тех немногих, кто все-таки выжил после такой операции, по-видимому, считали всего лишь результатом какой-то галлюцинации, поэтому врачи пренебрегали такими рассказами. Однако в этом явлении нет ничего иррационального: инвалид отлично понимает, что фантомное – это не реальное, однако фантомная конечность обычно причиняет сильную боль, вот пациент и умоляет докторов избавить его от страданий.

Митчелл не только дал явлению название, он еще и выдвинул теорию, которая пыталась это явление объяснить. Врач предположил, что раздраженные нервные окончания культи посылают сигналы в мозг, который интерпретирует их как сигналы, поступающие от утраченной конечности. Под влиянием этой теории некоторые хирурги начали ампутировать и культю, но это не помогло. В наши дни многие нейрофизиологи придерживаются иной теории: фантомные боли вызваны перестраиванием коры головного мозга – меняется ее карта.

Такая реорганизация не затрагивает всю кору: полагают, что процесс сосредоточен в какой-то определенной области. Мы уже знакомы с полем 4, полоской перед центральной бороздой: эта область контролирует движение. Непосредственно за ним располагается поле 3, отвечающее за ощущение прикосновения, температуры и боли. В 1930-х годах канадский нейрохирург Уайлдер Пенфилд при помощи электростимуляции построил для своих пациентов карту обеих областей. Вскрыв перед операцией череп больного эпилепсией, Пенфилд подносил электрод к различным точкам поля 4. Каждое такое воздействие заставляло двигаться какую-то часть тела пациента. Пенфилд нанес на карту соответствия между точками поля 4 и этими частями тела (рис. 12, справа), назвав полученное изображение «моторным гомункулусом». (Слово «homunculus» в буквальном переводе с латыни означает «человечек».) Подобным же образом после каждого акта стимуляции поля 3 пациент сообщал об ощущениях, которые испытывает какая-то часть его тела. Пенфилд нанес на карту этого «сенсорного гомункулуса» поля 3 (рис. 12, слева), и человечек получился похожим на моторного. Оба как бы шли параллельно по противоположным берегам центральной борозды. (Грубо говоря, эти карты представляют вертикальные разрезы – проекции мозга от уха до уха. Разрез для сенсорной карты проходит сразу за центральной бороздой, а для моторной – непосредственно перед этой бороздой. Внешняя граница – кора; всё остальное – внутренняя часть конечного мозга.)


Рис. 12. Функциональные карты кортикальных полей 3 и 4: «сенсорный гомункулус» (слева) и «моторный гомункулус» (справа)


На таких картах основное место занимают лицо и кисти рук, хотя это сравнительно небольшие части тела. Их особая кортикальная роль отражает их особую важность для наших ощущений и движений. Могут ли размеры соответствующих им участков коры меняться после ампутации, которая внезапно сводит к нулю значимость определенной части тела? Задавшись таким вопросом, невролог В. С. Рамачандран и его коллеги предположили, что причина мнимого возникновения фантомных конечностей – перекраивание карты поля 3. Если ампутировать руку ниже локтя, то соответствующая ей территория сенсорного гомункулуса утратит свою функцию. Прилегающие территории, которые отвечают за лицо и часть руки от плеча до локтя, расширят свои границы и как бы захватят ту территорию, которая перестала действовать. (Эти границы можно увидеть на рисунке Пенфилда.) Два «захватчика» теперь начнут представлять часть руки ниже локтя – в придачу к тем частям тела, за которые они отвечали изначально. Вот почему инвалид начнет чувствовать фантомную конечность.

Согласно этой концепции, при таком перестраивании карты определенная территория коры, соответствующая лицу, теперь будет отвечать не только за лицо, но и за часть руки ниже локтя. Поэтому Рамачандран предположил, что тактильная стимуляция лица вызовет тактильные ощущения в фантомной конечности. И в самом деле: когда он касался лица пациента специальной палочкой, обтянутой хлопчатобумажной тканью, тот сообщал об осязательных ощущениях, которые испытывало не только лицо, но и фантомная кисть. Сходным образом эта теория предсказывает, что перекроенная территория коры, соответствующая части руки от плеча до локтя, в таких случаях будет представлять и нижнюю часть руки. Когда Рамачандран трогал культю такого пациента, у того возникали осязательные ощущения не только в культе, но и в фантомной кисти. Эти хитроумные эксперименты весьма впечатляюще подтверждают теорию, согласно которой ампутация вызывает перекраивание поля 3.

* * *

Рамачандран и его коллеги использовали не только палочку, обтянутую хлопчатобумажной тканью, но и более передовые методики и технологии. В 1990-е годы в научный обиход вошел многообещающий метод построения изображений мозга – функциональная МРТ. Она позволяла регистрировать активность каждого участка мозга, т. е. определять, насколько задействована та или иная часть мозга в данный момент. В наши дни изображения, полученные методом ФМРТ, часто появляются в прессе. Обычно дают их наложение на черно-белые картинки, полученные при помощи обычной МРТ: они демонстрируют сам мозг, тогда как цветные пятна, полученные методом ФМРТ, показывают его активные участки. Такие снимки легко узнать: ФМРТ + МРТ – это «пятна на мозге», а МРТ – просто мозг, без цветных пятен.

Ученые строили изображения мозга для добровольцев, выполнявших различные умственные задания. Если то или иное задание активизировало определенный участок мозга, тот начинал ярче выделяться на картинке, что давало ключ к пониманию функций этого участка. Развитие нейрофизиологии всегда сдерживалось случайным и непредсказуемым характером повреждений мозга, однако ФМРТ дала возможность проводить точные и воспроизводимые эксперименты по выявлению локализации функций. Карта Бродмана стала поистине незаменимой: исследователи прилагали все усилия, чтобы соотнести те или иные функции с каждой из ее областей. Лавина научных статей, посвященных этому вопросу, побудила многие университеты вложить крупные суммы в аппараты ФМРТ – «мозговые сканеры».

Кроме того, ученые, следуя подходу Пенфилда, построили свои карты сенсорного и моторного гомункулуса. Они заметили, какие места в поле 3 активизируются при прикосновении к тем или иным частям тела и какие места в поле 4 активизируются, когда испытуемый двигает той или иной частью тела. Их очень вдохновило то, что теперь можно строить пенфилдовские карты с помощью ФМРТ, а не варварским методом вскрытия черепной коробки. Исследовали и перестраивание карты мозга (которое проделывает сам мозг). Ученые подтвердили гипотезу Рамачандрана о том, что зона поля 3, соответствующая лицу, у инвалидов смещается вниз. Как и предсказывала его гипотеза, такой сдвиг наблюдался лишь у пациентов, которые испытывали фантомные боли, а не у тех, которым не доставляли страданий их утраченные конечности.

Ампутация – это вам не мозговая травма, но все-таки она представляет собой весьма необычный опыт. А при более нормальных формах приобретения опыта мозг тоже меняет свою «географию»? Скрипачи и другие струнники используют левую руку, чтобы прижимать струны к грифу. Исследования показывают, что у них в поле 3 наблюдается увеличение зоны представления левой руки – вероятно, благодаря интенсивным занятиям музыкой. Примечательно, что ФМРТ позволяет не только связать определенные функции с определенными бродмановскими полями, но и распознать мелкие изменения, происходящие в отдельном поле. Это куда более сложные исследования, чем, к примеру, изучение общего объема мозга по Гальтону. Такие работы должны бы поведать нам много интересного о перестраивании коры и кортикальных карт. Возможно даже, что подобные исследования помогут лучше понять причины двигательных расстройств, которые, как представляется, вызваны слишком большой музыкальной практикой. Подобные недуги (их называют фокальными [торсионными] дистониями) поломали карьеру не одному блистательному исполнителю.

Впрочем, попытки объяснить процесс обучения расширением кортикальных областей или субобластей все-таки отдают френологией, чьи подходы не очень-то отличаются от экспериментов по изучению утолщений коры. Эти опыты все равно дают лишь статистически слабые корреляции. Подход, может быть, и многообещающий, но у него есть свои ограничения. Так, у слепых, регулярно читающих шрифт Брайля, тоже увеличена зона, отвечающая за движения кистей. В этом смысле изучение процессов перестраивания мозговых карт не позволяет с легкостью отличить скрипку от книги с брайлевским текстом, хотя при обращении с тем и с другим требуются весьма несходные навыки и умения. И даже если удастся решить эту конкретную задачу, общая проблема такого различения все равно останется.

Однако у специалистов имеется и другой путь изучения перемен в мозгу, и он не основывается на идее перестраивания коры. При помощи ФМРТ ученые пытаются проследить за различиями в активизации тех или иных участков мозга. Так, сообщалось о пониженной активности лобных долей у шизофреников, когда те выполняют определенные умственные задания. Пока такие корреляции статистически слабы, но это захватывающее направление исследований может многое рассказать нам о мозговых недугах и даже помочь разработать новые, более совершенные методы их диагностики.

При этом у метода ФМРТ, возможно, имеется и фундаментальное ограничение. Активность мозга меняется чуть ли не ежесекундно – почти как наши мысли и действия. Чтобы найти причину шизофрении, мы должны принять какую-то аномалию мозга за константу (постоянную величину). Представьте, что ваш автомобиль начинает трястись всякий раз, когда вы разгоняетесь быстрее 50 км/ч и поворачиваете руль вправо. Поскольку такое поведение наблюдается не всегда, оно представляет собой лишь симптом и вызвано какими-то неполадками в вашей машине, возникшими на более глубинном уровне. Умение выявить симптомы очень важно, однако это лишь первый шаг к тому, чтобы распознать их причину.

* * *

Почему мы вообще продолжаем использовать френологический подход для того, чтобы объяснить умственно-психические различия между людьми? Нет, не потому, что эта стратегия так уж хороша. Помните анекдот про полицейского, который обнаружил пьяного, ползающего под фонарем? Пьяница заявляет: «Я потерял ключи где-то там, за углом». Страж порядка спрашивает: «Тогда почему бы вам не поискать их там?» Бедняга отвечает: «Я бы поискал, но под фонарем светлее». Подобно этому пьянице, мы работаем с тем, что есть. Мы знаем, что размеры мозга и его отдельных участков мало что могут сообщить нам об их функциях, но мы все равно изучаем размеры, поскольку существующие на данный момент технологии способны поведать нам только это.

Чтобы понять недостатки френологии, приведем пример более успешной привязки функций к размерам. Оставим пока вопрос о том, почему мозговитые люди умнее. Зададимся вопросом, почему мускулистые люди сильнее. Размер мышц можно определить с помощью всё той же МРТ, а мышечную силу – с помощью устройства, которое вы могли видеть в тяжелоатлетическом зале вашего фитнес-клуба. Специалисты установили, что коэффициенты корреляции здесь колеблются от 0,7 до 0,9. Это гораздо более сильная корреляция, нежели между размером мозга и величиной IQ. Размеры мышц позволяют точно предсказывать их силу, как и следовало ожидать.

Почему размер и функционирование так тесно связаны для мышц, но не для мозгов? Мышцу можно сравнить с заводом, где все рабочие делают одно и то же. Если каждый сотрудник завода в одиночку выполняет все стадии работы, которые требуются для сборки всего изделия, то удвоение количества сотрудников приведет к удвоению объема продукции, выпускаемой заводом. Точно так же и с мускулами. Все мышечные волокна выполняют одну и ту же задачу. Все они идут параллельно, все тянут в одну и ту же сторону. Их вклад в общее развиваемое усилие аддитивен (иными словами, сумма их усилий равно общему усилию). Поэтому мышцы, где больше волокон, будут сильнее.

А теперь представьте себе завод, устроенный более сложным образом. Все рабочие на нем выполняют разные задачи: к примеру, один закручивает болты, другой сваривает стыки. Чтобы изготовить даже один-единственный экземпляр изделия, все рабочие должны действовать сообща. Экономисты утверждают, что такое разделение труда эффективно: специализация позволяет каждому рабочему оттачивать навыки в выполнении своей задачи. Однако при этом простое удвоение числа рабочих едва ли приведет к автоматическому удвоению количества выпускаемой продукции. Не так-то просто интегрировать новых рабочих в существующий коллектив таким образом, чтобы выход продукции увеличился. Более того, добавление новых сотрудников может даже уменьшить выход продукции, поскольку оно нарушит устоявшийся производственный процесс. Шуточный закон Брукса, популярный среди разработчиков компьютерного софта, гласит: «Если проект отстает от графика, он будет отставать еще сильнее, если увеличить число программистов».

Мозг работает, как сложно устроенный завод, о котором мы говорили. Каждый из нейронов выполняет свою крошечную задачу, и они затейливейшим образом сотрудничают друг с другом, чтобы выполнять умственно-психические функции. Вот почему успешность выполнения этих функций зависит не столько от количества нейронов, сколько от того, как они организованы.

Итак, аналогия с заводом объясняет те ограничения, в рамках которых существует френология. Может быть, эта аналогия объяснит и перестраивание карт мозга? Карл Лешли, американский нейропсихолог, полагал, что умственно-психические функции широко распределены по коре головного мозга, и объявлял большинство границ на бродмановской карте плодом воображения. Тем не менее этот заклятый враг локализационизма не мог совсем уж отвергнуть экспериментальные доказательства этой гипотезы. В противовес ей он в 1929 году выдвинул свою концепцию кортикальной эквипотенциальности (равноценности). Лешли соглашался допустить, что каждая область коры отвечает за определенную функцию, но при этом каждая область, утверждал он, обладает потенциалом для приобретения и какой-то другой функции.

Снова представим себе завод, но другой, устроенный сложнее. Предположим, какому-то сотруднику этого завода поручили новую работу. Поначалу он будет выполнять ее неловко и неуклюже, но в конце концов научится делать ее эффективно. Да, у рабочих есть специализация, но при этом они эквипотенциальны. Если дать им новую информацию, они способны изменить свои функции.

Что ж, в концепции Лешли есть доля истины, однако и этот подход чересчур поверхностен. Адаптируемость коры не беспредельна, иначе всякий человек, переживший инсульт, через какое-то время мог бы полностью выздороветь. Чтобы понять пределы адаптации и разработать способы ее улучшения, нам требуется более глубокое понимание вопроса. Мы знаем, что кора головного мозга способна сама перестраиваться и менять собственную карту, но как именно при этом меняются функции той или иной области коры?

На этот вопрос нельзя ответить без обращения к более основополагающей проблеме: что определяет функции той или иной кортикальной области? Центры Брока и Вернике отвечают за речевые навыки, бродмановские поля 3 и 4 – за телесные ощущения и движение. Но почему именно за эти функции? И как осуществляется эта привязка функций к конкретным участкам коры?

Бесполезно искать ответы на эти вопросы, изучая лишь участки мозга, их размеры, уровни их активности. Следует рассмотреть устройство мозга на гораздо более тонком уровне. Одна кортикальная область может содержать свыше ста миллионов нейронов. Как они организованы? Как взаимодействуют, выполняя умственно-психические функции? В последующих нескольких главах мы постараемся углубиться в этот вопрос, не забывая о гипотезе, согласно которой функционирование мозга весьма сильно зависит от связей между нейронами.