Вы здесь

Клинические аспекты спортивной медицины. Глава 1. Основы общей патологии ( Коллектив авторов, 2013)

Глава 1. Основы общей патологии

1.1. Здоровье

1.1.1. Критерии здоровья

Здоровье – это первая и основная потребность человека, определяющая гармоничное развитие личности. Оно является главной предпосылкой к познанию окружающего мира, к самоутверждению и счастью человека. Активная долгая жизнь – важная цель для человека.

В последние десятилетия мир изменился. Много людей переместилось из сельской местности в города. Резко возрос темп жизни. Более высокого напряжения требует работа. Сложная экологическая обстановка, высокий уровень стресса, растущее количество болезней характеризуют сегодняшнюю ситуацию. Эксперты Всемирной организации здравоохранения (ВОЗ) сообщают, что четвертая часть всего населения Европы систематически применяет снотворные препараты и транквилизаторы.

Что же такое здоровье? До сих пор не прекращаются дискуссии специалистов, пытающихся дать определение этому понятию. ВОЗ определяет здоровье таким образом: «Здоровье – состояние полного физического, духовного (психического) и социального благополучия, а не только отсутствие болезней и физических дефектов».

Известно, что большая часть населения перекладывает заботу о своем здоровье на медицину. Здравоохранение достигло действительно больших успехов. Благодаря прогрессу произошли изменения в общей структуре болезней, среди которых приоритетные позиции заняли неинфекционные болезни. Они явились следствием неадекватного образа жизни в сложной экологической, психоэмоциональной, физической обстановке.

Многочисленные исследования, проведенные в США и Франции, показали, что здоровье населения на 49–53 % определяется образом жизни, на 18–22 % – генетикой и биологией. Внешняя среда, природно-климатические условия определяют развитие патологии человека на 17–20 %. Состояние здоровья населения зависит от здравоохранения только на 8–10 %. Отсюда следует, что здоровье зависит в основном от образа жизни.

Различают здоровье населения и индивидуума.

Здоровье населения рассматривается большинством исследователей как понятие статическое и достаточно полно характеризуется комплексом демографических показателей: рождаемостью, смертностью, детской смертностью, уровнем физического развития, заболеваемостью, средней продолжительностью жизни, а также специальными социально-биологическими исследованиями. При этом учитывается, что демографические показатели находятся в определённой зависимости от условий существования исследуемых коллективов: характера окружающей среды, условий труда, его интенсивности, продолжительности рабочего дня, величины реальной заработной платы, обеспеченности продуктами питания, одеждой и жильем, санитарного состояния территории, а также от уровня развития здравоохранения.

Здоровье индивидуума не имеет точного определения, что связано с большой широтой индивидуальных колебаний важнейших показателей жизнедеятельности организма, а также с многообразием факторов, влияющих на здоровье человека. Влияние социального фактора на здоровье человека исключительно велико.

Здоровье в иерархии потребностей человека. Здоровье, потребность и стремление его сохранить практически у большинства людей выступают на первый план. Здоровье – это абсолютная и жизненная непреходящая ценность, занимающая основную ступень в иерархической лестнице потребностей. Наличие здоровья позволит человеку вести активную, творческую, полноценную жизнь. И чем раньше человек осознает это, тем меньше ему придется расходовать средств в последующие годы на коррекцию здоровья, тем более гармоничной будет личность.

Виды и компоненты здоровья:

соматическое – текущее состояние органов и систем организма человека, основу которого составляет биологическая программа индивидуального развития;

физическое – уровень роста и развития органов и систем организма;

психическое – состояние психической сферы, общий душевный комфорт, обеспечивающий адекватную поведенческую реакцию;

нравственное – обусловлено духовностью человека, то есть основывается на общечеловеческих ценностях: добре, чести, достоинстве, любви и красоте.

Мотивация здоровья и здорового образа жизни. Мотивация здоровья и здорового образа жизни занимает центральное место в формировании и сохранении здоровья каждого человека. Например, пока человек сам не осознает, что курение вредно, не убедится в его пагубности, малоэффективными окажутся любые мероприятия по борьбе с курением. Чем ниже уровень мотивации населения в поддержании здорового образа жизни, тем хуже его здоровье и ниже уровень благосостояния.

В основе формирования здорового образа жизни лежат как биологические, так и социальные принципы:

– отказ от вредных привычек, пристрастий;

– оптимальный двигательный режим;

– рациональное питание;

– закаливание;

– личная гигиена;

– режим дня, полноценный сон;

– положительные эмоции.

Что же такое болезнь?

Демографическая ситуация в Российской Федерации. По оценке Федеральной службы государственной статистики (Росстат), численность постоянного населения Российской Федерации на 1 мая 2010 г. составила 141,9 млн чел. и с начала года уменьшилась на 41,7 тыс. чел. или на 0,03 % (на соответствующую дату предыдущего года наблюдалось сокращение численности населения на 50,4 тыс. чел. или на 0,04 %). Естественная убыль населения в январе – апреле 2010 г. уменьшилась по сравнению с соответствующим периодом 2009 г. на 24,2 тыс. чел. Миграционный прирост на 61,2 % компенсировал численные потери населения.

Резкое снижение естественного прироста населения России, проявившееся с 1989 г., было следствием наложения двух неблагоприятных тенденций: обвального снижения рождаемости и значительного роста смертности. Рост населения в России прекратился с 1991 г.

Негативной особенностью России является тот факт, что в результате демографического перехода рождаемость упала до уровня развитых стран, в то время как смертность достигла уровня развивающихся.

По мнению некоторых демографов, падение смертности в результате развития здравоохранения компенсировалось с 1960-х гг. ростом алкогольной смертности, которая в России (600–700 тыс. чел./г.) связана с самым высоким в мире уровнем потребления легальных и нелегальных алкогольных напитков. Этому мнению никак не противоречит взгляд некоторых других демографов, которые считают, что высокая смертность связана с незавершенностью процессов модернизации России, включая социокультурный аспект. Забота о собственном здоровье не является высокой ценностью в рамках менталитета существенной части населения, что предопределяет высокую алкоголизацию, смертность от несчастных случаев (включая дорожно-транспортные происшествия), аномальную распространённость ряда болезней и др.

Средняя продолжительность жизни нашего населения остается относительно низкой по сравнению с большинством экономически развитых стран и даже с рядом развивающихся.

В 1995 г. из 196 стран, по которым Организация Объединенных Наций (ООН) рассчитывает среднюю продолжительность жизни (или получает данные из стран), Россия занимала 140-е место по продолжительности жизни мужчин и 100-е – по продолжительности жизни женщин. Такое отставание нельзя оправдать никакими «объективными» причинами.

По данным ВОЗ, средняя продолжительность жизни в стране в 2010 г. составила у мужчин 63 года, у женщин – 75 лет. После резкого падения этого показателя в первой половине 1990-х гг. (у мужчин почти на 6,2 года, у женщин – на 3,1 года) в 2010 г. продолжительность жизни резко увеличилась. За указанный период она увеличилась на 4 года.

С середины 1980-х гг. Россия переживает невиданное ранее в цивилизованном мире колебание смертности, заслуженно приковавшее к себе внимание специалистов, политиков, средств массовой информации во всем мире. Достаточно сказать, что уровень смертности по отдельным возрастным группам в России колебался не на несколько процентов, как это нередко бывает в других странах в обычной ситуации, а на несколько десятков процентов. Благодаря целенаправленным усилиям ряда международных коллективов, в том числе и с участием российских специалистов, уже известно многое о внутренних механизмах столь значительных изменений. Череда резких перепадов уровня смертности – снижение смертности в 1985–1987 гг., повышение в 1988–1994 гг., вновь снижение с 1995 по 1998 гг., повышение с 1999 по 2005 гг., снижение в 2006–2010 гг.

Смертность в России сегодня:

– сверхсмертность мужчин. В 2010 г. продолжительность их жизни составила 63 года, что на 12 лет меньше, чем у женщин, и на 1 год меньше, чем в 1990 г.;

– падение средней продолжительности жизни мужчин в возрасте 35 лет и старше. На селе она ниже, чем была 100 лет назад, в городе – чем 40 лет назад;

– возросшие темпы роста смертности в трудоспособных возрастах. В большей мере вымирает трудоспособная часть населения, что противоречит биологическим закономерностям;

– высокая младенческая смертность по сравнению с другими развитыми странами. Начиная с 1990 г., этот показатель возрастал: в 1991-м он достиг 1,7 %, в 1992-м – 1,8 %, в 1993-м – почти 2,0 %. Затем начал медленно снижаться, составив в 2000 г. 1,5 %. В последние годы этот показатель постоянно снижался, и в 2008 г. составил 0,6 %.

Здоровье и урок физической культуры. Физическая культура – единственный предмет в школьной программе, который напрямую связан со здоровьем учащихся. Это вовсе не означает, что от уроков физической культуры надо освобождать тех детей, чье состояние здоровья оставляет желать лучшего. Наоборот, детям (и взрослым) с ослабленным здоровьем физические упражнения необходимы не менее, а даже более, чем здоровым. Но физические нагрузки обязательно должны соответствовать как возрастным, так и индивидуальным возможностям ребенка, в том числе особенностям состояния их здоровья.

Не стоит повторять в очередной раз, какую обеспокоенность вызывает состояние здоровья сегодняшних детей и подростков. Лишь 28 % современных школьников врачи относят к I группе здоровья, около 60 % – ко II, а 14 % детей (III и IV группы здоровья) серьезно больны (рис. 1.1). Что лежит в основе медицинского распределения детей на группы, не всегда знают даже школьные учителя.


Рис. 1.1. Распределение российских школьников по группам здоровья (по данным мониторинга психофизиологического состояния детей РФ, проведенного в 2002–2003 гг.)


Комплексная оценка состояния здоровья. Складывается из оценки уровней и гармоничности физического и нервно-психического развития ребенка; степени сопротивляемости организма неблагоприятным факторам; функционального состояния основных систем организма; наличия или отсутствия хронических заболеваний (в т. ч. врожденной патологии). На этом основании учащиеся со сходным состоянием могут быть отнесены к следующим группам здоровья:

I – дети здоровые, с нормальным развитием и уровнем функций; дети, имеющие внешние компенсированные врожденные дефекты развития;

II – дети здоровые, но с факторами риска возникновения патологии, функциональными и некоторыми морфологическими отклонениями, хроническими заболеваниями в стадии стойкой клинико-лабораторной ремиссии не менее 3–5 лет, врожденными пороками развития, не осложненными заболеваниями одноименного органа или нарушением его функции, а также со сниженной сопротивляемостью к острым и хроническим заболеваниям;

III – дети с хроническими заболеваниями и врожденными пороками развития разной степени активности и компенсации, с сохраненными функциональными возможностями;

IV – дети, имеющие значительные отклонения в состоянии здоровья постоянного (хронические заболевания в стадии субкомпенсации) или временного характера, но без выраженного нарушения самочувствия, со сниженными функциональными возможностями;

V – дети, больные хроническими заболеваниями в состоянии декомпенсации, со значительно сниженными функциональными возможностями.

На основании результатов медицинского осмотра учащихся врач делает заключение о состоянии здоровья и уровне физического развития каждого ученика, обращая внимание на особенности состояния опорно-двигательного аппарата и других органов, участвующих в выполнении отдельных упражнений. Оценку уровня физической подготовленности дают на основе спортивного анамнеза, анализа успеваемости и наблюдений, проведенных во время выполнения тестовых физических упражнений.

Принципы ведения занятий физической культурой. Все школьники на основании медицинского заключения распределяются на три группы: основную, подготовительную и специальную. Основными критериями для включения в ту или иную медицинскую группу являются уровень здоровья и функциональное состояние организма. Для распределения в специальную медицинскую группу необходимо установление диагноза с обязательным учетом степени нарушения функций организма.

Основная медицинская группа: целиком I группа здоровья, а также частично II группа здоровья (в тех случаях, когда имеющееся заболевание не накладывает существенных ограничений на двигательный режим). Это школьники без отклонений в состоянии здоровья и физическом развитии, имеющие хорошее функциональное состояние и соответствующую возрасту физическую подготовленность, а также учащиеся с незначительными (чаще функциональными) отклонениями, но не отстающие от сверстников в физическом развитии и физической подготовленности. Например: умеренно выраженная избыточная масса тела, некоторые функциональные нарушения органов и систем, дискинезии некоторых органов, кожно-аллергические реакции, уплощение стоп, слабо выраженная нейроциркуляторная дистония, легкие астенические проявления.

Относящимся к этой группе разрешаются занятия в полном объеме по учебной программе физического воспитания, подготовка и сдача тестов индивидуальной физической подготовленности. Рекомендуются занятия спортом в спортивных кружках и секциях, группах детско-юношеских спортивных школ (ДЮСШ) с подготовкой и участием в спортивных соревнованиях, турнирах, спартакиадах, спортивных праздниках и т. п.

Подготовительная медицинская группа: дети II группы здоровья, имеющие отставание в физическом развитии, недостаточную физическую подготовленность, незначительные отклонения в состоянии здоровья. Специальная цель физического воспитания детей с недостаточным физическим и двигательным развитием (подготовительная группа) – повысить их физическую подготовленность до нормального уровня. Ослабленное состояние здоровья можно наблюдать как остаточные явления после перенесенных острых заболеваний, при переходе их в хроническую стадию, при хронических заболеваниях в стадии компенсации. Дети занимаются физическими упражнениями по общей программе, но при этом требуется соблюдение ряда ограничений и специальных методических правил, в частности, им противопоказаны большие объемы физических нагрузок с высокой интенсивностью.

Специальная медицинская группа: дети, чье состояние здоровья требует занятий физическими упражнениями по отдельной программе, учитывающей особенности их здоровья. Это ни в коей мере не означает, что их нужно освобождать от занятий физической культурой, что так широко практикуется, потому что позволяет отмахнуться от проблем детей, которым физические упражнения (правильно организованные!) еще нужнее, чем здоровым. Занятия физической культурой для детей, отнесенных к этой группе, являются обязательными и включаются в структуру общей учебной нагрузки учащегося.

Однако, к большому сожалению, типичной картиной для большинства школ является спортзал, в котором во время урока физической культуры на скамейке тоскливо сидят и дышат пылью ребята той самой спецмедгруппы, с которыми единственному на весь класс учителю проще не заниматься совсем. Типовых программ для них нет из-за большого разнообразия заболеваний, не предусмотрены дополнительные спортзалы, учителя, специальный инвентарь (например, фитболы). Правда, администрация некоторых школ действительно заботится о здоровье своих учеников и находит не предусмотренное государством решение проблем сохранения и укрепления не очень крепкого здоровья детей. Прежде всего, важно понимать, в чем заключаются особенности физического воспитания детей с ослабленным здоровьем.

Физическая активность и здоровье. Участие в спортивных мероприятиях само по себе не гарантирует, что молодежь будет заниматься физическими тренировками в дальнейшем. Требуется специальная молодежная политика для увеличения числа подростков, предпочитающих активную физическую деятельность сидению перед экраном компьютера. Способствуют активной физической деятельности подростков оздоровительные программы, проведение спортивных внеклассных мероприятий, положительный образ спортсменов, поддержка друзей и семьи.

Сидячий образ жизни и неправильное питание способствуют все большему распространению избыточной массы тела и ожирения среди студентов и школьников. Кроме того, гиподинамия является фактором риска развития множества заболеваний, среди которых остеопороз, сердечно-сосудистые заболевания, онкологические заболевания, депрессия, снижение иммунитета и резервных возможностей организма.

Общая смертность в популяции характеризуется U-образной кривой, то есть она выше как у лиц с минимальным, так и с наиболее высоким уровнем физической активности. Меньше живут как малоподвижные люди, так и люди, занимающиеся тяжелым физическим трудом. Отмечено практически двукратное увеличение сердечно-сосудистой заболеваемости при низкой физической активности, а повышение физической активности больных ишемической болезнью сердца (ИБС) позволяет достигать снижения смертности на 27–30 %.

Здоровье спортсменов. В современной жизни человечества трудно найти более распространенную сферу социальной активности, чем спорт. Заключая в себе гуманистические функции, современный спорт, тем не менее, не лишен и ряда негативных тенденций в своем развитии. Может показаться парадоксальным, но основная негативная черта большого спорта (с точки зрения врача) – постоянное стремление к росту спортивных результатов. Уровень рекордов сегодня давно превысил возможности человеческого организма, и новые достижения могут быть реализованы либо за счет увеличения тренировочных нагрузок, либо применения допинговых препаратов. И тот, и другой путь опасны для здоровья спортсменов.

Негативные черты современного спорта обусловлены также его профессионализацией и коммерциализацией, появлением новых технических элементов и даже новых видов спорта, сопровождающихся высоким риском для здоровья и жизни спортсменов, вовлечением в спорт высоких достижений детей и подростков, расширением диапазона женских видов спорта из арсенала тех, которые ранее считались исключительно мужскими, и пр.

За последние 15–20 лет заметно возросло количество случаев внезапных смертей и серьезных отклонений в состоянии здоровья спортсменов. При этом количество этих отклонений четко связано с периодами предолимпийского цикла или графиком других соревнований мирового уровня: чем ближе старт, тем больше и более выраженные отклонения в состоянии здоровья спортсменов.

Говоря о профессиональном и олимпийском спорте, необходимо отметить высокую мотивацию спортсменов, направленную на подготовку и участие в соревнованиях, что вынуждает их, как правило, диссимулировать изменения в субъективном состоянии и избегать исследований, которые могут выявить отклонения в состоянии их здоровья. В то же время некоторые отклонения в состоянии функций организма спортсмена до сих пор не имеют достаточно четкой трактовки, а его способность при наличии этих нарушений показывать результаты мирового уровня остается загадкой.

Адаптация к экстремальным воздействиям, в том числе и характерным для спорта высоких достижений, всегда сопровождается выраженной «платой» за адаптацию. Компенсаторные механизмы, проявляющиеся в этих случаях, нередко формируются за счет резервов структуры и функции органов и систем, напрямую не связанных с достижением конечного результата. Эти компенсации могут подвергаться обратному развитию. Многие функциональные показатели у спортсменов высокого класса выходят за пределы статистической нормы. Напри мер, сердечный индекс в покое у стайеров находится на уровне, характерном для клинической картины сердечной недостаточности (менее 2,1 л/мин/м2), частота сердечных сокращений заставляет заподозрить полную атриовентрикулярную блокаду (АВ-блокаду) (менее 40 ударов в мин), лишь у 30 % спортсменов электрокардиограмма не имеет отклонений от нормы и т. д. Таким образом, «абсолютное» здоровье (если иметь в виду критерий «нормы») как критерий допуска спортсмена к участию в учебно-тренировочном процессе и соревнованиям – фикция, идеал, недостижимый в условиях нагрузок в современном профессиональном и олимпийском спорте.

Можно предположить, что главный критерий здоровья спортсмена – его спортивный результат. Если результат улучшается или сохраняется на стабильном уровне, здоровье спортсмена не вызывает опасений, т. к. именно в результате фиксируется степень совершенства функций всех систем его организма. В то же время постоянное нахождение спортсмена на границе функциональных возможностей, за которой следует срыв компенсаторно-приспособительных механизмов с последующим развитием патологии, непременно приводящей к социальной дисфункции (ухудшению спортивного результата), предопределяет необходимость раннего и всестороннего медицинского наблюдения за спортсменами.

Общая оценка здорового поведения (по количеству очков)




Интерпретация

60–70 очков: Ваше отношение к собственному здоровью следует оценить как отличное (если только в одном из разделов Вы не потеряли все 10 очков).

50–59 очков: Вы ведёте себя хорошо, но можете и лучше.

40–49 очков: Ваше поведение можно оценить как среднее; многое в нём следовало бы изменить.

30–39 очков: Вы весьма посредственно относитесь к своему здоровью; при правильном образе жизни Вы могли бы получать от жизни больше удовольствия.

Меньше 30 очков: Вы серьёзно пренебрегаете своим здоровьем; без всякого сомнения, Вы заслуживаете лучшего к себе отношения.

1.1.2. Влияние факторов окружающей среды на здоровье человека

Окружающая среда – это окружающий человека природный и созданный людьми материальный мир. Поэтому в окружающую (географическую) среду включают природную и искусственную, т. е. техногенную, среду – здания, сооружения и т. д.

Разнообразные факторы, связанные с ростом городов, в той или иной мере сказываются на формировании человека, на его здоровье. Это заставляет ученых все серьезнее изучать влияние среды обитания на жителей городов. Оказывается, от того, в каких условиях живет человек, какая высота потолков в его квартире и насколько звукопроницаемы ее стены, как человек добирается до места работы, с кем он повседневно общается, как окружающие люди относятся друг к другу, зависит настроение человека, его трудоспособность, активность – вся его жизнь.

Движущей силой всякого процесса является борьба и одновременно единство противоположных сил. Природа развивается по своим законам, общество – по своим. Вся история человечества – это история «борьбы» человека с природой. В этой «борьбе» совершенствовались орудия труда: от каменных скрёбел, проколок и топоров до космических кораблей и ускорителей элементарных частиц. За тысячелетия не изменилась суть взаимодействия людей и природы, но изменились формы и масштаб «борьбы» между обществом и природной средой.

«Покоряя» природу, человек использует ее предметы и может действовать только по ее природным законам. Люди не могут обойтись без природы, и в этом они едины с ней. Единство человека с природой проявляется и в том, что человек – не просто социальное существо, а биосоциальное. Техника, производство – это основные формы «борьбы» и единства (взаимодействия) общества с природой.

В труде человек приспосабливает продукты природы для своих потребностей. Для жизни людям необходимы еда, одежда, жилище и т. д. Эпоха тесного взаимодействия с природой началась с производства средств, удовлетворяющих эти основные потребности человека. Это далеко не свободный труд, не свободное отношение к природе. Воздействие на природу без компенсации определенного урона вызывает отрицательные изменения. Такие изменения влияют на самого человека. Вместо чистого воздуха он имеет устойчивое загрязнение атмосферы, вызывающее многочисленные заболевания и смерть людей. Мы потребляем продукты питания, загрязненные вредными химическими веществами.

Загрязнение – это неблагоприятное изменение окружающей среды, приводящее к нарушениям поступающей солнечной радиации, физико-химических свойств среды и условий существования живых существ, в том числе и человека. В результате загрязнения происходят количественные и качественные изменения среды, ее разрушение.

Вещества, загрязняющие природную среду, очень разнообразны. В зависимости от своей природы, концентрации, времени действия на организм человека они могут вызывать различные неблагоприятные последствия. Кратковременное воздействие небольших концентраций таких веществ может вызывать головокружение, тошноту, першение в горле, кашель. Попадание в организм человека больших концентраций токсических веществ может привести к потере сознания, острому отравлению и даже к смерти. Пример подобного действия – смоги, образующиеся в крупных городах в безветренную погоду, или аварийные выбросы токсических веществ промышленными предприятиями в атмосферу.

Реакции организма на загрязнения зависят от индивидуальных особенностей: возраста, пола, состояния здоровья. Наиболее уязвимы дети, пожилые и престарелые, больные люди.

Приспосабливаясь к неблагоприятным экологическим условиям, организм человека испытывает напряжение, утомление. Напряжение – мобилизация всех механизмов, обеспечивающих определенную деятельность организма человека.

При систематическом или периодическом поступлении в организм сравнительно небольших количеств токсичных веществ происходит хроническое отравление. Признаки хронического отравления – нарушения нормального поведения, привычек, нейропсихические отклонения: быстрое утомление или чувство постоянной усталости, сонливость или бессонница, апатия, ослабление внимания, рассеянность, забывчивость, сильные колебания настроения.

Физическое загрязнение связано с изменением физических свойств среды.

Радиоактивное загрязнение характеризуется повышением естественного уровня содержания радиоактивных веществ в окружающей среде. Оно затрагивает все сферы географической оболочки и все ее компоненты. Отрицательное воздействие такого загрязнения сохраняется в течение десятков, сотен и тысяч лет. Естественный радиоактивный фон формируется под воздействием космических лучей, излучения горных пород, содержащих уран, торий, радий. Естественный радиоактивный фон в разных регионах различен, он зависит от географической широты, высоты над уровнем моря, тектонического строения, литологии коренных пород и осадочных толщ. Источники загрязнения – испытания атомного и водородного оружия, атомные электростанции и суда, выбросы предприятий по добыче и переработке радиоактивных веществ.

Радиоактивные элементы отличаются различными периодами полураспада, отчего и зависит степень и продолжительность их отрицательного влияния на окружающую природу. Явление радиоактивности заключается в самопроизвольном распаде одного химического элемента и преобразовании его в элемент с другим порядковым номером. Это преобразование сопровождается излучением. Стронций-90, цезий-137 похожи по химическим свойствам на кальций и калий и являются наиболее вредными радиоактивными изотопами, которые могут на долгое время отравить окружающую среду. Стронций (вместо кальция) очень легко поступает в костную ткань, а цезий (вместо калия) – в мышечные ткани, вызывая патологические изменения в организме.

Опасность от радиации:

– увеличивается риск раковых заболеваний;

– происходят генетические нарушения;

– возникает опасность для эмбриона, который развивается в организме матери.

Например, после аварии на Чернобыльской АЭС значительно увеличилось количество заболеваний крови (лейкемия) и щитовидной железы. Изучение во многих странах раковых заболеваний, особенно рака груди, органов пищеварения, горла, кожи, лимфатической системы, показывает, что они в большей степени обусловлены состоянием окружающей среды (грязными водами, радиацией, наличием вредных веществ и т. д.). Определено, что бензин вызывает рак клеток крови, винилхлорид – рак печени, хромит, красный железняк – рак лёгких. В то же время нормальное содержание в ландшафтах марганца, хрома, ванадия и меди предупреждает сердечно-сосудистые заболевания.

Шумы отрицательно влияют на живые организмы. Являются побочными продуктами технической цивилизации. Человек всегда жил в мире звуков и шума.

Звук – механические колебания внешней среды, которые воспринимаются слуховым аппаратом человека (16–20 000 колебаний в секунду). Колебания большей частоты называют ультразвуком, меньшей – инфразвуком.

Шум – громкие звуки, слившиеся в нестройное звучание. Для всех живых организмов, в том числе и человека, звук является одним из воздействий окружающей среды.

В природе громкие звуки редки, шум относительно слаб и непродолжителен. Сочетание звуковых раздражителей дает время животным и человеку, необходимое для оценки их характера и формирования ответной реакции. Звуки и шумы большей мощности поражают слуховой аппарат, нервные центры, могут вызывать болевые ощущения и шок. Так действует шумовое загрязнение.

Тихий шелест листвы, журчание ручья, птичьи голоса, легкий плеск воды и шум прибоя всегда приятны человеку. Они успокаивают его, снимают стрессы. Но естественные звучания голосов природы становятся все более редкими, исчезают совсем или заглушаются промышленными, транспортными и другими шумами. Длительный шум неблагоприятно влияет на орган слуха, понижая чувствительность к звуку.

Уровень шума измеряется в единицах, выражающих степень звукового давления, – децибелах (дБ). Это давление воспринимается не беспредельно. Уровень шума в 20–30 дБ практически безвреден для человека, это естественный шумовой фон. Что же касается громких звуков, то здесь допустимая граница – примерно 80 дБ. Звук в 130 дБ уже вызывает у человека болевое ощущение, а в 150 дБ становится для него непереносимым. Недаром в средние века существовала казнь «под колокол». Гул колокольного звона мучил и медленно убивал осужденного.

Каждый человек воспринимает шум по-разному. Многое зависит от возраста, темперамента, состояния здоровья, окружающих условий. Постоянное воздействие сильного шума может не только отрицательно повлиять на слух, но и вызвать другие вредные последствия – звон в ушах, головокружение, головную боль, повышение усталости. Шумы в больших городах сокращают продолжительность жизни людей, приводят к нервному истощению, расстройствам эндокринной и сердечно-сосудистой систем. Очень шумная современная музыка также притупляет слух, вызывает нервные заболевания.

Очень высок уровень промышленных шумов. На многих работах и шумных производствах он достигает 90–100 дБ и более. Шумы мешают людям работать и отдыхать, снижают производительность труда. Ненамного тише и у нас дома, где появляются все новые источники шума – так называемая бытовая техника. В настоящее время ученые многих стран ведут различные исследования с целью выяснения влияния шума на здоровье человека. Их исследования показали, что шум наносит ощутимый вред здоровью человека, но и абсолютная тишина пугает и угнетает его. Так, сотрудники одного конструкторского бюро, имевшего прекрасную звукоизоляцию, уже через неделю стали жаловаться на невозможность работы в условиях гнетущей тишины. Они нервничали, теряли работоспособность. И, наоборот, ученые установили, что звуки определенной силы стимулируют процесс мышления, в особенности процесс счета.

Вредное воздействие шума на организм совершается незаметно. Организм человека против шума практически беззащитен. В настоящее время врачи говорят о шумовой болезни, развивающейся в результате воздействия шума.

Электромагнитные поля оказывают значительное влияние на живые организмы. Искусственные электромагнитные поля (радиопередающие устройства, линии электропередач и др.) отрицательно влияют на обмен микроэлементов в организме (медь, молибден, марганец, железо), на функциональные изменения, деятельность нервной системы и половую функцию у животных и человека. У человека это проявляется в ухудшении самочувствия и аппетита, нарушении обмена веществ, состава крови, функционировании сердечно-сосудистой системы.

Хорошо известно, что возле быстро текущей воды воздух освежает и бодрит. В нем много отрицательных ионов. По этой же причине нам представляется чистым и освежающим воздух после грозы. Наоборот, воздух в тесных помещениях с обилием разного рода электромагнитных приборов насыщен положительными ионами. Даже сравнительно непродолжительное нахождение в таком помещении приводит к заторможенности, сонливости, головокружениям и головным болям. Аналогичная картина наблюдается в ветреную погоду, в пыльные и влажные дни. Специалисты в области экологической медицины считают, что отрицательные ионы положительно влияют на здоровье, а положительные – негативно. Электромагнитные излучения отрицательно влияют на природу в местах концентрации высоковольтных линий электропередач, расположения электросиловых установок и т. д.

Тепловое загрязнение оказывает влияние на функционирование природных систем и отдельных компонентов среды (атмосферы, воды). В результате сгорания топлива в атмосферу выделяется огромное количество тепла, что приводит к повышению температуры воздуха. Не менее 2 % энергии, содержащейся в потребляемом топливе, не используется в производстве из-за низкого коэффициента полезного действия и рассеивается в атмосфере в виде тепла. В среднем за год в атмосферу поступает 5 × 106 ккал технического тепла, или 0,01 ккал/см2, что составляет около 0,006 % величины солнечной радиации, поглощаемой земной поверхностью и атмосферой. Это приводит к повышению температуры у земной поверхности на 0,01 °C. В крупных промышленных городах выделяемое тепло сравнимо с поступающей солнечной радиацией.

Повышение температуры воды ведет к уменьшению содержания в ней растворенного кислорода (при температуре в 30 °C в 1 л воды содержится в 2 раза меньше кислорода, чем при температуре 0 °C), азота и углекислого газа. Повышение температуры водной среды приводит к деградации естественных водных комплексов, доминированию сине-зеленых водорослей, что ведет к уменьшению численности многих видов животных. Тепловое загрязнение достигает наибольших показателей в городах (воздух и поверхностные воды), а также в местах расположения теплоэлектроцентралей, которые сбрасывают большие объемы теплых вод. Иногда они используются человеком для своих нужд, например, организуются круглогодичные прудовые хозяйства для разведения промысловых рыб.

Отрасли промышленности. Многие отрасли промышленности являются загрязнителями окружающей среды, особенно черная и цветная металлургия, химическая и нефтехимическая. Так, состав промышленных выбросов химической промышленности очень разнообразен и включает оксид углерода, оксид азота, сернистый ангидрид, аммиак, хлористые и фтористые соединения. Очень ядовитым газом является оксид углерода, или угарный газ, который образуется при неполном сгорании угля и нефти. Основные его источники – транспорт, металлургические и нефтеперерабатывающие заводы. Особая ядовитость угарного газа связана с тем, что он в 300 раз активнее кислорода и соединяется с гемоглобином крови, поэтому человек задыхается даже при достаточном количестве воздуха. Отрицательное влияние на организм человека оказывает сернистый ангидрид, оксид азота, которые выделяются при сжигании угля и нефти. Наибольшей опасностью отличаются соединения серы. Во влажном воздухе сернистый ангидрид соединяется с водой и образует серную кислоту. Под влиянием сернистого газа и его производных происходит поражение верхних дыхательных путей (бронхит, бронхиальная астма), разрушается хлорофилл в листьях растений, замедляется рост, снижается продуктивность, а в отдельных случаях наблюдается гибель растений, особенно хвойных видов. Кислотные дожди повышают кислотность почв и вод, ускоряют процессы коррозии металлов, разрушают здания, памятники истории и культуры.

В мире насчитывается до 550 млн автомобилей. Один автомобиль в среднем поглощает ежегодно 4 т кислорода и выбрасывает с выхлопными газами 800 кг оксидов углерода, около 40 кг оксидов азота и почти 200 кг различных углеводородов. Автомобильные выхлопные газы – это смесь примерно 200 веществ, которые загрязняют воздух, воды, почвы, растительный и животный мир.

Тяжелые металлы. Очень опасно поступление тяжелых металлов в окружающую среду (свинец, ртуть). Тяжелые металлы поглощаются фитопланктоном, передаваясь по цепи питания к высокоорганизованным животным. В результате этого у рыб, млекопитающих, птиц тяжелые металлы накапливаются в опасных концентрациях. Тяжелые металлы, поступающие с продуктами питания в организм человека, вызывают нарушение психики и параличи, оказывают отрицательное влияние на наследственность. Автомобиль за год выбрасывает 1 кг свинца в виде аэрозоля, что требует ограничения до минимума интенсивной хозяйственной деятельности вдоль шоссейных дорог. Поступая с выхлопными газами в организм человека, свинец приводит к нарушению синтеза гемоглобина, функций почек, мозга. Даже самое малое количество этого металла в организме нарушает обмен веществ.

Особенно способствует возникновению раковых заболеваний концентрация в организме человека кадмия. У людей, живущих в местностях с избытком кадмия, происходят нарушения в деятельности почек, уменьшается количество белка. Повышенное содержание в организме свинца и кадмия приводит к отравлению мозга. Цинк, наоборот, активно участвует в делении клеток мозга, кобальт – в синтезе витамина В12, в процессах кровообразования. Было установлено, что в местностях с недостатком кобальта наблюдаются отрицательные процессы в организмах домашних животных (коровы худеют, выпадает шерсть, обезжиривается молоко и т. д.). Никель вызывает преимущественно рак ротовой полости и толстого кишечника. При избытках никеля (Казахстан, Южный Урал) наблюдается поражение роговицы глаз, раздражение эпителия. При недостатках молибдена (Австралия, Новая Зеландия, Флорида) в организме нарушается обмен азота.

Другие микроэлементы также важны для здоровья человека. Например, у людей, живущих на северо-западе России, в Прибалтике, Германии, Финляндии, из-за недостатка селена в сердечной мышце довольно часто наблюдается инфаркт миокарда. При избытке селена у животных (более 2 мг/сут) наблюдаются признаки селеновой интоксикации: нарушается координация движений, у овец происходит выпадение шерсти, у птиц – перьев. Селен в труднорастворимых минеральных формах опасен и для человека. Наибольшая концентрация селена: прерии Северной Америки, Южный Урал, Забайкалье.

Одно из самых распространенных заболеваний на Земле – эндемический зоб, которое связано с недостатком в природной среде йода, что приводит к нарушениям гормональной функции щитовидной железы. Для профилактики этого заболевания в кухонную соль добавляют йодистый калий (7,5–10 г/т), употребляют в пищу морскую капусту. Широко известно эндемическое заболевание зубов – флюороз и кариес. Флюороз возникает от избытка фтора; кариес – при недостатке его в воде и пище. При этих заболеваниях разрушается и костная ткань.

Пестициды. Для борьбы с вредителями сельского и лесного хозяйства люди изобрели химические средства – пестициды. Несмотря на все выгоды (повышение урожайности сельскохозяйственных культур, уничтожение многих переносчиков заболеваний), постепенно начали проявляться и негативные последствия. Накопление их в природе отрицательно влияет на живые организмы. В организмах хищных животных третьего порядка концентрация дихлордифенилтрихлорэтана (ДДТ) в 500 тыс. раз выше, чем в окружающей среде. Многие пестициды сохраняются в окружающей среде десятки лет, участвуя в биологических круговоротах. Загрязнение организмов птиц пестицидами отрицательно влияет на образование скорлупы, снижает плодовитость, подавляет инстинкт гнездования, сказывается на наследственности.

Чрезмерное использование в отдельных странах в сельском хозяйстве нитратов и фосфатов загрязняет почвы и воды, ухудшает качество продуктов питания, вызывая заболевания крови. В растения азот поступает из почвы, а затем через продовольственные и кормовые культуры попадает в организм человека и животных. Сейчас сельскохозяйственные культуры чуть ли не полностью получают минеральный азот из химических удобрений, так как некоторых органических удобрений не хватает для обедненных азотом почв. Однако в отличие от органических удобрений в химических удобрениях не происходит свободного выделения в природных условиях питательных веществ. Особенно резко проявляется отрицательное действие удобрений и ядохимикатов при выращивании овощей в закрытом грунте. Это происходит потому, что в теплицах вредные вещества не могут беспрепятственно испаряться и уноситься потоками воздуха. После испарения они оседают на растения. Нитраты в организме человека могут переходить в очень токсичные вещества – нитриты. Нитраты, соединяясь с гемоглобином крови, переводят его в метгемоглобин, который препятствует перенесению кислорода в организмах животных и человека. Развивается заболевание, которое получило название метгемоглобинемия. Установлено, что использование кормов с содержанием нитратов более 4 % сухого веса кормов приводит к гибели сельскохозяйственных животных.

Моющие синтетические вещества являются сильным загрязнителем. Препятствуют поступлению кислорода в водную среду, токсичны для живых организмов.

1.1.3. Влияние природных факторов, питания и биологического загрязнения на здоровье человека

Для организации эффективного отдыха и лечения человека необходима определенная природная среда с соответствующим рельефом, климатом, растительностью, наличием водоемов, минеральных источников, целебных грязей и др. Природные условия должны отвечать тем качественным показателям, которые будут содействовать лечению, оздоровлению и развитию людей.

Климат. Среди природных факторов наибольшее значение имеет климат (температура воздуха, суммы температур, продолжительность периода с комфортными климатическими условиями, относительная влажность, ветер, солнечная радиация, продолжительность залегания снежного покрова и пр.). При организации лечения и отдыха природные факторы выступают как условиями, так и ресурсами отдыха. Человек всегда стремится в лес, в горы, на берег моря, реки или озера. Здесь он чувствует прилив сил, бодрости. Недаром говорят, что лучше всего отдыхать на лоне природы. Санатории, дома отдыха строятся в самых красивых уголках. Это не случайность. Оказывается, что окружающий ландшафт может оказывать различное воздействие на психоэмоциональное состояние. Созерцание красот природы стимулирует жизненный тонус и успокаивает нервную систему, поднимает настроение, снимает физическую усталость. Растительные биоценозы, особенно леса, оказывают мощный оздоровительный эффект. Медики считают, что эстетическое наслаждение, которое получает человек от наблюдения красот природы, приводит к снятию устойчивых очагов нервного напряжения в коре головного мозга.

Разнообразие пейзажей вместе с разнообразием рельефа – широкие многоплановые картины с полями, лесами, холмами – оказывают положительное влияние на психическое состояние человека, создавая комфорт души. Наибольшей эстетичностью и благоприятностью для отдыха обладают пограничные полосы между различными средами, и особенно между лесом и водоемами. Поэтому значительная часть зон расположена именно в такой местности. Так, для больного туберкулезом органов дыхания очень благоприятными являются сосновые боры, в то же время они запрещены для людей с сердечно-сосудистыми заболеваниями.

Ведущая роль в медико-биологической оценке природных условий принадлежит климату и воде. Влияние климата на человека проявляется через конкретную погоду. По температурным показателям «зона комфорта» – 17–23 °C. Отрицательное влияние на здоровье человека оказывают конкретные изменения погоды (изменение давления, осадков, температуры, ветра и др.). Комфортное состояние – наиболее благоприятное тепловое ощущение, когда человек не ощущает ни жары, ни холода, возникает при температуре внешней среды 31–33 °C.

В связи с тем, что природные факторы имеют неодинаковую ценность для организации рекреационных районов, им при оценке территории придается различная значимость. К факторам, которые должны быть положены в основу оценки, относятся: продолжительность благоприятных климатических условий, характер рельефа, наличие лесов, рек, озер и водохранилищ. К дополнительным факторам, которые учитываются при оценке, относятся: почвенный покров, характер пляжей, экскурсионных объектов природного характера (заказников, памятников природы, заповедников).

Ценность тех или других природных факторов изменяется в зависимости от времени года. Например, если летом густота речной сети и озерность выступают основными факторами, то при организации зимних видов отдыха учитываются отрицательные температуры, продолжительность залегания и толщина снежного покрова.

Питание оказывает важное влияние на здоровье человека. Каждый из нас знает, что пища необходима для нормальной жизнедеятельности организма. В течение всей жизни в организме человека непрерывно совершается обмен веществ и энергии. Источником необходимых организму строительных материалов и энергии являются питательные вещества, поступающие из внешней среды, в основном с пищей. Если пища не поступает в организм, человек чувствует голод. Но голод, к сожалению, не подскажет, какие питательные вещества и в каком количестве необходимы человеку. Мы часто употребляем в пищу то, что вкусно, что можно быстро приготовить, не очень задумываясь о полезности и доброкачественности употребляемых продуктов.

Врачи утверждают, что полноценное рациональное питание – важное условие сохранения здоровья и высокой работоспособности взрослых, а для детей еще и необходимое условие роста и развития. Для нормального роста, развития и поддержания жизнедеятельности организму необходимы белки, жиры и углеводы, витамины и минеральные соли в нужном ему количестве.

Нерациональное питание является одной из главных причин возникновения сердечно-сосудистых заболеваний, заболеваний органов пищеварения, болезней, связанных с нарушением обмена веществ. Регулярное переедание, потребление избыточного количества углеводов и жиров – причина развития таких болезней обмена веществ, как ожирение и сахарный диабет. Рациональное питание – важнейшее непременное условие профилактики не только болезней обмена веществ, но и многих других. Пищевой фактор играет важнейшую роль не только в профилактике, но и в лечении многих заболеваний: специальным образом организованное питание (лечебное питание) является обязательным.

Лекарственные вещества синтетического происхождения, в отличие от пищевых, являются для организма чужеродными. Многие из них могут вызывать побочные реакции, например аллергию. Поэтому при лечении больных следует отдавать предпочтение пищевому фактору.

В продуктах многие биологически активные вещества обнаруживаются в равных, а иногда и в более высоких концентрациях, чем в применяемых лекарственных средствах. Вот почему с древнейших времен многие продукты, в первую очередь овощи, фрукты, семена, зелень, применяют при лечении различных болезней.

Многие продукты питания оказывают бактерицидные действия, подавляя рост и развитие различных микроорганизмов. Так, яблочный сок задерживает развитие стафилококка; сок граната подавляет развитие сальмонелл; сок клюквы активен в отношении различных кишечных, гнилостных и других микроорганизмов. Всем известны антимикробные свойства лука, чеснока и других продуктов. К сожалению, весь этот богатый лечебный арсенал не часто используется на практике.

Но теперь появилась новая опасность – химическое загрязнение продуктов питания. Появилось и новое понятие – экологически чистые продукты. Очевидно, каждому из нас приходилось покупать в магазинах крупные, красивые овощи и фрукты, но, к сожалению, в большинстве случаев, попробовав их, мы выясняли, что они водянистые и не отвечают нашим требованиям относительно вкуса. Такая ситуация происходит, если сельскохозяйственные культуры выращиваются с применением большого количества удобрений и ядохимикатов. Такая сельскохозяйственная продукция может иметь не только плохие вкусовые качества, но и быть опасной для здоровья.

Биологические загрязнители. Кроме химических загрязнителей, в природной среде встречаются и биологические, вызывающие у человека различные заболевания. Это болезнетворные микроорганизмы, вирусы, простейшие, гельминты и др. Они могут находиться в атмосфере, воде, почве, в теле других живых организмов, в том числе и в самом человеке. Наиболее опасны возбудители инфекционных заболеваний. Они имеют различную устойчивость в окружающей среде. Одни способны жить вне организма человека всего несколько часов. Находясь в воздухе, в воде, на различных предметах они быстро погибают (менингококковая инфекция, грипп). Другие могут жить в окружающей среде от нескольких дней до нескольких лет (лептоспироз, сибирская язва, туляремия). Для третьих она является естественным местом обитания (легионеллез, листериоз). Для четвертых (бешенство, клещевой боррелиоз, трихинеллез) местом сохранения и размножения являются другие организмы, например дикие животные, насекомые.

Источником инфекции может являться почва, в которой могут находиться возбудители столбняка, ботулизма, газовой гангрены. В организм человека они попадают при повреждении кожных покровов, при нарушении правил гигиены. Болезнетворные микроорганизмы могут проникать в грунтовые воды и становиться причиной болезни. Поэтому рекомендуется кипятить воду из колодцев, родников. Особенно загрязненными бывают открытые источники воды: пруды, реки, озера. Описаны многочисленные случаи, когда загрязненные источники воды становились причинами эпидемии холеры, вспышек брюшного тифа, дизентерии.

При воздушно-капельной инфекции заражение происходит через верхние дыхательные пути при вдыхании воздуха, содержащего болезнетворные микроорганизмы. К ним относят грипп, коклюш, дифтерию, инфекционный мононуклеоз и другие, при которых возбудители попадают в воздух во время разговора, при чихании, кашле.

Особую группу составляют инфекционные болезни, передающиеся при тесном контакте с больными или при пользовании его вещами, например полотенцем, носовым платком, зубной щеткой, бритвой. К ним относятся такие заболевания, как сифилис, гонорея, гепатиты В и С, ВИЧ-инфекция.

Люди и домашние животные могут заражаться природно-очаговыми заболеваниями, попадая на территорию природного очага. Человек, вторгаясь в природу, нередко нарушает естественные условия существования болезнетворных организмов, и сам становится жертвой. К таким заболеваниям относят чуму, малярию, туляремию. Особенностью природно-очаговых заболеваний является то, что их возбудители существуют в природе в пределах определенной территории вне связи с людьми. Они паразитируют в организме диких животных. Передача возбудителей от животных к животному и от животного к человеку происходит через переносчиков – насекомых и клещей (клещевой энцефалит, боррелиоз, трипаносомоз).

Всестороннее изучение человека, его взаимоотношений с окружающим миром привели к пониманию, что здоровье – это не только отсутствие болезней, но и физическое, психическое и социальное благополучие человека. Здоровье – это капитал, данный нам не только природой от рождения, но и теми условиями, в которых мы живем.

1.1.4. Эпидемиология и эпидемиологический процесс

Греческое слово epidemia (от epi – сверх и demos – народ) обозначало массовое распространение инфекционных заболеваний. Когда болезнь охватывала многие государства и даже континенты, речь шла о pandemia. На Руси эпидемию называли мором или повальной болезнью.

Эпидемиями и эпидемиологическими процессами занимается такой раздел медицины, как эпидемиология.

У профессора Л. П. Зуевой эпидемиология – наука, изучающая закономерности возникновения и распространения любых патологических состояний среди людей и разрабатывающая меры борьбы и профилактики.

J. M. Last: «Эпидемиология – наука о распространении относящихся к здоровью (человека) состояний или событий в определенных популяциях и их детерминант, а также применение этих исследований в контроле над проблемами здоровья».

Эпидемический процесс – процесс взаимодействия возбудителя-паразита и организма на популяционном уровне, проявляющийся при определенных социальных и природных условиях.

Эпидемиологический процесс – процесс распространения инфекционных заболеваний в человеческом обществе, заключающийся в формировании цепи эпидемических очагов, последовательно возникающих один за другим.

Эпидемический очаг – местонахождение источника инфекции и окружающая его территория, в пределах которой возможно распространение возбудителя болезни, что обуславливает механизм передачи. Эпидемический очаг является основным элементом эпидемического процесса, зависит от патогенности возбудителя, восприимчивого коллектива, среды обитания людей, распространения инфекционных заболеваний. Эпидемический очаг существует в течение срока, равного максимальному инкубационному периоду и времени изоляции источника и проведения дезинфекции.

Инфекционный процесс (инфекция) – это взаимодействие возбудителей-паразитов и восприимчивого организма. Он выражается в виде болезни и бессимптомного носительства.

Инфекционный очаг – локализация возбудителя в организме человека или животного. Например, при шигеллезах – толстый кишечник, при дифтерии гортани – гортань и т. д. Проявления эпидемического процесса неодинаковы по своим количественным показателям:

– спорадическая заболеваемость – единичные, не связанные между собой случаи болезни;

– эпидемическая заболеваемость – вспышка, эпидемия, пандемия.

Количественные критерии зависят от вида инфекционного заболевания, его распространенности:

– экзотические болезни – не свойственные для данной территории, возникающие посредством завоза из другой страны;

– эндемическая заболеваемость – постоянно существующая на данной территории среди людей в силу природных, бытовых или социальных условий.




При отсутствии хотя бы одного фактора эпидемический процесс невозможен.

Источник инфекции – естественная среда обитания, в которой живет, питается и размножается возбудитель, из которой он выходит для заражения восприимчивого организма.

Если источник инфекции – человек, то такие заболевания называют АНТРОПОНОЗЫ (таких инфекций большинство: острое респираторное заболевание (ОРЗ), дизентерия, холера, брюшной тиф, вирусные гепатиты). Если источник инфекции – животное, то – ЗООНОЗЫ (лептоспироз, псевдотуберкулез, бруцеллез). Инфекции, источником которых могут быть и человек, и животные – АНТРОПОЗООНОЗЫ (сальмонеллезы). Также выделяют инфекции, где источником является окружающая среда, – САПРОНОЗЫ (клостридиозы – анаэробная инфекция, столбняк, газовая гангрена, ботулизм).

Механизм передачи инфекции – типичная или специфическая способность возбудителя перемещаться из одного организма в другой. Механизм передачи – то, каким образом происходит передача инфекции. Путь – совокупность факторов передачи или один фактор передачи, т. е. элементы среды, обеспечивающие перемещение возбудителя в данное конкретное время и в данной конкретной обстановке, – это то, через какие объекты происходит передача инфекционного агента.

Пути передачи инфекции – конкретные элементы внешней среды, которые обеспечивают перенос возбудителя из одного организма в другой.

Факторы передачи инфекции – объекты внешней среды, на которых возбудитель может жить и которые обеспечивают его дальнейшее перемещение. Факторами передачи могут быть воздух, пища, вода, почва, предметы быта, живые переносчики.

Фазы механизма передачи:

1. Выделение заразного начала из организма.

2. Пребывание во внешней среде.

3. Внедрение возбудителя в новый организм.

Первая фаза – выделение:

а) физиологические акты;

б) патологические акты;

в) искусственные акты;

г) с помощью кровососущих насекомых.

Вторая фаза – пребывание во внешней среде – факторы передачи:

а) пищевые продукты;

б) вода;

в) воздух;

г) предметы быта;

д) почва.

Третья фаза – механизм передачи и локализация возбудителя находятся в единстве:




Выделяют 5 механизмов передачи инфекции:

1. Фекально-оральный:

– водный путь. Характеризуется широким охватом населения, формы заболеваний обычно легкие и стертые;

– пищевой путь возможен, когда происходит размножение микроорганизмов в пищевых продуктах и затем при употреблении таких продуктов в пищу, чаще имеет локальный характер;

– контактно-бытовой путь – передача инфекции через грязные руки (дизентерия – болезнь грязных рук) и предметы обихода, предметы личной гигиены – полотенце, зубная щетка и т. д. Доза возбудителя обычно мала, следовательно, болеют дети, ослабленные лица, лица без гигиенических навыков.

2. Аэрозольный (аэрогенный). Заражение происходит через воздушную среду:

– воздушно-капельный путь, по которому происходит заражение практически всеми детскими инфекциями ОРЗ;

– воздушно-пылевой путь, при котором имеется возбудитель, устойчивый во внешней среде (туберкулез, большинство зоонозов, кишечные инфекции).

3. Контактный:

– собственно контактный путь – непосредственный контакт с кожей (чесотка, герпес);

– кровоконтактный путь – при непосредственном контакте с инфекционным агентом (гепатиты В и С);

– перкутанный (кровоконтактный) путь, при котором заболевание возникает после введения инфицированной крови (парентеральные вирусные гепатиты, ВИЧ);

– половой путь – это все заболевания, передающиеся преимущественно половым путем (гонорея, сифилис, хламидийная инфекция и др.);

– перинатальный – путь, в котором отдельно выделяют интранатальный – при прохождении плода через родовые пути матери (гонорея, герпес, вирусный гепатит В) и постнатальный – через грудное молоко, слюну.

4. Трансмиссивный: осуществляется при участии живого переносчика, в основном посредством членистоногих (клещевой энцефалит, сыпной тиф, боррелиоз, малярия и т. д.).

5. Вертикальный: трансплацентарный путь – передача от матери плоду трансплацентарно (врожденная краснуха, цитомегаловирусная инфекция).

Восприимчивость – свойство организма отвечать инфекцией на встречу с возбудителем. Это свойство необходимо для поддержания эпидемического процесса.

Восприимчивый организм или восприимчивый коллектив – это организм или коллектив, который может ответить инфекционным процессом. Например, при вирусном гепатите В восприимчивость населения 100 %, т. е. рецептор к сывороточному альбумину один у всех.

Невосприимчивость может быть приобретенной, что называется иммунитетом – это комплекс изменений в организме, связанный с появлением антигенов, конечной фазой которого является выработка антител. Иммунитет может быть:

активный естественный. Формируется после того, как человек переболел какой-либо инфекцией и далее не чувствителен к микроорганизмам этого вида (например, корь);

пассивный естественный. Представляет собой наличие иммуноглобулинов класса G, полученных трансплацентарно;

активный искусственный. Возникает при введении вакцин (убитых или ослабленных возбудителей) или анатоксинов;

пассивный искусственный. Возникает при введении готовых антител – сыворотки (гомологичные и негомологичные);

Также важную роль играют неспецифические факторы защиты – кожа, нормальная микрофлора, кислотность желудка, фагоцитарно-макрофагальная система и пр.

Факторы эпидемического процесса.

1. Биологический – проявления жизнедеятельности возбудителя инфекционной болезни, т. е. эволюционно выработанные взаимоотношения возбудителя с организмом человека и внешней средой, обеспечивающие их существование как биологического вида и отдельных популяций (по В. Д. Белякову).

2. Социальный – совокупность общественных отношений, определяемая способом производства материальных благ, и обусловленные ею отдельные социальные элементы, которые оказывают влияние на эпидемический процесс, препятствуя его возникновению.

Социальные факторы: миграционные процессы, связанные с природными и социальными катаклизмами, урбанизация, интенсивность транспортных связей, уровень развития системы здравоохранения и т. д. Влияние социальных условий увеличивается от природного очага к антропургическому очагу.

3. Природный – совокупность абиотических (климатических) и биотических (живых) элементов внешней среды, которые непосредственно или опосредованно оказывают воздействие на эпидемический процесс, способствуют или препятствуют проявлению жизнедеятельности возбудителей инфекционных заболеваний.

Природные факторы: климат, ландшафт, геофизические факторы (почва, растительный покров). Значение природных факторов уменьшается в антропургическом очаге.

1.1.5. Медико-эпидемиологические особенности современного развития общества

Будучи частью медицины, эпидемиология отличается от медицинской практики подходом к проблеме. Врач рассматривает особенности больного и помогает ему. Эпидемиолог изучает различия и общие свойства больных, чтобы помочь большим группам людей.

Экзогенный и эндогенный – основные подходы к пониманию болезней. Понимание болезней как экзогенных ведет к поиску внешнего начала. Такими были медицинские и эпидемиологические теории, связывавшие заболевания с «миазмами», особенностями местности, другими внешними причинами. Это направление послужило основой для выделения общих для заболевающих людей внешних агентов, таких как микроорганизмы, химические вещества, условия труда. Поскольку под очевидным действием одинаковых условий заболевают обычно не все люди, всегда остается место для внимания к различиям людей – «конституционального» подхода на основе изучения устойчивости к внешним воздействиям.

При выделении новых болезней всегда встает вопрос об их происхождении. Одни болезни были распознаны как экзогенные, инфекционные очень давно (малярия), другие – позднее. Например, специфическое поражение нервной системы при сифилисе долго считали следствием склонности к путешествиям, а язвенную болезнь до 1980-х гг. рассматривали как «политологическую» и «психосоматическую» болезнь. Происхождение третьих до сих пор остается неясным, и они рассматриваются как эндогенные (шизофрения, «эссенциальная» артериальная гипертензия). Современное понимание возникновения и течения болезней опирается на представление о взаимодействии экзогенных и эндогенных факторов. Соответственно, в эпидемиологическом исследовании ставится вопрос не только о главной причине, но и об условиях, изменяющих взаимодействие организма с внешним агентом. В результате не только достигается полное понимание процесса, но и разрабатываются способы изменить течение болезни или распространение инфекции, воздействуя на условия, а не только на причину.

Эпидемиология как наука возникла из изучения распространения инфекционных болезней. Это объясняется тем, что инфекционным болезням присуще быстрое внезапное распространение, привлекающее внимание и ставящее проблемы популяции впереди проблемы отдельного больного. Катастрофические эпидемии чумы, проказы, холеры оказали глубокое влияние на все аспекты человеческой культуры, а не только на медицину. Успехи вакцинации, антимикробной терапии и улучшение условий жизни уже в первой половине XX в. привели к снижению смертности от основных инфекционных болезней в экономически благополучных странах. Неинфекционные болезни (сердечно-сосудистые болезни, рак, язвенная болезнь) после Второй мировой войны прочно заняли 1-е место в структуре смертности. Распространению инфекционных болезней обоснованно дали название эпидемий.

Эпидемиология определяется как наука, изучающая причины, условия и механизм формирования заболеваемости населения путем анализа ее распределения по территории, среди различных групп и коллективов, а также во времени и у субъектов с различающимися характеристиками (Власов В. В., 2004). Эпидемиологи последовательно понимают совокупность заболеваний в популяции. Заболеваемость проявляется в статистических показателях, используемых эпидемиологами, – показателях частоты, отражающих различные стороны распространения болезней в популяции. Как болезнь отражает состояние здоровья человека, так показатели заболеваемости отражают состояние здоровья популяции.

Различают: индивидуальное здоровье (здоровье личности, отдельного человека); здоровье отдельных групп людей, объединенных каким-либо признаком (возрастом, профессией, местом проживания и т. д.), и общественное здоровье – понятие более высокого (социального) уровня, характеризующее состояние здоровья населения страны, региона, определенной административной территории.

1.1.6. Показатели общественного здоровья

Индекс здоровья населения – соотношение болевших и не болевших лиц (или доля не болевших лиц за определенный период времени в общей численности населения).

Потенциал здоровья – мера количества и качества здоровья, измеряемых комплексом показателей. Прежде всего к ним относят уровень заболеваемости – инфекционной, неинфекционной, онкологической, профессиональной, внутрибольничной, травматизма. Помимо этого, каждую из названных категорий заболеваемости оценивают по тяжести течения (и исхода) как заболеваемость с временной утратой трудоспособности, заболеваемость со стойкой утратой трудоспособности, или инвалидность, и заболеваемость со смертельным исходом, или летальность.

Наряду с заболеваемостью важнейшими показателями, характеризующими общественное здоровье, служат демографические и медико-демографические коэффициенты: рождаемость, смертность, естественный прирост (убыль) населения, а также младенческая смертность и смертность по причинам и возрастно-половым группам.

В последние годы, помимо названных критериев, для оценки здоровья населения используют частоту и характер состояний, предшествующих развитию патологии. Донозологическая диагностика как метод исследования и оценки адаптации организма к негативному воздействию различных факторов среды должна стать основой прогнозирования здоровья населения – это изучение иммунного, психического статуса, функционального состояния систем биохимической защиты, состояния сердечно-сосудистой и респираторной систем, желудочно-кишечного тракта (ЖКТ) и др. Для выявления людей с ранними стадиями заболеваний (до обращения за медицинской помощью) предназначены скрининговые исследования.

Факторы, оказывающие влияние на состояние здоровья населения, могут быть связаны с образом жизни, состоянием окружающей среды, генотипом популяции и обеспеченностью населения медицинской помощью. Так, удельный вес влияния образа жизни (курения, употребления алкогольных напитков и наркотиков, злоупотребления лекарственными средствами, характера питания, условий труда, материально-бытовых условий, семейного положения и др.) составляет 49–53 %, вклад генетических и биологических факторов – 18–22 %, развития здравоохранения (своевременность и качество медицинской помощи, эффективность профилактических мероприятий) – 8–10 %, вредного влияния окружающей среды (природно-климатических факторов, состояния атмосферного воздуха, воды, почвы, пищевых продуктов) – 17–20 %.

Основной предмет интереса эпидемиологии – заболеваемость населения. Ее можно представить как одно из объективных массовых явлений, отражающих влияние неблагоприятных внешних факторов на население. С другой стороны, заболеваемость – статистическая величина, определяемая совокупностью объективных (причинных) и субъективных (качество выявления, диагностика и т. д.) факторов. То есть к заболеваемости применимо понятие о феномене «айсберга». Изменившиеся технологические возможности позволили выявлять как новые болезни, так и диагностировать легкие формы болезни, бактерионосительство, ранее недоступные для распознавания, а, следовательно, и нерегистрировавшиеся.

Показатели заболеваемости различными болезнями образуют сложную упорядоченную структуру. Размерность этого показателя – количество случаев на 100, 1 000, 10 000 или 100 000 населения. Эпидемиологический смысл показателя состоит в том, что он отражает частоту заболевания либо риск его развития. Помимо количественной характеристики, показатель заболеваемости может отражать диагноз, время, место, индивидуальную характеристику больного (пол, возраст и др.).

Причина болезни – событие, условие, свойство или комбинация этих факторов, играющих важную роль в возникновении той или иной патологии. Причина логически предшествует заболеванию. Причину расценивают как «достаточную», если она неизбежно вызывает или инициирует болезнь, и как «необходимую», если при ее отсутствии развитие болезни невозможно. Достаточная причина редко бывает единичным фактором, она часто объединяет несколько компонентов. Например, курение – один из компонентов достаточной причины развития рака легких. Само по себе курение не считают достаточной причиной для возникновения этой болезни (некоторые люди, курившие на протяжении 50 лет, раком легких не страдают), для этого необходимы и другие факторы, по большей части остающиеся неизвестными. Однако прекращение курения приводит к снижению доли этой патологии в популяции, даже если другие компоненты причины остаются без изменений.

Каждая достаточная причина в качестве компонента включает необходимую причину. Например, при расшифровке вспышки пищевой токсикоинфекции (ПТИ) было установлено, что употребление двух блюд могло привести к возникновению сальмонеллезного гастроэнтерита. В данном случае необходимая причина – присутствие бактерий в обоих блюдах или в одном из них. Причинным следует считать только тот фактор, без которого болезнь не может возникнуть ни при каких обстоятельствах. При отсутствии патогенных микроорганизмов соответствующие болезни не могут развиться, даже при особо благоприятных условиях для заражения и готовности организма к развитию патологического процесса.

Болезни неинфекционного генеза обычно бывают вызваны разнообразными по своей природе причинами (химическими, физическими, психогенными, генетическими и др.), и в то же время один-единственный фактор, например курение, может стать непосредственной причиной многих болезней. Эффект от двух или более одновременно действующих причин часто бывает большим, чем это можно было бы ожидать при суммировании эффектов от каждой причины в отдельности. Это явление, называемое взаимодействием, можно проиллюстрировать на примере курящих, контактировавших с асбестовой пылью. Риск развития рака легких в этой группе гораздо выше, чем в том случае, когда просто суммируются риск, связанный только с курением, и риск, появляющийся только от вдыхания асбестовой пыли.

На воздействие причинного фактора организм отвечает системой защитных реакций, определяющих возможность клинического проявления болезни. Первичное и основное звено развития болезни – повреждение. При инфекционной болезни повреждение макроорганизма начинается с изменения строения и свойств различных молекул в клетках тканей, где размножаются микроорганизмы, при этом клетки могут погибать. Но развитие, течение и исход инфекционной болезни в значительной степени, кроме процессов повреждения, определяется реактивностью организма. Инфекционная болезнь развивается в условиях неспособности организма предотвратить нарушения, вызываемые возбудителем. Инфекционную болезнь может вызывать один возбудитель, и в таких случаях говорят о моноинфекции. Иногда инфекционное заболевание бывает результатом действия двух или нескольких микроорганизмов (микстинфекция). С другой стороны, некоторые болезни возникают лишь при условии значительного снижения реактивности макроорганизма, вызванного генетическими или внешними факторами. Так, СПИД развивается у ВИЧ-инфицированных лиц на фоне выраженного иммунодефицита с присоединением оппортунистических инфекций или новообразований.

Перед традиционной эпидемиологией инфекционных болезней стоит много нерешенных проблем. Изменившаяся социально-экономическая обстановка и ухудшившаяся экологическая ситуация способствовали эволюции эпидемического процесса многих инфекционных болезней.

Многие болезни, близкие, как казалось, к полной ликвидации (например, малярия, холера, туберкулез), начиная с середины 1980-х гг., вновь стали представлять высокую эпидемиологическую опасность во многих странах мира. Не случайно в 1997 г. Всемирный день здоровья (7 апреля) проводили под девизом «Инфекционные болезни наступают – все на борьбу с глобальной опасностью». Ситуацию усугубляет растущая устойчивость микроорганизмов к используемым лекарственным препаратам и дезинфектантам. Из-за устойчивости возбудителей малярии, туберкулеза, менингитов и пневмоний к лекарственным препаратам ежегодно в мире погибают миллионы людей. Широкое бесконтрольное применение антибиотиков вызывает изменение микробного биоценоза человека, снижает его сопротивляемость по отношению к микроорганизмам. Ухудшившаяся экологическая обстановка и большие психоэмоциональные нагрузки привели к значительному увеличению распространенности иммунодефицитов. Следствием этого стали существенное возрастание эпидемиологического значения условно-патогенных микроорганизмов и увеличение частоты заболеваемости оппортунистическими инфекциями (герпетической, цитомегаловирусной инфекцией, токсоплазмозом, микоплазмозами, криптококкозом, криптоспоридиозом и др.).

Опасность инфекционных болезней связана не только с «реставрацией» хорошо известных, но уже порядком забытых заболеваний, но и с появлением новых, прежде неизвестных человечеству инфекционных болезней. За последние 20 лет выявлено более 30 новых болезнетворных микроорганизмов. Многие из этих новых инфекций характеризуются тяжелым течением, высокой летальностью, отсутствием надежных методов диагностики и профилактики. В последние годы открыт совершенно новый класс возбудителей, характеризующийся отсутствием носителей генетической информации, но обладающий способностью к репликации. Инфекционный очаг белкового происхождения, обозначенный термином «прион» (от англ. Proteinaceousinfectious particle – белковая инфекционная частица), вызывает нейродегенеративные заболевания у животных и человека. Изучение прионов и связанных с ними заболеваний – новая проблема, представляющая большой интерес для медицины и ветеринарии.

Особое беспокойство вызывает обеспечение безопасности лекарственных препаратов, медицинских изделий и косметических средств, получаемых из органов и тканей крупного рогатого скота, прежде всего в странах с зарегистрированными случаями заболеваний животных.

Среди факторов, способствовавших возникновению новых инфекционных болезней (возбудителей болезни), можно выделить следующие:

– экологические изменения, обычно ускоряющие появление инфекционной болезни посредством контакта людей с природным резервуаром или хозяином инфекции. Наиболее серьезное экологическое изменение XXI века – глобальное потепление. Оно неизбежно вызовет рост инфекционных заболеваний, распространяющихся посредством переносчиков и воды (холеры, малярии, шистосомоза, африканского трипаносомоза, арбовирусных инфекций, желтой лихорадки и др.), а также изменение границ естественных ареалов этих инфекций;

– демографические сдвиги и изменения в поведении людей, позволяющие инфекционным агентам, циркулирующим в изолированных сельских районах, проникать в большие человеческие популяции городов и распространяться по всему миру (лихорадка Денге, ВИЧ-инфекция, нетрансмиссивные геморрагические лихорадки Эбола, Марбург, Ласса и др.);

– международный туризм и коммерция способствуют разносу возбудителей инфекционных болезней по всему миру. Однако для того, чтобы возбудитель получил возможность циркулировать в новом для него регионе, в последнем должны присутствовать условия, благоприятные для возбудителя (наличие переносчиков или чувствительной популяции, определенные поведенческие стереотипы и др.);

– новые технологии в медицине и производстве продуктов питания и других продуктов биологического происхождения, как правило, увеличивают риск появления новых болезней или формирования необычных для известных возбудителей путей передачи. Не меньшее значение имеют создание условий для нетрадиционных путей заражения, формирование техногенных очагов, артифициальные пути инфицирования и т. д. (иерсиниозы, ротавирусный гастроэнтерит, вирусные гепатиты B и C, вспышки диарей, вызванные токсигенными штаммами кишечной палочки, криптоспоридиоз, прионные инфекции, госпитальные инфекции, ВИЧ-инфекция и др.);

– микробные адаптации и изменения либо способствуют образованию новых эпидемических вариантов возбудителей инфекционных болезней, либо изменяют патогенез вызываемых ими заболеваний (пенициллиноустойчивые пневмококки, гонококки, мультирезистентные штаммы возбудителя тропической малярии, туберкулеза, токсигенные стрептококки группы А, устойчивые к ванкомицину энтерококки, резистентные к левомицетину и другим препаратам брюшнотифозные бактерии и др.).

Распространение инфекционных болезней, как уже говорилось выше, может представлять серьезную опасность (демографическую, экономическую, снижать обороноспособность) не только для какой-либо одной страны или отдельного региона, но и для всего населения мира.

Национальная безопасность – историческая задача любого государства.

Биологическая безопасность – требование настоящего времени в мировом масштабе. Биологическую опасность можно определить как опасность для здоровья и жизни человека, связанную с воздействием на него агентов (патогенов) биологической природы. Биологическая безопасность означает предотвращение ущерба и достижение защищенности каждого человека, общества и государства от потенциальных и реально существующих биологических угроз. Биологические патогены могут быть разделены по своему происхождению на природные (естественные) и искусственно созданные.

Основные источники биологической опасности для населения, животных и растений:

– естественные резервуары патогенных микроорганизмов (эпидемические цепочки антропонозных и зоонозных болезней, сохранение возбудителей на субстратах окружающей среды);

– ввоз на территорию Российской Федерации патогенных микроорганизмов, ранее здесь не встречавшихся (возбудителя тропической малярии, лейшманиоза), или возбудителей ранее неизвестных болезней (листериоза, вирусных гепатитов D и G, легионелл, ВИЧ и др.);

– аварии и диверсии на объектах, где проводят работы с патогенными микроорганизмами;

– лечебно-профилактические учреждения (ЛПУ) – распространение возбудителей внутрибольничной инфекции (ВБИ);

– биологический терроризм во всех его проявлениях.

Вторая угроза исходит от успехов высоких технологий – генной инженерии и биотехнологии. Организмы, модифицированные при помощи методов генной инженерии, могут представлять большую опасность в результате их диверсионной направленности или непредсказуемости эпидемиологических и экологических последствий при неконтролируемом попадании во внешнюю среду. Манипулирование генами может привести к повышению антигенных свойств подопытных микроорганизмов, но и иммунная защита организма может оказаться неэффективной в связи с формированием новых иммунодоминантных эпитопов.

Необходимо помнить, что для инфекций не существует национальных границ. Поэтому мировое сообщество не должно игнорировать появление или повышение инфекционной заболеваемости где-либо. В борьбе между людьми и патогенными микроорганизмами неусыпная бдительность – цена выживания.

Инфекционные болезни не прощают бездеятельности или ослабления внимания, они мстят активизацией, ростом заболеваемости и смертности. Примерами служат недавние эпидемии дифтерии и полиомиелита, «возвращение» кори, повышение заболеваемости коклюшем и эпидемическим паротитом, справиться с которыми стало возможно благодаря огромному напряжению сил и средств, восстановлению утраченного коллективного иммунитета и организации строгого эпидемиологического контроля.

Причина «возвращения» многих болезней – неблагоприятное влияние комплекса социально-экономических и экологических факторов, среди них не последнее место занимает и свертывание программ иммунизации населения. К таким факторам в Российской Федерации можно отнести неоправданно большое количество противопоказаний для вакцинации детей, отказ и необоснованные отводы от прививок, широкую кампанию в прессе против вакцинации, массовое применение препаратов с уменьшенным содержанием антигенов (Аг), несоблюдение «холодовой цепи». Все это привело к формированию слоя населения со слабой иммунной системой и к росту заболеваемости инфекционными заболеваниями, вполне управляемыми при помощи средств иммунопрофилактики. Подобное неблагополучие нельзя объяснить только социальными переменами последних лет, так как рост числа невакцинированных детей происходил в течение последних двух десятилетий.

Человек на протяжении веков стремился не приспособиться к природной среде, а сделать ее удобной для своего существования, но ухудшение состояния биосферы отражается на всех живых существах, в том числе и на человеке.

1.2. Понятие о болезни

Болезнь – своеобразный жизненный процесс, возникает под влиянием действующих на организм вредоносных факторов, выражается в комплексе метаболических и определенных структурных изменений, а также нарушений функций и приспособляемости, ограничений работоспособности и социально-полезной деятельности.

При действии ряда патогенных факторов в жизнедеятельности организма может возникнуть период, который характеризуется снижением его адаптационных возможностей при сохранении постоянства внутренней среды. Предболезнь – состояние организма на грани здоровья и болезни. Оно или переходит в выраженную форму какой-либо болезни, или через некоторое время заканчивается нормализацией функций организма.

Кроме понятия «болезнь» существуют понятия «патологическая реакция», «патологический процесс» и «патологическое состояние».

Патологическая реакция – неадекватный и биологически нецелесообразный ответ организма или его систем на воздействие обычных или чрезвычайных раздражителей.

Патологический процесс – закономерно возникающая в организме последовательность реакций на повреждающее действие патогенного фактора. Один и тот же патологический процесс может быть вызван различными причинными факторами и являться компонентом различных заболеваний, сохраняя при этом свои отличительные черты. Например, воспаление может быть вызвано действием механических, физических, химических и биологических факторов. С учетом природы причинного фактора, условий возникновения и ответной реакции организма оно отличается большим разнообразием, однако во всех случаях воспаление остается целостной, стандартной реакцией на повреждение тканевых структур.

Патологическое состояние – стойкое, мало меняющееся во времени отклонение структуры и функции органа (ткани) от нормы, имеющее биологически отрицательное значение для организма. Причины – патологическая наследственность, а также ранее перенесенные патологические процессы (последствия травм – рубцы, утрата конечности, отсутствие подвижности в суставе, хромота, ложные суставы) и заболевания (горб в результате туберкулеза позвоночника, деформация скелета после перенесенного рахита).

Обычно патологические состояния не содержат непосредственных предпосылок к заметной динамике и усугубляются в основном за счет присоединения возрастных изменений. Вместе с тем оно может привести к возникновению вторичных более или менее быстро развивающихся патологических процессов или болезней. Например, стойкое рубцовое сужение пищевода вызывает значительные нарушения пищеварения; длительно существовавшее родимое пятно после многократного облучения ультрафиолетовыми лучами переходит в быстро развивающийся патологический процесс – злокачественную опухоль, меланобластому и т. д.

Основные формы возникновения, течения и окончания болезни.

Исходы болезни.

Факторы многообразия форм возникновения:

– характер причины;

– длительность действия патогенного фактора;

– локализация этого воздействия;

– ответная реакция на него организма.

Течение заболеваний может быть:

– типическим – в том случае, если обнаруживаются характерные для данного заболевания симптомы (признаки);

– атипическим – характеризуется отклонением от обычного и может проявляться в виде стертой (с невыраженной или слабо выраженной симптоматикой), абортивной (с укороченным течением, быстрым исчезновением всех болезненных проявлений и внезапным выздоровлением) или молниеносной (быстро нарастающая симптоматика и тяжелое течение заболевания) форм;

– рецидивирующим – возобновление или усугубление проявлений болезни (обострение) после их временного исчезновения, ослабления или приостановки болезненного процесса (ремиссии);

– латентным – внешне не проявляющееся течение заболевания.

Если к основному заболеванию присоединяется другой патологический процесс или другое заболевание, которые не обязательны для данной болезни, но возникают в связи с ней, они называются осложнениями.

По продолжительности течения различают виды заболеваний:

– острые – до 2 нед.;

– подострые – 2–6 нед.;

– хронические – свыше 6–8 нед.

В течении многих заболеваний могут быть выделены следующие периоды:

– скрытый, или латентный – время между действием причины и появлением первых симптомов болезни. При инфекционных болезнях он называется инкубационным. Этот период может длиться от нескольких секунд (острое отравление) до многих лет;

– продромальный (период предвестников болезни) – характеризуется главным образом неспецифическими симптомами, свойственными многим заболеваниям (недомогание, головная боль, ухудшение аппетита, озноб, лихорадка и т. д.). Одновременно в этом периоде включаются защитные и приспособительные реакции организма;

– период полного развития болезни – характеризуется типичной для данного заболевания клинической картиной с выявлением специфических признаков, отличающих его от других;

– окончание заболевания – может быть критическим и литическим. Критическое окончание – резкое изменение течения заболевания, как правило, к лучшему. Литическое окончание характеризуется медленным исчезновением симптомов заболевания.

Исходом болезни может быть:

– выздоровление – восстановление нормальной жизнедеятельности организма после болезни. О выздоровлении судят по морфологическим, функциональным и социальным критериям;

– полное выздоровление – характеризуется практически полным восстановлением нарушенных во время болезни структур и функций организма, приспособительных возможностей и трудоспособности;

– неполное выздоровление, или переход в патологическое состояние, которое характеризуется неполным восстановлением нарушенных во время болезни структур и функций с ограничением приспособительных возможностей организма и трудоспособности;

– смерть является самым неблагоприятным исходом болезни и относится к группе преждевременных смертей.

1.2.1. Этиология и патогенез

Этиология (от греч. этио – причина, логос – учение) – учение о причинах и условиях возникновения болезней. Факторы, вызывающие или способствующие их появлению, называются этиологическими.

Для врача необходимо выявление причин и условий возникновения болезней для профилактики и рационального лечения заболеваний. И. П. Павлов говорил: «Только познав все причины болезней, медицина превратится в медицину будущего».

Однако выявление причин болезней представляет значительные трудности, так как они действуют на человека значительно раньше, чем он обращается к врачу. Выделяют внешние и внутренние причины заболеваний. Внешние (экзогенные) причины – заболевание возникает в результате воздействия факторов внешней среды. Внутренние (эндогенные) – факторы или причины заболевания, заложенные в самом организме. В развитии патологического процесса крайне редко действуют изолированно внешние или внутренние причины, чаще всего они взаимосвязаны. В каждом конкретном случае необходимо выяснить преимущественное значение того или иного фактора: внешние факторы, изменение свойств самого организма, способность реагировать на раздражители.

Внешние (экзогенные) причины заболеваний. При определенных условиях любой фактор внешней среды может стать причиной заболевания. По характеру оказываемого воздействия внешние (экзогенные) факторы можно объединить в следующие группы: физические, химические, биологические, социальные, алиментарные, недостаточная двигательная активность (гиподинамия), избыточная двигательная активность, психогенное влияние и т. д.

1. Физические факторы заболеваний. Это достаточно многочисленная группа физических (экзогенных) факторов. К ним относятся механические и термические факторы, лучистая энергия, электрический ток, изменения атмосферного давления.

Механические факторы внешнего воздействия: удары, разрезы, уколы, растягивания, сотрясения. В результате их действия возникают повреждения – ушибы, ссадины, раны, вывихи, переломы, сдавление и размозжение тканей, растяжения и разрывы связок и мышц, сотрясение тканей, парезы и параличи, разрывы внутренних органов, кровоизлияния и кровотечения. При воздействии любой механической травмы у человека рефлекторно возникают следующие общие явления: снижение температуры тела, острая недостаточность кровообращения, снижение артериального давления, нарушение функции дыхания и другие изменения, характерные для травматического шока.

Травматический шок – это состояние организма, которое возникает рефлекторно при действии чрезмерного раздражителя (боли) и проявляется в остром расстройстве кровообращения с резким падением артериального давления и угнетением всех жизненно важных функций. Травматический шок может привести к летальному исходу.

В основе клинических проявлений шока лежат нарушения центральной нервной системы. Чрезмерное раздражение вызывает сильное возбуждение (эректильная фаза шока), затем развивается торможение в коре головного мозга, иррадиирующее в подкорковую область (торпидная фаза).

Повреждение крупных нервных стволов, большая потеря крови, охлаждение, переутомление, голодание, отравление и др. могут способствовать развитию шока. Однако механические повреждения могут быть опасны для жизни и без развития шока, например, при сильном кровотечении, повреждении сердца, головного мозга и т. п. Также, если в поврежденные ткани проникает инфекция, развивается воспалительный процесс, ухудшается общее состояние человека.

Термические факторы внешнего воздействия вызывают общие и местные поражения. При воздействии высокой температуры (вода, металл и др.) возникают ожоги кожи. В зависимости от площади и глубины ожогов развиваются общие изменения в организме (ожоговая болезнь). Общее действие внешней высокой температуры при повышенной влажности воздуха и отсутствии ветра приводит к перегреванию организма (тепловой удар).

Низкая температура вызывает местные (отморожение) и общие (замерзание) поражения организма. При кратковременном охлаждении нарушается сопротивляемость организма, что способствует возникновению простудных заболеваний или обострению хронически протекающих болезней. При длительном охлаждении у человека развивается сонливость, снижается артериальное давление, нарушается обмен веществ и деятельность нервных центров, происходит потеря сознания.

Различные виды лучистой энергии вызывают местную и общую реакцию организма. Инфракрасное солнечное излучение может вызвать ожоги кожи и перегревание головного мозга (солнечный удар). При длительном нахождении на солнце большие дозы ультрафиолетовых лучей приводят к гиперемии кожных покровов, ожогам кожи и вызывают общую реакцию в виде недомогания, головной боли, повышения температуры тела и т. д.

Ионизирующие излучения (рентгеновские лучи, радиоактивные элементы и др.) нарушают физиологические, биохимические и иммунологические процессы в организме человека. Эти нарушения могут быть местного поражения (ожог кожи, выпадение волос и т. д.) и общего (лучевая болезнь). Лучевая болезнь характеризуется значительным нарушением деятельности всех жизненно важных систем организма, снижением резистентности по отношению к инфекции и неизбежно прогрессирующим течением.

Действие электрического тока на организм вызывает электротравму. Степень развития местных и общих поражений зависит от напряжения, силы, характера тока, времени воздействия, путей распространения в организме и функционального состояния пострадавшего. Местное действие электрического тока проявляется в виде ожогов, ран и других повреждений кожных покровов за счет электротермического, электромеханического и электрохимического эффектов. Общее действие – потеря сознания, кратковременная остановка дыхания и сердечной деятельности, нарушение деятельности дыхательного и сосудодвигательного центров, что может привести к смерти.

Существенное влияние на организм человека оказывает изменение атмосферного давления. Пониженное атмосферное давление может привести к развитию высотной болезни как результату низкого парциального давления кислорода и кислородного голодания. Повышенное атмосферное давление (подводный спорт, водолазные и кессонные работы и др.) вызывает отравление азотом, при котором человек теряет над собой контроль и погибает. Особенно опасен быстрый переход от высокого давления к нормальному (быстрый подъем водолаза с большой глубины на поверхность) или резкое падение давления (разгерметизация самолета). При резком переходе от высокого давления к нормальному снижается до того повышенная растворимость азота в крови, появляются пузырьки азота, которые могут закупорить сосуды сердца, легких, мозга и вызвать различного рода парезы и параличи или смерть. Также перепад давления может вызвать разрыв органов (легких, барабанной перепонки) и шоковое состояние.

2. Химические факторы заболеваний. Химические вещества (яды) являются причиной заболеваний, называемых отравлениями. Ядовитые химические вещества могут поступать в организм извне (экзогенные яды) или образовываться в самом организме (эндогенные яды). При заболеваниях почек, печени, злокачественных заболеваниях и пр. развиваются аутоинтоксикации (отравления эндогенными ядами). Кроме того, различают яды неорганического и органического происхождения. К неорганическим химическим ядовитым веществам относят кислоты, щелочи, соли свинца, ртути и др. Среди ядов органического происхождения есть вещества растительного (алкалоиды, глюкозиды) и животного происхождения (змеиный яд). К химическим факторам заболеваний относится также отравление боевыми отравляющими веществами (иприт, фосген, зарин и др.). Действие ядов отличается избирательностью и специфичностью. Например, мышьяк обладает тропностью к нервным клеткам. Действие ядовитого вещества зависит от количества, растворимости в биологических средах, способа введения в организм, сопротивляемости организма человека. Применение ядов в малых дозах имеет лечебное значение.

3. Биологические факторы заболеваний. К биологическим причинам относят возбудителей, которые, проникая в организм человека, вызывают различные болезни: животные паразиты, растительные паразиты, вирусы. К животным паразитам относят червей, клещей, простейших одноклеточных организмов. Черви, попадая в организм человека различными путями, вызывают глистные заболевания или гельминтозы. Продукты жизнедеятельности червей вызывают интоксикацию: снижается физическая работоспособность, появляются слабость, головокружение, дискомфорт, нарушение питания, анемия и др. Растительные паразиты подразделяются на грибки и бактерии, по свойствам – на патогенные и непатогенные.

Возбудители грибковых заболеваний вызывают болезни кожи и ногтей (эпидермофития, стригущий лишай и пр.), а также внутренних органов (актиномикоз).

Патогенные бактерии (микробы) обладают способностью к быстрому росту и размножению, в процессе жизнедеятельности выделяют токсические вещества (токсины), которые оказывают специфическое действие на организм больного человека. Патогенные бактерии (микробы) попадают в организм из окружающей среды с водой, воздухом, продуктами питания, при непосредственном контакте с заболевшим. Некоторые инфекции переносятся насекомыми (комары, клещи, мухи) и грызунами.

Вирусы также вызывают различные инфекционные заболевания (грипп, корь, оспа и др.).

4. Социальные факторы заболеваний. На возникновение, развитие и течение заболеваний влияют факторы общественной среды, в которой живет человек. К ним относятся низкая санитарная культура, тяжелые условия труда и быта, вредные привычки (злоупотребление алкоголем, курение, наркомания).

5. Алиментарные причины болезней. Нарушение питания может способствовать развитию таких заболеваний, как сахарный диабет, атеросклероз, ожирение, авитаминоз, гастрит, колит и др. Алиментарным фактором болезней может быть несбалансированное питание: недоедание или переедание, неправильное соотношение по белкам, жирам, углеводам, витаминам, минеральным веществам; нарушение режима питания и т. д.

6. Недостаточная двигательная активность (гиподинамия, гипокинезия). В современном обществе значительная часть людей физически малоактивна. Недостаточная физическая активность неблагоприятно влияет на сердечно-сосудистую систему, органы дыхания, опорно-двигательный аппарат, нарушает деятельность желудочно-кишечного тракта, функцию почек, ослабляет иммунитет, ухудшает качество жизни людей.

7. Чрезмерная двигательная активность (гипердинамия, гиперкинезия). Чрезмерные физические нагрузки также вызывают различные патологические изменения в основных жизненно важных системах организма, с их последствиями нередко приходится сталкиваться спортивным врачам (острое и хроническое перенапряжение). Физическое перенапряжение снижает защитные силы организма, толерантность (устойчивость) к неблагоприятным факторам внешней и внутренней среды. Отрицательное влияние значительных физических нагрузок выражено при наличии очагов хронической инфекции или каких-либо заболеваний, что утяжеляет течение болезни.

8. Психогенные факторы заболеваний. В возникновении, развитии и течении заболеваний большое значение имеет состояние высшей нервной деятельности человека. Нарушение соотношения процессов возбуждения и торможения в коре головного мозга при различных ситуациях (горе, страх, отчаяние и пр.) может привести к изменению взаимоотношений коры головного мозга и подкорковых образований. Развиваются вегетативные расстройства, нарушения трофики тканей, чувствительности и т. д. Некоторые патологические состояния могут быть связаны с неправильным толкованием и пониманием слов врача, что способствует развитию ятрогенных заболеваний (от греч. ятрос – врач).

Внутренние (эндогенные) причины заболеваний. Индивидуальные особенности организма играют важную роль в возникновении и течении заболеваний. Значение их в патологии неодинаково. В одних случаях эндогенные факторы являются непосредственной причиной заболевания, в других – условием для возникновения болезни, в третьих – препятствием для развития патологического состояния.

К эндогенным факторам относятся конституция, наследственность, реактивность, иммунитет и аллергия.

1. Конституция – совокупность функциональных и морфологических особенностей организма, сформировавшаяся на основе наследственных (врожденных) и приобретенных свойств и определяющая своеобразие его реактивности.

Различные конституциональные типы человека складываются на основе наследственных свойств (генотип) и влияний окружающей среды (фенотип), т. е. формируются в зависимости от конкретных условий внешней среды. Под воздействием внешних факторов у человека образуются качественно новые свойства. Систематические занятия спортом и физическими упражнениями, профессиональная деятельность могут способствовать формированию другого типа конституции. Существует несколько классификаций конституциональных типов. Например, по классификации профессора М. В. Черноруцкого, учитывающей морфологические и функциональные особенности человека, выделено три типа конституции: астенический, гиперстенический и нормостенический.

Астенический тип характеризуется преимущественным ростом тела в длину, стройностью, слабостью общего развития тела. У людей астенического телосложения преобладают продольные размеры над поперечными, размеры конечностей над размерами туловища, размеры грудной клетки над размерами живота. Сердце относительно небольшое по величине, относительно большие легкие, короткий кишечник, наблюдаются явления спланхноптоза (гастроптоз, нефроптоз и т. п.). У таких людей обмен веществ ускорен, преобладают процессы диссимиляции.

Гиперстенический тип характеризуется преобладанием поперечных размеров над продольными: относительно длинное туловище и короткие конечности, относительно большой живот в сравнении с грудной клеткой. У людей гиперстенического телосложения относительно большое по размеру сердце, расположенное поперечно из-за высокого стояния диафрагмы; широкая аорта, относительно небольшой величины легкие, объемный желудок, длинный кишечник. Обмен веществ у гиперстеников понижен, преобладают процессы ассимиляции.

Нормостенический тип характеризуется пропорциональными размерами костно-мышечной системы и внутренних органов.

Конституция, конституциональный тип играют определенную роль в происхождении и развитии болезней, но не являются непосредственной причиной заболевания. Однако структура заболеваемости у людей, относящихся к разным конституциональным типам, различна. У астеников чаще встречаются заболевания легких и желудочно-кишечного тракта, у гиперстеников – заболевания сердечно-сосудистой системы и болезни обмена веществ. Одни и те же заболевания имеют свои особенности у лиц с разной конституцией.

2. Наследственность – это способность сохранять и передавать признаки строения и развития от предков к потомству.

Наследственность формируется в процессе эволюционного развития и взаимодействия организма со средой и характеризуется определенной устойчивостью – консерватизмом, без которого было бы невозможно сохранение видов животных и растений, при этом наследственная природа организма неизменна.

Наследуются задатки не только внешних, отчетливо видимых признаков (форма носа, цвет глаз или волос), но и задатки внутренних особенностей организма (характер обмена веществ и др.) Также могут передаваться задатки признаков, обуславливающие развитие наследственных заболеваний.

Генетика – наука, изучающая законы наследственности. Материальной основой наследственности являются хромосомы, сосредоточенные в ядрах всех клеток живого организма. Для каждого вида организмов характерны определенные форма и количество хромосом. У человека основой наследственности являются 46 хромосом, представленных 22 парами аутосом и 2 половыми хромосомами: XY – у мужчин и XX – у женщин. Каждая хромосома состоит из 2 хроматид, соединенных центромерой.

Ген – единица наследственности. Все гены отличаются друг от друга, каждый ген контролирует строго определенный процесс, оказывая специфическое влияние на физиологию клетки и ее развитие. Комплекс генов представляет собой программу развития и деятельности всего организма. В 46 хромосомах находится около 6 млрд генов.

Передачу признаков и свойств организма по наследству выполняет дезоксирибонуклеиновая кислота (ДНК). Молекула ДНК состоит из остатка молекулы сахара, фосфорной кислоты и четырех азотистых оснований: аденина, гуанина, цитозина и тимина.

Ген представляет собой определенный участок (локус) молекулы ДНК, состоящий из длинной цепи нуклеотидов. Индивидуальность гена определяется последовательностью чередования в молекуле ДНК азотистых оснований. Изменение месторасположения одной пары азотистых оснований может изменить ген настолько, что он перестает выполнять свое назначение. Это может привести к тяжелому заболеванию или к летальному исходу.

Каждая клетка организма содержит абсолютно одинаковый набор хромосом. Однако клетки различных тканей и органов отличаются по морфологическим, физиологическим и прочим свойствам, т. к. в каждой клетке действует лишь определенная часть генов. Закономерная активация и инактивация генов, участков и целых хромосом определяет развитие и деятельность клетки. Наследование признаков определяется обменом веществ как внутри клетки, так и с внешней средой.

Таким образом, наследственность – это не только передача признаков от поколения к поколению, но и биологический, молекулярный шифр, в котором заложена программа обмена веществ между ядром и цитоплазмой, между клеткой и внешней средой.

Наследственные заболевания связаны с изменением количества хромосом (болезнь Дауна), участка хромосомы или хотя бы одного гена (гемофилия). Гены могут изменяться как в естественных условиях, так и в результате воздействия внешних факторов: физических, химических и др. Однако наследственное заболевание не всегда проявляется, некоторые заболевания развиваются только при соответствующих условиях внешней среды, поэтому создание определенных условий жизни для ребенка может исключить развитие ряда наследственных болезней. Медицинская генетика помогает предотвратить рождение детей у родителей с неблагоприятной наследственностью.

3. Реактивность – одна из важнейших сторон сформировавшегося в процессе эволюции приспособления к внешней среде.

Реактивность организма – это способность организма определенным образом отвечать на воздействие обычных и болезнетворных раздражителей.

Резистентность – это устойчивость организма к действию патогенных факторов.

Реактивность и резистентность отражают основные свойства живого организма, тесно связаны между собой. Реактивность определяет сопротивляемость организма к воздействию патогенных агентов (вероятность болезни, тяжесть течения заболевания, осложнения и сроки выздоровления). Важнейшую роль в реактивности играет состояние высших отделов нервной системы. При преобладании процессов возбуждения или торможения в коре головного мозга значительно изменяются реактивность организма и течение заболевания. Даже настроение пациента влияет на реактивность. Выдающийся русский хирург Н. И. Пирогов указывал, что заживление ран и смертность от них на войне резко отличаются у победителей и побежденных.

Нарушения реактивности и резистентности организма возникают при нарушениях в деятельности подкорковых образований, спинного мозга, вегетативной нервной системы, с расстройством функции эндокринных желез. Реактивность организма изменяется с возрастом. У людей пожилого и старческого возраста плохо заживают переломы, тяжело протекают инфекционные заболевания и т. д. Факторы внешней среды также оказывают влияние на реактивность. Характер питания, особенно дефицит белков и витаминов в пище, негативно сказывается на реактивности. Резкое снижение температуры окружающей среды приводит к повышенной заболеваемости гриппом и простудными заболеваниями, перегревание организма способствует снижению сопротивляемости (герпес, острые респираторные вирусные инфекции (ОРВИ) и др.). Воздействие отравляющих веществ (алкоголь, угарный газ, ртуть и пр.), лучистой энергии (проникающая радиация) изменяют реактивность и резистентность организма. Нерациональное применение физических нагрузок (от гиподинамии до гипердинамии; переутомление, перетренированность) также влияют на состояние реактивности и резистентности.

4. Иммунитет – невосприимчивость организма к действию инфекционных агентов и вырабатываемых ими токсинов.

Иммунитет – одно из важнейших проявлений реактивности организма. Специфичность иммунитета определяется иммунологическими сдвигами, возникающими под влиянием патогенных микробов или их токсинов. Различают иммунитет врожденный и приобретенный.

Врожденный иммунитет – свойство, присущее виду животных или организму. В естественных условиях животные не заболевают сифилисом, дифтерией, холерой, а человек не подвержен некоторым заболеваниям животных.

Приобретенный иммунитет может быть естественным и искусственным, а каждый из них – активным и пассивным.

Естественный активный иммунитет вырабатывается в организме после перенесенного заболевания (корь, скарлатина и др.).

Естественный пассивный иммунитет имеется у новорожденного, получившего его от матери с кровью и молоком в отношении заболеваний, которые она перенесла ранее.

Искусственный активный иммунитет связан с введением в организм вакцин, в которых содержатся убитые или ослабленные микробы или их токсины, не способные вызвать заболевание, но обеспечивающие активное образование невосприимчивости ко многим болезням (оспа, брюшной тиф, столбняк и др.).

Искусственный пассивный иммунитет возникает при введении в организм сыворотки крови человека или животных, перенесших то или иное заболевание. Однако пассивный иммунитет непродолжителен (2–4 нед.), т. к. введенные с сывороткой иммунные вещества (антитела) выводятся из организма. Активный иммунитет сохраняется длительное время, иногда пожизненно.

Иммунитет обусловлен рядом защитных приспособлений: фагоцитоз, гуморальные факторы, барьерные функции. К специфическим механизмам иммунитета относят фагоцитоз и гуморальные факторы, к неспецифическим – барьерные функции.

Фагоцитоз (от греч. фагеин – пожираю, цитос – клетка) играет важную роль в уничтожении микробов, попавших в организм. Заслуга открытия фагоцитоза принадлежит крупнейшему русскому ученому И. И. Мечникову. Клетки, обладающие способностью к фагоцитозу, устремляются к бактериям, обволакивают их и подвергают внутриклеточному перевариванию. Фагоцитарной способностью обладают лейкоциты, ретикулярные и эндотелиальные клетки печени, селезенки, костного мозга и др.

Гуморальные факторы (от греч. гумор – жидкость) – особые вещества (антитела), образующиеся в крови и тканевой жидкости после перенесенных заболеваний, которые обладают способностью обезвреживать микробы и их токсины. Сыворотка крови человека или животного, благодаря антителам, приобретает новые свойства в отношении возбудителя заболевания.

Вещества, вызывающие образование антител, называются антигенами. К ним относятся микробы, токсины, продукты их жизнедеятельности, чужеродные для данного организма белковые вещества. Антитела образуются в ретикулоэндотелиальной системе. По действию антитела делятся на агглютинины, антитоксины, бактериолизины и др. Каждое антитело обезвреживает только определенный микроб или токсин, т. е. характеризуется специфичностью.

Барьерную функцию осуществляют внешние и внутренние барьеры.

Внешние барьеры – кожа, ее придатки, слизистые оболочки с железами. Внешние барьеры являются механическим препятствием для микробов, выделяемые железами секреты смывают микробы или уничтожают их. Защитную роль в организме играет бактериальная среда, содержащаяся в кишечнике, на слизистой носа, рта, половых органов.

Внутренние барьеры – лимфатические узлы, печень, почки, внутренние оболочки капилляров и окружающая их межуточная ткань. Важная роль принадлежит внутреннему барьеру в центральной нервной системе (гематоэнцефалическому), в состав которого входят эндотелий капилляров мозга и сосудистых сплетений его желудочков.

5. Аллергия – повышенная и качественно измененная чувствительность организма к действию инфекционных и других агентов, называемых аллергенами. Аллергия служит проявлением реактивности. Аллергенами являются в основном вещества белковой природы, чужеродные для организма. В природе существует много веществ, которые могут быть аллергенами: бактерии, вирусы, цветочная пыльца, красители, лекарства, пух, волосы и др. Они вызывают повышенную чувствительность организма (сенсибилизацию) к повторному их введению с местными и общими расстройствами (анафилаксия, анафилактический шок). У человека наиболее близка к анафилаксии сывороточная болезнь, которая может возникнуть от введения лечебных сывороток. У некоторых людей повышенная и измененная чувствительность проявляется в виде идиосинкразии. При пищевой идиосинкразии аллергенами могут быть яйца, шоколад, рыба и др., при лекарственной – лекарственные препараты (йод, бром, антибиотики). Аллергическая реакция на продукты питания или препараты может быть в виде гиперемии слизистых, отека, крапивницы, повышения температуры, рвоты, бронхоспазма и пр.

Механизмы патологических процессов. Патогенез (от греч. патос – страдание, генезис – происхождение) – учение о механизмах возникновения, развития и течения заболеваний. Факторы развития патологических процессов:

1. Этиологические факторы. Основные возможные варианты их действия:

– вызывают заболевание, которое продолжается лишь до того времени, пока действует начальная болезнетворная причина. Примерами таких заболеваний могут быть неосложненная чесотка, глистные заболевания;

– являются толчком, повреждающим организм, вследствие чего начинается серия патологических процессов. Далее болезнь развивается и заканчивается уже без участия патогенного фактора, вызвавшего первичное повреждение организма. Примерами могут служить термический ожог, лучевая болезнь;

– действуют на всем протяжении болезни, однако их роль на различных этапах болезненного процесса неодинакова (меняется в зависимости от сопротивляемости организма). Так бывает при многих инфекционных заболеваниях.

Возможны и другие варианты действия этиологических факторов. Для оценки их роли в механизмах заболевания необходимо учитывать характерную смену причин и следствий в течении каждой болезни. По мере развития патологических процессов изменения, возникшие в организме, становятся причинами новых расстройств функций. Чаще всего такими этиологическими факторами бывают продукты тканевого распада, продукты нарушенного метаболизма и другие, оказывающие влияние на организм нервным и гуморальным путем.

2. Патогенные факторы, пути проникновения и место действия. Например, существуют легочная и кишечная формы туберкулеза. Первая связана с проникновением инфекции через дыхательные пути, вторая – с попаданием возбудителя с пищей.

Воздействие патогенного фактора на организм может быть различным. В одних случаях возникают структурные нарушения жизненно важных органов (например, повреждение пулей, осколком снаряда головного мозга, сердца, печени и других органов), что и определяет дальнейшее течение болезни; в других – этот фактор не вызывает сколько-нибудь значимых структурных нарушений, а ведущее значение приобретает чрезмерное раздражение рецепторов и нервных проводников. Результатом могут быть травматический шок, нервные заболевания (невроз, психоз) и др.

При авитаминозах и кислородном голодании генерализованные нарушения обмена веществ являются первичными. Также первичное нарушение может возникнуть в тканях и органах в результате воздействия на них микробов и токсинов, вследствие чего нарушается их функция.

В ряде случаев патогенный фактор вызывает нарушение системы регуляции нервных и эндокринных функций, вслед за которыми возникают разнообразные патологические явления.

Пути распространения патогенного фактора в организме определяют его действие:

– тканевый путь. Возбудители болезни с места их внедрения распространяются по ткани, в межклеточных пространствах. Если распространение возбудителя происходит по одной ткани, то это называется распространением по продолжению (гнойное воспаление подкожной клетчатки). Распространение возбудителя по путям прямого контакта больных тканей со здоровыми именуется распространением по соприкосновению (переход рака желудка на поджелудочную железу);

– гуморальный путь. Патогенные раздражители, продукты распада тканей и токсические вещества, образующиеся в пораженных тканях, могут распространяться по организму с током лимфы или крови (лимфогенным или гематогенным путем), т. е. преимущественно по лимфатическим или кровеносным сосудам;

– нервный путь. Некоторые болезнетворные очаги распространяются по нервам (периневральным оболочкам) и мозговой ткани (вирусы бешенства, полиомиелита, столбнячный токсин). Особенностью нервного пути является то, что при действии патогенного фактора на нервную ткань возникают своеобразные раздражения, быстро распространяющиеся по нервным проводникам. Эти раздражения иногда настолько сильны, что приводят к изменению функции центральных отделов нервной системы, а это влечет резкое нарушение функций соответствующих органов и систем (шок при травме или ожоге).

Защитные реакции. Защитные реакции – реакции, защищающие организм от действия чрезвычайных раздражителей. Типы защитных реакций:

1. Приспособительные реакции.

Возбуждение ЦНС. Самая общая неспецифическая реакция. Сопровождается усилением обмена веществ, изменением функции эндокринных желез, в частности, передней доли гипофиза и коры надпочечников и других органов и систем организма.

Стресс. Канадским ученым Г. Селье установлено, что при действии различных факторов в организме возникают общие изменения, заключающиеся в усиленной выработке гипофизарных гормонов, гормонов коры надпочечников, в изменении функции щитовидной железы и лимфатического аппарата. Состояние организма, приводящее к реакции гипофизарно-надпочечниковой системы на различные раздражители, было названо Г. Селье стрессом, что означает состояние напряжения.

Разнообразные факторы, способные вызвать стресс, называются стрессорами: механические повреждения (травмы, оперативное вмешательство), воздействие различной температуры, токсических веществ микробного и немикробного происхождения, эмоциональные напряжения, чрезмерная физическая нагрузка и др. Каждый из этих стрессоров вызывает специфическую реакцию организма (токсины – образование специфических антитоксинов, холод – сужение сосудов и т. д.).

Но одновременно со специфическими реакциями развертываются и неспецифические реакции (по данным Г. Селье).

Общий адаптационный синдром. Первая стадия называется реакцией тревоги, она характеризуется мобилизацией адренокортикотропного гормона (АКТГ), выделяемого гипофизом, и глюкокортикоидов, выделяемых корой надпочечников; уменьшением в крови количества эозинофилов и лимфоцитов и увеличением количества нейтрофилов. Для этой стадии характерны повышение проницаемости сосудов и кровоизлияния.

Вторая стадия носит название реакции защиты или реакции адаптации. В результате мобилизации АКТГ и глюкокортикоидов (адаптационных гормонов) нормализуются обменные процессы, выравниваются те нарушения обмена, которые произошли под влиянием повреждающего фактора (повышается неспецифическая резистентность организма). Если воздействие стрессора невелико, на этом реакция на него заканчивается. При более сильном и длительном воздействии наблюдаются гиперфункция надпочечников, изменение функции щитовидной железы и лимфатического аппарата. При очень интенсивном воздействии компенсаторные возможности могут быть исчерпаны, тогда наступает третья стадия.

Третья стадия – стадия истощения или поломки адаптации. В этой фазе АКТГ и глюкокортикоидов меньше, чем в норме; в крови увеличивается количество эозинофилов и лимфоцитов; отмечаются гипертрофия лимфатического аппарата и ослабление адаптации, что может привести организм к гибели.

Такова сущность теории Г. Селье о стрессе и общем адаптационном синдроме, являющейся сейчас общепринятой. Однако, придавая универсальный характер изменениям в передней доле гипофиза, Г. Селье недостаточно учитывает роль нервной системы.

В отечественной медицине принято считать, что реакция со стороны передней доли гипофиза и коры надпочечников, так же как и со стороны других желез внутренней секреции, зависит от функционального состояния центральной нервной системы, а именно – подкорковых образований (гипоталамуса) и коры головного мозга. Между различными приспособительными реакциями имеются сложные взаимоотношения. Измененные под влиянием нервной системы функции эндокринных желез могут оказывать влияние на ее функцию.

При действии патогенных агентов наблюдаются одновременно с общими неспецифическими реакциями специфические реакции, зависящие от действующего раздражителя. Раздражители, которые способствуют возникновению артериальной гипоксемии и гипоксии, вызывают возбуждение ЦНС, обеспечивающее определенные специфические приспособительные реакции – одышку, тахикардию, подъем артериального давления, ускорение кровотока, мобилизацию депонированной крови и другие реакции, необходимые для увеличения насыщения кислородом крови в легких и усиления его транспортировки. Под влиянием микроорганизмов, их белков возникает первая общая приспособительная реакция – возбуждение нервной системы; при этом происходят другие специфические приспособительные реакции: усиление функции клеток ретикулоэндотелиальной системы и выработка иммунных тел, лейкоцитоз, усиление фагоцитоза и др.

При недостаточности первой общей приспособительной реакции возникает вторая – запредельное торможение ЦНС, с которым связано угнетение жизнедеятельности, нарушения обмена веществ, ограничение распада энергетических ресурсов.

2. Компенсаторные процессы происходят при длительном действии патогенных факторов или патологических процессов. Например, усиление выделения шлаковых продуктов азотистого обмена кожей, кишечником и легкими при снижении функции почек.

В приспособительных и компенсаторных реакциях организма важная роль принадлежит нервной системе. Учение И. П. Павлова о связях высшего отдела нервной системы с многочисленными функциями организма и деятельностью внутренних органов нашло экспериментальное подтверждение в исследованиях, осуществленных академиком К. М. Быковым и его сотрудниками, а также другими исследователями. Таким образом, в патогенезе многих заболеваний и в механизмах выздоровления существенное значение имеют условно-рефлекторные факторы. Учение И. П. Павлова о нервизме, учитывающее корригирующие функции и огромную роль коры головного мозга в процессах приспособления к меняющимся условиям существования, подчеркивает огромное значение не только коры, но и нервных процессов, протекающих в других, нижерасположенных, отделах нервной системы и распространяющих свое влияние на всю деятельность организма.

Для очень многих патологических процессов, при которых выявляются нарушения функций определенных систем или органов, существенную роль играет периферическая нервная система. Состояние рецепторов и эффекторов в тканях и органах тесно связано как с импульсами, поступающими к ним из расположенных выше отделов нервной системы, так и с состоянием ткани или органа, в которых заложены нервные приборы. Обмен веществ, соответствующая среда, состояние конечных нервных аппаратов определяют реакции организма на действие раздражителей и на изменяющиеся условия при патологических процессах.

Во время заболевания вместе с нарушением деятельности и состояния отдельных систем и органов имеет место изменение их взаимосвязей. При нарушении части, входящей в состав целого организма, изменяются в определенной мере другие его части и весь организм в целом, поэтому любой патологический процесс отражается не только на отдельных частях организма, определенных системах и органах, но и на всем организме в целом. Однако существуют такие формы изменений в организме, которые преимущественно захватывают определенную часть тела, определенный орган, определенную систему. В силу целостного реагирования организма в нем нередко имеет место ограничение, локализация патологического процесса, препятствующая его распространению.

Выздоровление.

Полное выздоровление – в организме после болезни восстанавливаются нормальная морфология и функции всех систем органов.

Неполное выздоровление – нормальное функционирование целостного организма возможно только при определенных условиях (покой, диета, отсутствие резких изменений среды и др.).

Выздоровление начинается с уничтожения и обезвреживания патогенных факторов. Эти процессы переплетаются с процессами ликвидации возникших дефектов в тканях и органах и разрывом цепи причинно-следственных связей. Затем происходит сложная перестройка деятельности систем и органов, а также реактивности организма. Благодаря этому восстанавливаются функциональные и обменные процессы в органах и системах организма, нормализуется измененное при болезни взаимоотношение с внешней средой, совершаются процессы регенерации, обеспечивающие восстановление пострадавших клеток и тканей.

Регенерация – процесс, направленный на полное или частичное восстановление утраченных, поврежденных, а также разрушенных клеток, тканей или частей органов. Физиологическая регенерация – в здоровом организме клеточный состав тканей восстанавливается повседневно и постоянно (образование эритроцитов, лейкоцитов, замещение погибших эпителиальных клеток кожи и слизистых и т. д.).

Репаративная регенерация – большинство поврежденных тканей и органов обладает способностью восстанавливать структуру и клеточный состав. Способность к регенерации различных тканей у животных неодинакова. Быстрее и полнее происходит регенерация соединительной ткани, эпителия покровов, костной ткани, капилляров, хуже – в паренхиматозных органах, собственно железистых клетках, мышцах и др. Не регенерируют ганглиозные клетки головного мозга и клетки миокарда. Способность к регенерации зависит от вида ткани, размеров и характера повреждения, состояния кровоснабжения, иннервации, возраста пострадавшего. Значительные размеры повреждения тканей, присоединение гнойной инфекции, нарушение обмена веществ и кровоснабжения ухудшают процессы регенерации и ведут к замещению дефекта соединительной тканью, являющейся менее дифференцированной. Большое значение для регенерации тканей имеет и активность ее функции. При своевременном и адекватном применении физических упражнений в случае повреждения мышцы (надрыв, разрыв) восстановление ее целостности происходит за счет мышечной ткани, при полном покое – за счет соединительнотканного рубца.

Процессы выздоровления разнообразны и индивидуальны. Течение процесса выздоровления зависит от многих условий, в том числе от целесообразности лечебных мероприятий и умения направленно использовать те или иные условия среды.

В основе выздоровления лежат широкая приспособляемость организма, большой диапазон возможной перестройки функции и пластичность тканей, органов и систем. Выздоравливающий или только что выздоровевший организм не сразу возвращается к исходному состоянию здоровья, а перестраивает свои функции и путем компенсации создает условия нормального течения жизненных процессов, для чего необходим определенный промежуток времени. Это необходимо учитывать при занятиях физическими упражнениями и спортом.

Любая болезнь сопровождается изменениями в различных органах и системах организма. Патологические процессы и болезни многообразны. В основе изменений при различных заболеваниях часто лежат одни и те же, общие для многих заболеваний процессы, которые можно назвать типовыми. К ним относятся расстройства кровообращения, нарушение тканевого питания, обмена веществ и тканевого роста, воспаление и нарушение терморегуляции.

1.2.2. Основные проявления патологических процессов

1.2.2.1. Нарушения крово- и лимфообращения

Различают два типа нарушений кровообращения (Есипова И. К., 1982):

– общее (центральное), проявляющееся на уровне артериального давления (АД), скорости кровотока;

– местное (периферическое), отражающееся на сопротивлении току в мелких сосудах отдельных органов и тканей, кровенаполнении капилляров.

Наибольшее значение для развития нарушений гемодинамики имеют повреждения сердца, легких, грудной клетки и диафрагмы, влияющие на наполнение камер сердца; скелетной мускулатуры и связочного аппарата, изменяющих приток крови к сердцу по венам; эндокринных желез, сказывающиеся на АД, обмене электролитов сосудистой стенки; коркового и мозгового вещества почек, влияющие через систему ренина и простагландинов на артериальное давление. Большое значение имеют сдвиги тонуса артериол и венул, влияющие на сопротивление кровотоку, и реологических свойств крови, ее вязкости, обусловленные нарушениями со стороны свертывающей системы или свойств форменных элементов.

Далеко не всегда названные причины проявляются расстройствами капиллярного кровообращения. Этому препятствует адаптация артерий и вен, направленная на сохранение двух основных параметров: поддержки постоянства АД и адекватности кровоснабжения и потребности ткани в питании. Следует подчеркнуть, что пропульсивной функцией сосуды не обладают. Кровоток обусловлен лишь наличием определенного градиента давлений между артериальным и венозным отделом. Каждый отдел кровяного русла имеет свой набор адаптационных реакций в зависимости от структуры и функции.

В морфофункциональном отношении выделяют сосуды распределения, сопротивления, обмена веществ, шунтирования и емкостные.

Сосуды распределения – артерии эластического и мышечно-эластического (смешанного) типа. В стенке преобладают эластические и коллагеновые волокна, способствующие основной функции: превращать пульсирующую струю крови из сердца в непрерывную и противостоять высокому давлению бокового столба крови на стенку сосуда. Адаптация к повышенному поступлению крови осуществляется за счет изменения ширины просвета и жесткости стенок. Структура сосудов отражает высоту давления.

Сосуды сопротивления – мелкие артерии, имеющие не более двух эластических мембран, артериолы, венулы, мелкие вены, особенно снабженные сфинктерами. Преобладание миоцитов над стромой позволяет значительно менять просвет по сравнению с коллекторами распределения и регулировать внутриорганный кровоток, направляя его в наиболее нуждающиеся функциональные единицы. Перестройка стенок отражает степень сопротивления кровотоку, а не артериальное давление, так как повышение сопротивления может не сопровождаться повышением давления. Это подтверждается формулой P QR, где Р – давление, Q – объем кровотока и R – сопротивление.

Сосуды обмена веществ – капилляры и венулы, обладающие высокой проницаемостью стенок.

Сосуды шунтирования – артериовенозные анастомозы простого, замыкающего и гломусного типов. Анастомозы замыкающего типа снабжены мышечным слоем, расположенным продольно, кнутри от внутренней эластической мембраны. Гломусные анастомозы включают в стенках специализированные миоциты, относимые к APUD-системе (аналог диффузной эндокринной системы (ДЭС), способность к захвату предшественников аминов и их декарбоксилированию), вырабатывающие биогенные амины, активно способствующие сокращению или расслаблению ствола ниже гломуса. Находятся повсеместно, в условиях хронического и острого нарушения гемодинамики, способны к новообразованию. Имеют богатую иннервацию, несут функции переключения кровотока, передачи кинетической энергии из артериального русла в венозное, терморегуляции.

Сосуды шунтирования, а также некоторые адаптационные приспособления на протяжении других сосудов в виде «подушек» Эбнера (отдельные валики из продольно ориентированных гладких миоцитов), «подушек» Конти (валики из соединительной ткани, покрытые эндотелием) следует дифференцировать от организованных тромбов, облитерирующего эндартериита, что не всегда легко, так как эти приспособления в условиях нарушенной гемодинамики и по мере развития возрастных изменений подвергаются склерозу.

Емкостные сосуды – венозные коллекторы и внутриорганные вены. Структура стенок весьма разнообразна. Так, в коллекторах, расположенных выше сердца, мышечная оболочка развита по-разному, а в лежащих ниже сердца – мощная, и в ней всегда хорошо выражен наружный слой из продольно расположенных миоцитов. Степень выраженности средней оболочки внутриорганных вен зависит от типа ветвления и окружающей ткани. При рассыпном типе ветвления миоциты сосредоточены в местах деления сосудов, а отходящие ветви, имеющие синусоподобное строение, могут не содержать миоцитов. В венах мышечного типа может отсутствовать собственная оболочка, либо она вплетается в собственные мышечные элементы органа, например, в матке. В этих органах венозный отток регулируется сокращением собственной мускулатуры. Однако вены играют также активную роль в кровообращении, что подтверждается наличием богатой иннервации внутреннего слоя, множества рефлексогенных зон в нем, а также сложным решетчатым строением миоцитов и эластических волокон, способствующим как суживанию, так и расширению просвета. Благодаря этому в отдельных отрезках венозной системы может депонироваться много крови.

Регуляция кровообращения в сосудистой системе осуществляется нервными и гуморальными механизмами, но по направлению к периферии значение последнего нарастает и осуществляется биологически активными веществами, циркулирующими в крови и высвобождающимися из тучных клеток, которых особенно много по ходу микроциркуляторных путей. Одни и те же вещества действуют по-разному в пределах организма.

Существует несколько механизмов ауторегуляции периферического кровообращения:

1. Химический механизм – раскрытие мелких сосудов под влиянием биологически активных веществ, накапливающихся в тканях при нарастании конфликта между потребностью в питании и притоком крови вследствие изменения рH. Освобождение аминов в этих условиях устраняет конфликт вследствие раскрытия резервных микроциркуляторных путей.

2. Механическая реакция просвета мелких сосудов под влиянием сокращения мышц или усиленной работы желез.

3. Реакция Бейлиса – Остроумова – расширение просвета сосудов мышечного типа при малом их кровенаполнении и сокращение при усиленном притоке крови. Эта реакция возникает при денервации, обусловливая существование базального тонуса сосудов, и основана на свойстве миоцитов сокращаться при нарастании бокового напряжения стенки. Эти реакции находятся в сложных взаимоотношениях и появляются в определенном порядке в зависимости от нарушений скорости кровотока.

Механизмы компенсации со стороны сосудов складываются из изменения просвета сосудов, депонирования крови, коллатерального кровотока, веноартериальной реакции (спазм артериол и мелких артерий при нарушении оттока).

Патологическая анатомия нарушений кровообращения различна в зависимости от темпов развития, остроты процесса, адекватности адаптации, ангиоархитектоники органов и чувствительности тканей к кислородному голоданию.

Артериальная гиперемия. Артериальное полнокровие чаще бывает активным, острым. В физиологических условиях оно быстро исчезает, что объясняется особенностями реакции сосудов на растяжение. Сначала просвет артерий расширяется. Однако нарастающее тангенциальное напряжение стенки влечет за собой сокращение миоцитов. В сосудах распределения их мало, и при остро возникающем полнокровии этих сосудов возможен разрыв. Сосуды сопротивления более богаты мышечными клетками, и сокращение их сильнее. Это ведет к резкому уменьшению просвета и нарастанию толщины стенок, вследствие чего повышается индекс Керногана (отношение толщины стенки к диаметру сосуда, которое в норме в малом круге равно 0,1–0,12, а в большом – выше, достигает иногда 0,3). Эластическая мембрана при констрикции принимает резко извитой вид, между ее складками как бы ущемляются ядра миоцитов, которые округляются, интима становится более заметной, клетки эндотелия сближаются друг с другом – их расположение напоминает частокол. На ультраструктурном уровне отмечаются округление и складчатость оболочки ядра. Органеллы цитоплазмы, в покое находящиеся позади ядра, перегруппировываются, концентрируются в центре клетки, а цитоплазма образует вывороты, лишенные органелл. Если ангиоспазм не сменяется гиперемией, сосуды мышечного типа расширяются, индекс Керногана снижается, становятся видными щели между отрезками внутренней эластической мембраны, через которые происходит питание этих сосудов, не имеющих собственных питающих сосудов, эластическая мембрана принимает фрагментированный вид, миоциты средней оболочки удлиняются, ядра принимают продолговатую форму. Капилляры наполняются кровью. Объем органа увеличивается, чему способствует полнокровие резервных капилляров и структурных единиц органов (ацинусов, нефронов). Объем реакции варьирует от мелких очагов до органа или целой области организма.

Затянувшаяся патологическая артериальная гиперемия возникает чаще вследствие неадекватной выработки биологически активных аминов. Эта причина лежит в основе воспалительной, постишемической, посткомпрессионной, вакатной гиперемии. Активная патологическая гиперемия характерна для опухолей, особенно злокачественных. Новообразованные сосуды в опухоли отличаются атипизмом строения: отсутствием адаптационных структур, преобладанием венозного русла, обилием коллатералей.

Коллатеральная артериальная гиперемия протекает наиболее длительно в связи с раскрытием мало функционировавших артерий или артериол. Их просвет растягивается, индекс Керногана снижается, постепенно тонус стенки нарастает, что приводит к новообразованию числа миоцитов, в результате артериолы перестраиваются в артерии. При этом возможны травматические разрывы не успевших перестроиться сосудов или надрывы интимы, сопровождающиеся скручиванием эластических мембран и образованием на их месте гранулем типа инородных тел.

В малом круге возможна артериальная гиперемия шунтирования, обусловленная наличием межпредсердных и особенно межжелудочковых дефектов при сбросе крови слева направо. В легкие вместо венозной крови поступает и артериальная. Крупные ветви распределения легочной артерии эластического и смешанного типа подвергаются расширению, а сосуды мышечного типа – сужению. При сочетании процессов развивается прекапиллярная артериальная гипертензия малого круга. Для нее характерны склероз стенок крупных ветвей артерий за счет образования новых коллагеновых и эластических волокон и межуточного вещества в средней оболочке, гипертрофия миоцитов. В ответ на турбулентный кровоток разрастается интима, в ней появляются атеросклеротические бляшки, их количество коррелирует с показателями гипертрофии правого желудочка сердца. Эти изменения отражают возрастание давления крови на стенку сосудов. Сосуды мышечного типа подвергаются вазоконстрикции по закону Бейлиса – Остроумова, что усиливает сопротивление кровотоку и предохраняет капилляры от полнокровия. Постепенно стенка их гипертрофируется, развивается склероз средней оболочки вследствие увеличения содержания миоцитов синтетического фенотипа. Прекапиллярная гипертензия малого круга возникает также при болезнях легких и характеризуется вышеописанными изменениями ветвей легочной артерии, при этом в их просветах накапливается не артериальная, а, как обычно, венозная кровь. Такую гипертензию правильнее называть прекапиллярной, а не артериальной.

Длительно протекающая артериальная гиперемия в любом органе может осложняться разрывом сосудов, диапедезными кровотечениями, отеком ткани.

Венозная гиперемия. Венозное полнокровие (застойное, пассивное) возникает вследствие нарушения оттока крови по венам из-за падения сердечной деятельности, сдавления или обтурации вен. Однако венозная гиперемия бывает также активной, в частности, в зонах коллатерального венозного полнокровия (в слизистой оболочке пищевода, прямой кишки, при открытии каво-портальных анастомозов в условиях цирроза печени). Активный характер носит венозная гиперемия при депонировании крови.

В селезенке кровь может «отстаиваться» в течение длительного времени, однако у человека большее количество крови депонируется в печени. Печеночные вены реагируют на гипоксию и накопление гистамина извращенной реакцией сокращения. У человека еще больший объем крови депонируется в подкожной клетчатке и венах нижних конечностей. На этом основана операция перевязки нижней полой вены ниже печени в стадии декомпенсации у сердечных больных, а также стремление этих больных опускать ноги, чем облегчается работа сердца в силу понижения сердечного выброса. При шоке у человека депонируется в общей сложности до 49 % крови, что может вызвать дефицит наполнения сердца и фибрилляцию желудочков. Длительно протекающая венозная гиперемия сопровождается выраженной гипертрофией мышечного слоя вен. Так, в системе верхней полой вены человека при пороках сердца происходит десятикратное увеличение числа мышечных слоев.

Во внутриорганных венах мышечная оболочка гипертрофируется при забросе крови в обратном направлении (регургитации). Это связано, по-видимому, с реакцией Бейлиса – Остроумова – сокращением стенок в ответ на растяжение просвета вены. Длительно протекающая регургитация сопровождается гипертрофией мышечного слоя, врастанием его в интиму и парадоксальным сужением просвета. Поэтому нельзя ставить знака равенства между расширением просвета вен и нарушением венозного оттока. В стадии компенсации возникает сужение мелких вен.

Венозное полнокровие не ограничивается перестройкой венозного русла, оно включает веноартериальную реакцию, которая заключается в сужении артериол и мелких артерий рефлекторного характера и сопровождается гипертрофией их стенок. Наиболее интенсивно реакция выражена в тех органах, где нет других возможностей адаптации: депонирования или коллатерального венозного полнокровия. Сущность реакции – предохранение капилляров от полнокровия и предупреждение обратного кровотока из венозной системы в артериальную. Венозная гиперемия чаще бывает хронической, чем артериальная, в связи с этим происходит гипертрофия стенок вен. В ее основе лежит усиление белкового синтеза в миоцитах, увеличение в них активности окислительных ферментов, пептидаз, фосфатаз, увеличение размеров ядрышка, полиплоидия ядра. Органы и ткани при венозной гиперемии увеличиваются в объеме, становятся синюшными вследствие повышенного содержания восстановленного гемоглобина и плотными из-за сопутствующего нарушения лимфообращения и отека, а позже из-за разрастания соединительной ткани.

В зависимости от разнообразной архитектоники вен в разных органах венозное полнокровие проявляется различно. Своеобразие выступает особенно ярко в тех органах, где имеются особые кавернозные тельца, представленные сообщающимися между собой лакунами или отдельными венами со складчатыми стенками, позволяющими значительно изменять их объем. Такие структуры находятся в дистальном отделе подслизистого слоя прямой кишки и под кожей анального отверстия; они напоминают по строению околоуретральные пещеристые тельца, имеющие определенную топографию и развивающиеся еще в эмбриогенезе. Подобные образования имеются в подслизистом слое пищевода, в местах его сужения, где, как и в прямой кишке, в норме выполняют функцию герметизации просветов, играя роль гидравлических жомов. Гиперемия кавернозных телец часто носит смешанный характер, так как они анастомозируют с артериями. Поэтому геморроидальные кровотечения являются венозно-артериальными (смешанными).

Своеобразно выглядит венозная гиперемия кожи на выступающих поверхностях тела, где сильно развита подсосочковая сеть венозных сосудов, участвующих в терморегуляции, а также в ногтевых ложах. Здесь имеет место феномен флорконтраста – темно-красный цвет венозной крови изменяется при просвечивании через полупрозрачный слой эпидермиса, что проявляется в виде цианоза. На слизистой оболочке внутренних органов венозная гиперемия сопровождается повышенной продукцией слизи, так называемым катаром. В почке и селезенке она имеет вид цианотической индурации.

Последствия венозной гиперемии. К таким последствиям относятся варикозные изменения вен, гипоксические повреждения тканей, форменных элементов крови, нарушения лимфообра щения.

Варикозное изменение – извилистое расположение венозных коллекторов с неравномерным расширением их просвета и образованием узловатых выпячиваний стенок. Извилистое расположение вен объясняется их удлинением, что наряду с расширением является следствием гиперволемии (полнокровия). Всякое удлинение сосуда сопровождается развитием продольных мышечных пучков, их гипертрофией, что наряду с гипертрофией циркулярно расположенной мускулатуры определяется направлением сил, растягивающих миоциты, вследствие чего они всегда сокращаются, а при травме мембран гипертрофируются. Стадия компенсированных варикозных изменений (до отека ткани) характеризуется, помимо гипертрофии средней оболочки, фиброэластозом интимы, образованием бляшек с участием лейомиоцитов, которые со временем подвергаются плазморрагии и гиалинозу. В стадии декомпенсации отека окружающей ткани гипертрофия сменяется дистрофией, атрофией миоцитов, нарастанием количества коллагеновых волокон. В миоцитах снижается активность окислительно-восстановительных ферментов, исчезает гликоген. Эластическая мембрана набухает, меняет тинкториальные свойства, иногда пропитывается железом, делается базофильной, расщепляется, разрывается.

Гипоксические изменения тканей при венозном полнокровии наступают при декомпенсации капиллярного кровообращения, полнокровии капилляров, огрубении гематопаренхиматозного барьера. В ткань выходит жидкость, что сопровождается альтерацией ткани (в частности, нервного аппарата сосудов) еще до развития отека. Окружающие тучные клетки, подвергаясь дегрануляции, высвобождают биологически активные вещества. Разная реакция артериол и венул на одни и те же вещества может приводить к закрытию венозных сфинктеров и открытию артериальных. Это сопровождается маятникообразными движениями крови и, наконец, ее остановкой – стазом.

Стаз. Гемостаз – остановка крови в капиллярах и венулах с расширенным просветом и слипанием эритроцитов в гомогенные столбики; последнее отличает стаз от гиперемии. Гемостаз представляет собой одно из самых ярких проявлений срыва адаптации кровообращения.

Кратковременная остановка крови обратима, длительная приводит к стойкому стазу, образованию гиалиновых тромбов, повышенной проницаемости капилляров и венул, потере жидкости и диапедезным кровотечениям. Стаз – явление неспецифическое, он может возникать и без предшествующего венозного полнокровия, под влиянием интоксикации, в результате действия различных химических и физических агентов на ткани. Стаз надо отличать от сладжа.

Сладж – феномен склеивания эритроцитов не только в капиллярах, но и в сосудах различного калибра, в том числе в венах и артериях. Макроскопически он проявляется в виде сгущения крови, похожей на замазку, которая выдавливается из сосудов наподобие тромбов, но эта масса не содержит фибрина. В клинике сладж-феномен отражается увеличением скорости оседания эритроцитов (СОЭ). Этот синдром носит название также внутрисосудистой агрегации эритроцитов и наблюдается при разнообразных инфекциях, интоксикациях в силу повышенной склеиваемости эритроцитов, изменения их заряда. Регионарный сладж развивается в условиях спазма сфинктеров вен, например легочных, при так называемом шоковом легком или острой респираторной недостаточности взрослых.

Изолированный спазм вен может вызывать лейкостаз – скопление гранулоцитов внутри сосудистого русла: венул, капилляров. Такой спазм развивается при гипоксиях различного происхождения и отражает «венозный криз» (по Риккеру). При шоке лейкостазы бывают распространенными, сопровождаются лейкодиапедезом. Последний осуществляется только через стенки венул, поэтому при распространенном лейкостазе в тех отделах, где венул нет (например, внутри клубочков почек, в клубочковой зоне надпочечников) и лейкодиапедеза не наблюдается, в то время как он весьма распространен в других слоях коры надпочечников, печени и легких, что осложняет неадекватное длительное искусственное кровообращение. Наиболее чувствительной к расстройствам кровообращения и гипоксии является кора головного мозга.

Хронически протекающая венозная гиперемия и вызванная ею гипоксия вызывают нарушения биологических ритмов клеток и вследствие этого замедление процессов восстановления, что связано не только с недостаточным энергетическим обменом, но и с избыточным поступлением в кровь глюкокортикоидов, блокирующих переход постмитотической фазы синтеза ДНК в клетках. Однако на фибробласты это не распространяется, выработка тропоколлагена в них даже усиливается, поэтому наряду с дистрофией и атрофией паренхимы развивается склероз соединительнотканных прослоек, в которых заложены лимфатические сосуды. Последнему способствует лимфостаз, обусловленный венозной гиперволемией. Так, одна лишь гипоксия без лимфостаза, например при врожденных пороках цианотического типа, не сопровождающаяся еще миокардиальной недостаточностью, не приводит к цианотической индурации органов, их фиброзу.

Лимфостаз – застой лимфы, возникающий вследствие механической, резорбционной или динамической недостаточности лимфообращения. Механическая недостаточность обусловлена повышением венозного давления, а также сдавлением или закупоркой лимфатических сосудов, экстирпацией лимфатических узлов или спазмом коллекторов. Динамическая недостаточность объясняется несоответствием между избытком интерстициальной жидкости и скоростью ее отведения, резорбционная обусловлена нарушением проницаемости лимфатических капилляров либо изменением состава тканевых белков.

Общий лимфостаз развивается при значительном повышении венозного давления, так как одним из ведущих факторов, определяющим отток лимфы из грудных протоков в венозные углы, является градиент давления между лимфой и кровью. Однако движение лимфы встречает большее сопротивление, чем движение крови, поскольку сечение крупных лимфатических сосудов меньше, чем кровеносных, лимфатическая сеть развита больше венозной, включает клапаны и много лимфатических узлов. Существуют дополнительные факторы, поддерживающие градиент: visategro – разность между давлением крови в капиллярах и величиной силы, которая затрачивается на прохождение жидкой части крови в ткани; отрицательное внутригрудное давление; сокращение тканей и пульсация близлежащих артерий; собственное сокращение крупных лимфатических сосудов, снабженных мышечной оболочкой. Нарушения этих приспособлений (например, неподвижность легочной ткани в участках ателектазов, атрофия скелетной мускулатуры, облитерация артерий, повышение венозного давления) вызывают лимфостаз.

Регионарный лимфостаз возникает чаще при местном нарушении венозного оттока и существовании препятствий внутри самих лимфатических сосудов (закупорка паразитами, метастазами опухоли и т. д.). Растяжимость стенок лимфатических сосудов больше, чем у кровеносных, чему способствуют особые соединения эндотелия, волнообразное направление сосудов. Неравномерное расширение лимфатических сосудов – лимфангиэктазия – часто сопровождается образованием коагулятов лимфы в их просветах. От лимфангиэктазии отличают варикоз лимфатических сосудов, при котором эндотелий выпячивается между мышечными элементами стенок. Последствия лимфостаза: лимфедема, хилезные кисты, лимфатические свищи, лимфовенозные шунты, образование большого количества лимфатических фолликулов по ходу расширенных лимфатических сосудов и лимфогенный склероз ткани.

Лимфедема – отек, водянка, сочетающиеся с хилезом серозных полостей, придающим жидкости особый вид. Так, например, асцит при лимфостазе проявляется скоплением большого количества молочно-белой жидкости в брюшной полости, содержащей клетки мезотелия или опухоли, подвергшиеся жировой дистрофии. В развитии хилезного асцита играют роль нарушение оттока лимфы, повышение проницаемости лимфатических капилляров, иногда лимфатическая фистула – разрыв сосуда. Хилоторакс развивается вследствие обтурации, тромбоза левого венозного угла или вследствие наложения кавопульмонального анастомоза – синдрома верхней полой вены.

Хилезные кисты – замкнутые полости в просвете экстраорганных протоков (брыжеечных, забрюшинных, грудного). Стенки кист состоят из соединительной ткани, частично гиалинизированной, содержат миоциты, лимфоидные инфильтраты.

Лимфатические свищи могут быть наружными и внутренними, т. е. открывающимися в анатомические полости: брюшную, грудную, суставов, матки, лоханок почек, кишечника. Они возникают на почве травмы при лимфостазе. Лимфовенозные шунты – прямые сообщения между лимфатическими сосудами и венами вне мест нормального впадения лимфатических протоков в венозные углы. В норме их не существует, они являются всегда следствием патологии. Обнаружить их можно методом наливок.

Лимфатические сосуды обладают большой пластичностью, мелкие – легко почкуются, в крупных развивается гипертрофия мышечной оболочки. По ходу расширенных лимфатических сосудов в легких и других органах возникают лимфатические фолликулы, имеющие свою аргирофильную строму, они являются иммунокомпетентными образованиями.

Длительно протекающий лимфостаз сопровождается лимфогенным склерозом тканей, примером чего служит слоновость нижних конечностей или половых органов. С самого начала развития такого склероза ткань имеет фиброзный характер, лишена грануляций, в ней мало клеточных элементов, что ранее давало повод ошибочно относить такой склероз к «неклеточному». Поскольку белок – тропоколлаген – образуется всегда внутри клеток, так называть склероз нельзя. Сборка фибрилл происходит за пределами клеток, поэтому состояние окружающей ткани и механизмы склероза (воспалительный, невоспалительный) влияют на гистоархитектонику образующейся соединительной ткани. В связи с этим следует дифференцировать генез склероза и учитывать, что лимфогенный склероз имеет ряд особенностей: поля склероза соответствуют расположению крупных лимфатических сосудов (портальный тракт в печени, межсегментарные, междольковые, периваскулярные прослойки в легком и т. д.). Над ретикулярными волокнами преобладают коллагеновые, часто подвергающиеся гиалинозу. По ходу склеротических полей развиваются лимфатические фолликулы или довольно однообразные лимфоидные скопления.

Кровотечение. Кровоизлияние

Кровотечение – процесс выхода крови из кровеносных сосудов. Кровоизлияние – скопление крови в тканях как следствие внутреннего кровотечения. Быстро развивающиеся массивные кровоизлияния называют апоплексией.

По морфологии выделяют три типа кровоизлияний:

– гематома – кровоизлияние с образованием полости;

– геморрагическая инфильтрация – пропитывание ткани кровью;

– точечное кровоизлияние – петехии и экхимозы.

Каждое из них определяется типом кровоточащего сосуда, механическим сопротивлением окружающей ткани, общими гемодинамическими факторами и механизмом кровотечения.

Различают три механизма кровотечения:

– путем разрыва (лат. per rhexin);

– разъедания стенки сосуда (лат. per diabrosin);

– через неповрежденную стенку – путем диапедеза (лат. per diapedesin).

Кровотечение путем разрыва касается патологически измененного или нормального, но травмированного сосуда. Возможен также спонтанный разрыв внешне неповрежденного сосуда. Например, надклапанный разрыв аорты, локализующийся всегда в одном и том же месте: на расстоянии 0,5–1,0 см от аортального клапана и расположенный поперечно. Края разрыва как бы срезаны бритвой, ровные, кровоизлияние определяется по краям наружной оболочки аорты. В основе – либо несовершенный дисмогенез, либо некроз и своеобразные кисты среднего слоя, наполненные базофильным веществом, которые рассматриваются как аналоги инфарктов аорты, обусловленные спазмом, плазморрагиями сосудов, питающих аорту. Постоянство места разрыва объясняют развитием криза в бассейне левой венечной артерии сердца, к которой относится эта область. Внезапное повышение давления является самым частым пусковым механизмом любого разрыва, преимущественно в сосудах эластического типа, мало приспособленных к адаптационному сокращению стенки вследствие сравнительно небольшого количества миоцитов в них. В сосудах мышечного типа и венах разрывы встречаются значительно реже из-за меньшей высоты давления и способности к резкому сокращению и утолщению стенки. Исключение – вены, расположенные под слизистыми оболочками и выбухающие в просвет органов, или особые кавернозные структуры в пищеводе и прямой кишке. Часто кровоточат вены лоханки, надрывы которых дают макрогематурию, приводящую к смертельному исходу. Вены и сосуды мышечного типа могут являться источником кровотечения путем разрыва при врожденной неполноценности стромы – несовершенного десмогенеза или приобретенного латиризма, которые могут сопровождаться массивными кровотечениями. Источником кровотечения может быть сосуд смешанного типа при наличии аневризмы (например, на основании мозга), прорыв которой ведет нередко к гемоцефалии (кровоизлияние в просвете желудочков мозга).

Разрыв сосуда часто сопровождается развитием гематомы – полости, содержащей жидкую или свернувшуюся кровь. Наиболее крупные гематомы возникают в участках малого сопротивления тканей, например в забрюшинной клетчатке, где гематомы содержат до 2 л крови. Если гематома сохраняет связь с артерией, ее называют пульсирующей. Далее при ее организации возможно развитие ложной аневризмы, т. е. полости, сообщающейся с просветом сосуда. Свежая гематома содержит алую кровь, через 24–48 ч в ней образуется гемосидерин, через неделю – гематоидин, и она приобретает коричневые и желтые оттенки. Сгустки фибрина по периферии подвергаются организации раньше, чем в центре, и такая гематома приобретает вид осумкованной или кистозной.

Гематома является причиной 85 % всех геморрагических инсультов мозга, чаще локализуется в его подкорковых узлах. В первые часы вокруг нее развивается обширный отек, через 24 ч на границе гематомы возникают лейкостазы и лейкодиапедез, через 48 ч начинается резорбционное ожирение нейроглии – развитие зернистых шаров, гиперплазия астроцитарной глии. Через неделю формируется вал из нейроглии и новообразованных капилляров. Гематому мозга, т. е. геморрагический инсульт, надо дифференцировать от геморрагического пропитывания некротической ткани (ишемического инсульта). Чаще всего гематомы мозга прорываются в его желудочки, реже – в субарахноидальное пространство.

При разъедании стенок сосудов опухолью или воспалением, особенно гнойным, часто развивается геморрагическая инфильтрация – пропитывание ткани без образования полости. Иногда образуется благодаря одномоментному диапедезному кровотечению из нескольких сосудов, т. е. апоплексии. Геморрагическая инфильтрация является причиной 15 % геморрагических инсультов мозга и локализуется преимущественно в зрительном бугре.

Кровотечения путем диапедеза обычно возникают из венул и капилляров. Причина – нарушения тонуса и проницаемости, возникающие чаще всего в результате гипоксии, интоксикаций (соли мышьяка, ртути, фосфора, змеиный яд, азотистые шлаки, непрямой билирубин, желчные кислоты и др.), а также вследствие авитаминозов, расстройств свертываемости крови, которые лежат в основе геморрагического диатеза (наклонности к кровоточивости). Ультраструктурные исследования свидетельствуют, что эритроциты проходят либо через соединения между эндотелиоцитами, либо – трансэндотелиально.

Диапедезные кровотечения лежат в основе развития петехий, экхимозов и апоплексий. Если одновременно кровоточит много сосудов, петехии имеют вид колец, окружающих мелкие сосуды. К диапедезным кровотечениям не относятся так называемые футлярные кровоизлияния в окружности крупных сосудов, возникающие вследствие распространения крови по периваскулярным пространствам. Диапедезные кровотечения в толще стенок крупных кровеносных сосудов могут стать причиной развития интрамуральных гематом, геморрагического пропитывания стенок и особенно атеросклеротических бляшек. Им обычно предшествуют плазморрагии. Диапедезные кровотечения чаще лежат в основе геморрагических диатезов приобретенного и наследственного характера. При этом играют роль нарушения не только проницаемости сосудов, но и свертывания крови.

Наследственные, или первичные, геморрагические диатезы связаны с недостатком какого-либо одного фактора. Так, например, гемофилия А – это дефицит фактора VIII, гемофилия В, или болезнь Криссмана, – дефицит фактора IX, гемофилия С, или синдром Розенталя, – дефицит фактора XI. Исключение из этого правила составляет врожденный синдром Виллебранда, при котором имеет место нарушение нескольких факторов гемостаза. Вторичные геморрагические диатезы обусловлены всегда рядом факторов.

Патологоанатомические изменения при геморрагическом диатезе выражаются в кровоизлияниях или их последствиях: на слизистых оболочках возникают эрозии или острые язвы; кровоизлияния в легких всегда сочетаются с полными или неполными ателектазами очагового типа; в мозге развиваются геморрагические инсульты или геморрагическая пурпура – множественные петехии, локализующиеся преимущественно в белом веществе. При массивных кровопотерях возможна смерть от геморрагического шока или острого малокровия. В последнем случае резко меняется вид селезенки, она сморщивается, пульпа ее становится дряблой, с большим соскобом вследствие лейкостазов и действия протеолитических ферментов сегментоядерных лейкоцитов. В почках возникает юкстамедуллярный шунт. Он характеризуется бледностью коркового и полнокровием мозгового вещества вследствие спазма междольновых артерий и включения малого круга кровотока по множественным артериовенозным анастомозам, в том числе дренажных клубочков. В печени гепатоциты перестают формировать белки; они расположены в форме «булыжной мостовой» вследствие нарушения градиента между воротной и печеночными венами, возможны кровоизлияния в центре долек, типичен лейкостаз в синусоидах.

Ишемия. Следует различать циркуляторную ишемию и ишемию выключения органов перед пересадкой.

Циркуляторная ишемия – малокровие ткани, вызванное понижением или отсутствием притока крови, что может быть обусловлено ангиоспазмом, обтурацией артерий тромбом, эмболом, атеросклеротической бляшкой, склерозом внутренней оболочки сосудов различного, например сифилитического, происхождения, наконец, облитерацией просвета сосудов, их лигированием на операции или сдавлением опухолью. Циркуляторная ишемия возникает также при относительно свободном просвете, но несоответствии потребности органа. Например, в момент физиологического напряжения при изменении реологических свойств крови, ее сгущении, сладж-синдроме и нарушении центрального кровообращения, падении системного давления, перераспределения крови.

Ишемия выключения касается органов, лишенных связи с организмом в процессе их пересадки. В последнем случае, как и при падении артериального давления, притока крови лишается весь орган, в то время как при спазме сосудов ишемия ограничивается участками органа, величина которых определяется наличием и степенью выраженности коллатерального кровотока. При гистологическом анализе следует обращать внимание на состояние стенок питающих сосудов, а также на содержимое просвета.

В условиях спазма в резистивных сосудах нарастает индекс Керногана за счет сокращения средней оболочки и сужения просвета. При наличии патологических утолщений интимы или продольно расположенных в ней мышечных пучков в сосудах резистивного типа их закрытие возможно. Закрытие просвета в артериях распределения эластического и смешанного типов может произойти не только по причине изменения стенок, но и, например, при закупорке.

Уменьшение кровенаполнения сосудов ниже места сужения просвета тромбом или в условиях падения артериального давления характеризуется дилатацией резистивных сосудов по закону Бейлиса – Остроумова. Индекс Керногана падает, миоциты удлиняются, эластическая мембрана выпрямляется, просвет круглый или неправильной формы, что определяется соотношением мышечных и эластических компонентов стенки, однако в просвете над эритроцитами преобладает плазма. Так выглядят мелкие артерии легкого при тетраде Фалло. Накопление биологически активных веществ в малокровных тканях может нивелировать эту картину, вызвать новую серию спазмов.

Уменьшение кровенаполнения артерии эластического или смешанного типа ведет к адаптации стенок, направленной на сохранение непрерывной струи крови. Это выражается в перекалибровке: резкой извилистости, складчатости стенок всех мембран, мышечной оболочки; миоциты принимают радиальное направление, образуется новый просвет, при хроническом течении выстилаемый новой мышечной оболочкой. Так возникает сосуд, заложенный внутри другого.

Эффект от пониженного притока крови к ткани зависит от темпов сужения просвета: быстрое уменьшение просвета сопровождается дистрофией или некрозом, медленное – атрофией. Большое значение для исхода имеет строение коллатералей, в том числе паравазальных.

Эффект от ишемии в одном и том же органе различен в зависимости от чувствительности тканей к гипоксии. Последняя обусловлена адаптацией к малокровию, а также условиями, в которых протекает ишемия. Так, гипотермия задерживает развитие дистрофических процессов при малокровии.

Макроскопические проявления ишемии определяются ангиоархитектоникой органа, строением коллатералей и различной реакцией сосудов на изменение условий гемодинамики. Пережатие питающих сосудов далеко не всегда сопровождается равномерной бледностью органа.

Проблема ишемии органов вызвала особый интерес в связи с успехами трансплантации органов и тканей. Выяснено, что в условиях ишемии повышается перекисное окисление липидов, нарушается состояние мембран, в первую очередь митохондрий, которые поражаются раньше лизосом. Изменения митохондрий приводят к нарушениям цикла Кребса, начинает преобладать анаэробный гликолиз. Освобождаются гистамин, серотонин и особое соединение, названное ишемическим токсином, с молекулярной массой 1200 дальтон, способное проходить через полупроницаемую мембрану и вызывать вазоконстрикцию. Токсикологический анализ показал, что характеристика токсина не зависит от вида ишемии, резко отличается от серототнина, гистамина и бактериальных эндотоксинов. Блокирование серотонинчувствительных структур не предотвращает развитие гемодинамических нарушений в очаге ишемии, следовательно, их вызывает не серотонин или гистамин, количество которых изменяется в малокровных тканях волнообразно, а токсин. Содержание последнего возрастает при ишемии постоянно. Количество ишемического токсина в оттекающей от малокровной конечности крови нарастает с первых минут, через 30 мин оно достигает 200 % по отношению к исходным данным. Некоторые фракции ишемического токсина обладают высокой антигенной способностью и вызывают в тканях аутоиммунные процессы.

Таким образом, патогенез ишемических нарушений включает гипоксию, своеобразное изменение обмена, аутоиммунные реакции, освобождение особого вещества, вызывающего новые нарушения кровообращения в виде спазмов и дилатаций сосудов. В стенках кровеносных сосудов меняются условия калий-натриевого насоса и обмена кальция – пускового механизма мышечного сокращения. Создается порочный круг для расстройств кровообращения. Ишемия сопровождается отеком, кровоизлияниями, новыми спазмами сосудов и т. д.

Поиски критических периодов обратимости показали, что они различны в разных органах, но существуют некоторые общие биохимические закономерности. Выделены три закономерные стадии нарушений обмена: первая стадия характеризуется высокой интенсивностью гликолиза и потребления преобразованной аденозинтрифосфорная кислоты (АТФ), что обеспечивает ткани выполнение специфической функции; вторая стадия характеризуется значительным снижением интенсивности гликолиза и еще большим снижением потребления преобразованного АТФ. В этой стадии лишь поддерживается жизнеспособность органа, но не выполнение специфической функции. Эту стадию называют критическим периодом. В третьей стадии гликолиз и потребление АТФ отсутствуют, что проявляется дезорганизацией клеточных и субклеточных структур и свидетельствует о необратимости процесса.

Каждой стадии соответствуют определенные типы расстройств кровообращения. В первой стадии они не выражены, во второй – повышается тонус сосудов сопротивления и открываются артериовенозные анастомозы, т. е. начинается шунтирование крови. В третьей стадии шунтирование преобладает над кровообращением в капиллярах, а повышенный тонус резистивных сосудов сменяется их дилатацией.

Особое значение в нарушении обмена веществ придают интенсификации перекисного окисления липидов, в результате чего в зоне ишемии накапливаются гидроперекиси, диеновые конъюгаты. Интенсивность этого процесса наиболее выражена в печени, слабее в почке, менее – в миокарде и скелетной мускулатуре.

Именно в таком порядке располагается чувствительность органов к ишемии. Понизить чувствительность к ишемии удается при помощи антиоксидантной терапии, подавляющей процесс перекисного окисления липидов.

В мягких тканях конечностей в первые 12 ч пережатия стволовых сосудов наблюдается спазм артериол и прекапилляров, расширение посткапилляров и венул с дистрофией стенок, отек. Гистологически выявляют миоцитолиз и контрактуры, которые могут иметь мелкогнездный, очаговый и диффузный вид. В этом случае определяют фиксацию иммунного комплекса: ишемического токсина и аутоиммунных антител непосредственно в поврежденных мышцах. В очагах контрактур видны полосы сгущения на уровне L– и А-дисков. В очагах внутриклеточного миолиза исчезают поперечные структуры в результате разрушения L-дисков и значительной диспозиции тонких и толстых нитей; даже в стадии некроза А-диски сохраняются. Критическим периодом для мышц конечностей считают 6–9 ч.

В целях удлинения критического периода ишемии в настоящее время применяют гипотермию, гипербарическую оксигенацию и антиоксидантную терапию, направленные на регуляцию обмена веществ в зонах ишемии, а следовательно, на профилактику поражения мембран органелл.

Инфаркт. Инфаркт (от лат. infarcire – нафаршировывать, наполнять) – некроз части, реже целого органа, обусловленный нарушением кровоснабжения. Инфаркт называют еще циркуляторным некрозом. Термин «инфаркт», предложенный Р. Вирховым (R. Virchow), использовался вначале лишь по отношению к такой форме циркуляторного некроза, при которой омертвевший участок пропитывался («нафаршировывался») излившейся кровью, т. е. по отношению к геморрагической форме.

Теория патогенеза инфаркта основана на учении J. Cohnheim (1872) о концевых сосудах. Концевыми автор называл сосуды, которые в процессе ветвления не анастомозируют друг с другом на всем протяжении. Закупорка просвета концевого сосуда должна приводить к запустеванию всех отходящих от места закупорки ответвлений, обусловливая развитие инфаркта. С позиций учения J. Cohnheim нашел объяснение один из главных патогенетических факторов инфаркта – блокада кровотока в магистральном артериальном стволе. Патогенез инфаркта не ограничивается только этим фактором. Показано, что концевых сосудов не существует (Струков А. И., 1959). Во всех органах человека имеются анатомические анастомозы на разных уровнях ветвления сосудов и дополняемые коллатералями, экстраорганными анастомозами и паравазальным руслом. Эти структуры способны компенсировать закупорку магистрального сосуда, предотвращая развитие инфаркта. Следовательно, вторым необходимым условием для возникновения инфаркта является недостаточность обеспечения кровоснабжения за счет анастомозов и коллатералей, что может вызываться их анатомическим недоразвитием, вовлечением их в патологический процесс или функциональным выключением из кровообращения. В органах с усиленным потреблением и расходом энергии, к которым относится сердце, инфаркт может возникнуть из-за несоответствия притока крови повышенной функциональной нагрузке. Возникновению инфаркта в значительной мере благоприятствуют общие нарушения кровообращения, сердечно-сосудистая недостаточность, венозный застой.

Выделяют три типа инфаркта – белый (ишемический), красный (геморрагический) и белый инфаркт с геморрагическим ободком. Различие морфологии этих типов обусловлено неодинаковыми механизмами их развития. Макроскопически инфаркт любого типа может иметь либо коническую, либо неправильную форму. Коническую имеет обычно инфаркт, развивающийся в бассейне артерий с магистральным типом ветвления, неправильную – с рассыпным типом.

Белый инфаркт возникает в результате запустевания сосудистого русла в его зоне при непроходимости магистрального артериального ствола и недостаточной функции коллатералей. Этот тип инфаркта встречается в селезенке, печени. Развитию некроза предшествует ишемическая стадия, характеризующая начальные, большей частью обратимые изменения. Сформированный ишемический инфаркт становится виден невооруженным глазом примерно через 1 сут. Микроскопически в зоне инфаркта обнаруживается некроз чаще коагуляционного, реже колликвационного типа (головной мозг). По периферии зона некроза ограничена воспалительным демаркационным валом.

При красном инфаркте зона некроза пропитана кровью, за счет чего участок инфаркта приобретает темно-красный цвет. Этот тип инфаркта развивается чаще в легких, головном мозге, кишечнике. Условия, способствующие развитию – венозный застой и двойное кровоснабжение органа (из сосудов разных сосудистых систем). При венозном застое ретроградное проникновение крови из вен ведет к излиянию крови в некротизированный участок. Сильный венозный застой может сам по себе вызвать геморрагический инфаркт. Выделяют особую форму геморрагического инфаркта – венозный инфаркт, причиной которого является окклюзия вен, вызванная тромбозом или другими патологическими процессами. Двойное кровоснабжение способствует тому, что в бассейн сосуда с нарушенной проходимостью через анастомозы проникает кровь из другой системы кровоснабжения, пропитывая некротизированную ткань. Двойное кровоснабжение имеют легкие и печень. В очаге геморрагического инфаркта микроскопически определяются массы агглютинированных и гемолизированных эритроцитов, замещающие разрушенные структуры органа. Особенность перифокальной реакции – присутствие большого количества сидерофагов и глыбок гемосидерина.

Белый инфаркт с геморрагическим ободком развивается в тех случаях, когда в ходе формирования ишемического некроза происходит запоздалое включение коллатералей и сосудов краевой зоны после их длительного спазма. В результате этого в сосудах краевой зоны отмечается паралитическое расширение, резкое полнокровие, стаз и происходит излияние крови в некротизированную ткань. Этот тип инфаркта представляет собой комбинацию красного и белого: центр состоит из инфаркта белого типа, периферия – из красного; часто встречается в сердце и почках.

В ходе эволюции инфаркта вслед за формированием некроза наступает стадия репаративных изменений. Она начинается с перифокальной воспалительной реакции со всеми присущими ей признаками. Микроскопически эту реакцию можно наблюдать уже через несколько часов; она достигает максимума через 3–5 сут. Под влиянием протеолитических ферментов зернистых лейкоцитов происходит лизис некротических масс, которые резорбируются лимфатическими дренажами и подвергаются фагоцитозу. Через 7–10 сут демаркационный вал трансформируется в соединительную ткань, которая постепенно замещает некротизированные массы. В исходе инфаркта формируются рубец (сердце, почка) или киста (головной мозг).

1.2.2.2. Тромбоциты

Структурно-функциональные основы гемостаза и его патология. Строение тромбоцитов. Тромбоцит окружен плазмолеммой и состоит из светлой прозрачной наружной части, называемой гиаломером (от греч. hyalos – стекло и meros – часть), и центральной окрашенной части, содержащей азурофильные гранулы, – грануломера. В некоторых случаях выявляются небольшие псевдоподии, выступающие из периферической части гиаломера.

Плазмолемма тромбоцитов покрыта снаружи толстым (от 50 до 150–200 нм) слоем гликокаликса с высоким содержанием гликозаминогликанов и гликопротеинов. Она содержит многочисленные рецепторы, опосредующие действие веществ, активирующих и ингибирующих функции тромбоцитов, обусловливающие их прикрепление (адгезию) к эндотелию сосудов и агрегацию (склеивание друг с другом). Наиболее важными из них в функциональном отношении являются рецепторные гликопротеины Ib (GP Ib), IIb (GP IIb) и IIIa (GP IIIa), рецепторы к аденозиндифосфорной кислоте (АДФ), адреналину, тромбину, фактору Ха, фактору агрегации тромбоцитов (ФАТ), коллагену.

Гиаломер содержит две системы трубочек (канальцев) и большую часть элементов цитоскелета.

Система канальцев, связанных с поверхностью (открытая система канальцев), представлена гладкими анастомозирующими трубочками, которые открываются в инвагинации, образованные плазмолеммой. Функция этой системы канальцев связана с процессами поглощения и выведения веществ; она облегчает экзоцитоз содержимого гранул тром боцитов.

Система плотных трубочек образуется комплексом Гольджи мегакариоцитов. Она представлена узкими мембранными трубочками, заполненными плотным зернистым содержимым, которые располагаются непосредственно под кольцом микротрубочек или разбросаны по цитоплазме. Их функция выяснена неполностью. Предполагают, что они накапливают и выделяют Са2+, т. е. являются аналогом саркоплазматической сети мышечных клеток. Их связывают также с выработкой простагландинов.

Цитоскелет тромбоцитов представлен микротрубочками, микрофиламентами и промежуточными филаментами.

Микротрубочки в количестве 4–15 шт. располагаются по периферии цитоплазмы и формируют мощный пучок (краевое кольцо), служащий жестким каркасом и способствующий поддержанию формы тромбоцитов.

Микрофиламенты, образованные актином, многочисленны (актин составляет 25 % белка тромбоцитов), располагаются по всей цитоплазме в виде коротких нитей; в гиаломере они концентрируются между пучком микротрубочек и плазмолеммой, образуя подмембранный аппарат. Он участвует в формировании выпячиваний цитоплазмы при движении и агрегации тромбоцитов. Актиновые филаменты связаны в единую систему посредством белков α-актинина, миозина и тропомиозина, а с плазмолеммой – с помощью белка филамина.

Промежуточные филаменты образованы белком виментином и располагаются преимущественно под плазмолеммой.

Грануломер содержит митохондрии, частицы гликогена, отдельные рибосомы, единичные короткие цистерны гранулярной (шероховатой) эндоплазматической сети (грЭПС), элементы комплекса Гольджи и гранулы нескольких типов:

– α-гранулы – самые крупные (диаметр 300–500 нм), с умеренно плотным матриксом, в котором содержатся: фибриноген, фибронектин, тромбоспондин (белок, сходный с актомиозином), тромбоглобулин, тромбоцитарный фактор роста (ТРФР), эпидермальный фактор роста (ЭФР), трансформирующий фактор роста (ТФР), фактор свертывания V и фактор Виллебранда (белок-переносчик фактора VIII свертывания), а также ряд других белков. Составляют большую часть гранул, окрашивающихся азуром;

– δ-гранулы (плотные гранулы, или тельца) – немногочисленные (до 5 шт.) мембранные пузырьки диаметром 250–300 нм с плотным матриксом, который иногда располагается в них эксцентрично. Матрикс содержит АДФ, АТФ, Са2+, Mg2+, пирофосфат, гистамин, серотонин. Последний не синтезируется тромбоцитами, а поглощается ими из крови;

– λ-гранулы – мелкие (диаметр 200–250 нм) пузырьки, содержащие гидролитические ферменты. Рассматриваются как лизосомы.

Функциональная морфология тромбоцитов. Участие тромбоцитов в реак циях гемостаза и гемокоагуляции. В кровотоке тромбоциты представляют собой свободные элементы, не слипающиеся ни друг с другом, ни с поверхностью эндотелия сосудов. Более того, эндотелиоциты в норме в небольших количествах вырабатывают и выделяют вещества, угнетающие адгезию и препятствующие активации тромбоцитов. При повреждении эндотелия сосудов микроциркуляторного русла (диаметром менее 100 мкм), которые наиболее часто травмируются и разрываются, тромбоциты служат ведущими элементами в остановке кровотечений. При этом развивается закономерная последовательность процессов, включающая: адгезию тромбоцитов, агрегацию тромбоцитов (с формированием белого, или тромбоцитарного, тромба), свертывание крови (гемокоагуляцию) с формированием красного тромба, ретракцию тромба, разрушение тромба.

Адгезия тромбоцитов – их прилипание к стенке сосуда в области повреждения благодаря их взаимодействию с коллагеновыми белками (базальной мембраны эндотелия и волокон подэндотелиального слоя), опосредованному гликопротеинами фибронектином, ламинином и, в особенности, фактором Виллебранда, который также содержится в эндотелии. Фактор Виллебранда связывается с белком GP Ib – рецептором этого фактора на плазмолемме тромбоцитов. Адгезия тромбоцитов начинается у краев зоны повреждения сосуда, быстро сужая, а затем закрывая дефект и останавливая кровоизлияние из этой зоны в окружающие ткани. Обычно процесс адгезии длится около 3–10 с. В ходе этого процесса тромбоциты подвергаются активации.

Активация тромбоцитов сопровождается изменением их формы, секреторной реакцией (выделением содержимого гранул) и метаболической реакцией. Эти процессы, в отличие от более ранних изменений, обычно необратимы.

Изменение формы – первая реакция тромбоцитов на стимуляцию, в ходе которой они распластываются по поверхности, теряют свою дисковидную форму, округляются, одновременно выбрасывая тонкие отростки. Активированные тромбоциты – структуры со сферической центральной частью, от которой отходят отростки (псевдоподии, или филоподии, в дальнейшем приобретающие вид шипов). Длина этих отростков в несколько раз превышает размер центральной части, а их основа образована мощными пучками микрофиламентов. Краевое кольцо микротрубочек сжимается, вызывая смещение гранул к центру тромбоцита (централизацию гранул), затем оно перекручивается и распадается с деполимеризацией микротрубочек. Одновременно происходит увеличение содержания микрофиламентов (благодаря полимеризации актина), которые формируют другое кольцо, охватывающее снаружи и отчасти пронизывающее кольцо микротрубочек. Отмечается также и перераспределение промежуточных филаментов с их частичным перемещением в отростки.

Секреторная реакция тромбоцитов осуществляется путем быстрого выделения содержимого α- и плотных гранул, а затем лизосом через систему канальцев, связанных с поверхностью. При этом секретируется ряд веществ, обеспечивающих дальнейшее развертывание процессов адгезии, агрегации тромбоцитов, гемостаза и регенерации сосудистой стенки. В частности, ТРФР усиливает процессы заживления повреждений, так как он является мощным стимулятором пролиферации фибробластов, гладких миоцитов, глиальных клеток и обладает хемотаксической активностью в отношении нейтрофильных гранулоцитов, моноцитов, фибробластов, гладких миоцитов.

Метаболическая реакция тромбоцитов включает активацию ряда ферментов (мембранных фосфолипаз, циклоксигеназы и тромбоксансинтетазы). При этом из фосфолипидов плазмолеммы образуется арахидоновая кислота, которая превращается в эйкозаноиды, главным образом, тромбоксан А2 (TxА2). TxА2 вызывает спазм сосуда (способствует гемостазу) и резко стимулирует агрегацию тромбоцитов. Одновременно эндотелий сосудов синтезирует из арахидоновой кислоты простагландин I2 (ПГI2, или простациклин), который угнетает активность тромбоцитов и расширяет сосуды. Последующее течение процессов гемостаза зависит от баланса между TxА2 и простациклином.

Активация тромбоцитов протекает при повышении концентрации Са2+ в цитоплазме вследствие его выделения системой плотных трубочек и плотных гранул.

Агрегация тромбоцитов – слипание тромбоцитов друг с другом и с тромбоцитами, начально прикрепившимися к компонентам поврежденного сосуда, вызывает быстрое формирование тромбоцитарных конгломератов – тромбоцитарной (первичной) гемостатической пробки (белого, или тромбоцитарного тромба), которая закрывает дефект стенки сосуда и в течение 1–3 мин обычно целиком заполняет его просвет.

Адгезия и агрегация тромбоцитов – сложные биологические процессы, протекающие с участием внешних и собственных тромбоцитарных стимуляторов и требующие энергетических затрат. На мембране тромбоцитов из белков GP IIb и GP IIIа происходит сборка комплекса GP IIb/IIIа, который служит рецептором фибриногена. Фибриноген стимулирует агрегацию, связываясь с этими рецепторами на поверхности различных тромбоцитов и образуя между ними мостики. Стимуляторами (кофакторами) агрегации служат также тромбин, адреналин, фактор агрегации тромбоцитов (ФАТ) (образуется гранулоцитами и моноцитами крови, тромбоцитами, эндотелиальными и тучными клетками). Коллаген индуцирует как адгезию, так и агрегацию. Мощным стимулятором агрегации служит АДФ (выделяется поврежденной сосудистой стенкой и эритроцитами, а затем самими адгезированными и активированными тромбоцитами). Одновременно с АДФ из тромбоцитов освобождаются другие стимуляторы агрегации (адреналин, серотонин). Последние, подобно ТхА2 и ТРФР, вызывают резкий спазм поврежденного сосуда, способствующий гемостазу.

Объем тромбоцитарного тромба уменьшается вследствие активации сократимого белка тромбоцитов тромбостенина. Тромбоциты при этом еще более сближаются, а тромб становится непроницаемым для крови. Первые нити фибрина появляются вокруг тромбоцитарного тромба и между его тромбоцитами уже через 30–60 с после повреждения стенки сосуда в результате взаимодействия тромбопластина сосудистой стенки с белками плазмы крови. В последующие часы происходит разрушение тромбоцитов, а тромбоцитарная пробка замещается массами образовавшегося фибрина.

Свертывание крови (гемокоагуляция) – вторичная гемостатическая реакция. Гемостаз, осуществляемый путем формирования тромбоцитарной (первичной) пробки, эффективен лишь в сосудах микроциркуляторного русла, но недостаточен в более крупных сосудах с высокой скоростью кровотока, так как в них эта пробка может отделяться от сосудистой стенки, вызывая возобновление кровотечения. В таких сосудах происходит свертывание крови и формируется вторичная гемостатическая (фибриновая) пробка (красный тромб). Тромбоциты принимают непосредственное участие в процессах свертывания крови. Факторы свертывания частично содержатся в их гранулах, частично сорбируются ими из плазмы крови. Полагают, что тромбоциты формируют микромембранные фосфолипидные комплексы, на поверхности которых происходит взаимодействие факторов свертывания.

Гемокоагуляция является сложным каскадным ферментным процессом с участием ряда аутокаталитических систем, в результате которого кровь из жидкой превращается в желеобразную. Свертывание обеспечивается рядом факторов, содержащихся в плазме, поврежденных сосудах и тромбоцитах. Часть его этапов требует присутствия Са2+, активность некоторых факторов зависит от витамина К.

Заключительным этапом процесса гемокоагуляции служит превращение (путем полимеризации) растворимого белка плазмы фибриногена в нерастворимый фибрин под влиянием тромбина. Тромбин образуется из протромбина благодаря активности фермента тромбокиназы. Фибрин представлен поперечно исчерченными волокнами (с периодичностью около 25 нм), расположенными в просвете сосуда в виде трехмерной сети, захватывающей из кровотока форменные элементы крови, в частности, численно преобладающие эритроциты (что придает формирующемуся тромбу красный цвет).

Одновременно с локальной активацией свертывающей системы, приводящей к формированию тромба, происходит повышение активности факторов противосвертывающей системы крови (некоторые из них являются продуктами свертывания крови). В результате возникает торможение и самоограничение процесса свертывания, что предотвращает его возможную генерализацию (распространение на неповрежденные участки данного сосуда и другие сосуды).

Ретракция тромба – реакция, развивающаяся вскоре после формирования тромба и состоящая в уменьшении его объема примерно до 10–50 % от исходного благодаря активности цитоскелетного сократительного аппарата тромбоцитов. Он сходен с аналогичным аппаратом гладких миоцитов и представлен актином (образующим основную массу цитоскелета) и связанными с ним белками (при соотношении актина к миозину, превышающем 100: 1). При сокращении актомиозинового комплекса потребляется энергия, запасенная в АТФ тромбоцитов. Усилие, генерируемое цитоскелетом тромбоцитов, через их отростки и адгезивные белки передается на нити фибрина.

Разрушение тромба происходит по завершении регенерации сосудистой стенки, когда отпадает необходимость в нем. Фибринолиз – разрушение фибрина в кровеносном русле. Осуществляется рядом факторов, из которых наибольшее значение имеет плазмин (фибринолизин), образующийся из содержащегося в плазме профермента плазминогена под влиянием активаторов плазминогена, продуцируемых эндотелием и различными тканями, окружающими сосуды. Удаление тромба обеспечивается и ферментами λ-гранул тромбоцитов.

Снижение свертываемости крови и кровоточивость могут служить симптомами различных (в том числе наследственных) заболеваний, связанных с недостаточным содержанием тромбоцитов в крови (тромбоцитопениями) и нарушениями их функций (тромбоцитопатиями), уменьшением активности свертывающей или повышением активности противосвертывающей систем плазмы, усиленным фибринолизом, а также сочетаниями этих нарушений.

Усиленное тромбообразование. Хотя формирование тромбов в ответ на повреждение сосудов является нормальной физиологической реакцией, предотвращающей кровопотерю, его усиление, в особенности при изменении сосудистой стенки атеросклеротическим процессом, может вызвать тромбоз (закупорку тромбом сосудов различных органов – миокарда, конечностей, головного мозга и др.), обусловливающий развитие тяжелых расстройств и смерть. Отрыв тромбов от стенки поврежденных вен конечностей может приводить к закупорке ими (тробмэмболии) сосудов легких.

Морфология тромба. В зависимости от способа возникновения и строения выделяют четыре основных вида тромбов: белый, или серый; красный, или коагуляционный; смешанный; гиалиновый. При наличии определенных условий, способствующих образованию того или иного вида тромбов, и этиологии выделяют еще четыре вида: марантический; опухолевый; сопровождающий заболевания кроветворной системы; септический. По отношению к просвету сосуда каждый из видов тромба может быть пристеночным и закупоривающим.

Белый тромб называют еще серым, агглютинационным, конглютинационным, так как в нем преобладают агрегаты слившихся форменных элементов крови. Макроскопически тромб имеет белую или серую окраску, спаян со стенкой сосуда, поверхность его гофрированная, тусклая, сухая, он легко крошится. На разрезе различается слоистость. При микроскопическом исследовании определяют, что существенную часть белого тромба составляют тромбоциты, которые располагаются в нем многоэтажными балками, напоминая коралловую структуру. Балки из кровяных пластинок имеют направление, перпендикулярное току крови, снаружи окружены слоем фибрина, а между балками расположена сеть волокон фибрина, скрепляющего соседние. В сети фибрина видны скопления нейтрофильных гранулоцитов. Белый тромб образуется медленно при быстром токе крови в артериях, между трабекулами внутренней поверхности сердца, на створках клапанов сердца при эндокардите. Белый тромб бывает обычно пристеночным.

Красный или коагуляционный тромб образуется при быстром свертывании кровяного столба и медленном движении крови. Макроскопически этот тромб красного цвета, рыхлый, поверхность слегка гофрирована, местами гладкая и влажная. Молодые тромбы красного цвета, более старые приобретают буроватую окраску, их поверхность тускнеет. Со стенкой сосуда соединен рыхло, легко отделяется и тогда становится трудно отличимым от красного трупного сгустка. Микроскопически основа красного тромба образована сеткой фибрина, одна часть которого состоит из тонких, плохо выявляющихся волокон фибрина, а другая – из более толстых. В сети фибрина большое число эритроцитов, отдельные нейтрофильные гранулоциты, мелкие скопления тромбоцитов, но без образования балочных структур, как в белом тромбе. Красный тромб имеет закупоривающий характер и обычно встречается в венах.

Смешанный тромб представляет собой образование, состоящее из элементов как белого, так и красного тромба. По макроскопическому виду в смешанном тромбе различают головку (белый или серый тромб), шейку или среднюю часть, представляющую собой смесь белого и красного тромбов, и хвост тромба (красный тромб). Головка тромба имеет коническую или уплощенную форму, спаяна со стенкой сосуда. Головка обращена к вене в сторону сердца, а в артерии – в направлении от сердца. Хвост расположен и растет в вене против тока крови (как и в артерии). Хвост рыхло прикреплен к шейке тромба, может отрываться и быть источником тромбоэмболии; иногда отрывается весь тромб. В агональном периоде или после смерти кровь в венах дистальнее хвоста свертывается, и этот красный сгусток легко отделяется от хвоста. Смешанный тромб встречается в венах, артериях, аневризмах артерий и сердца. В аневризмах тромб на разрезе имеет слоистое строение.

Гиалиновые тромбы обычно множественные и возникают в сосудах микроциркуляторного русла; встречаются при экстремальных условиях: шок, обширная травма тканей, ожоги, электротравма и т. д. Имеются разногласия в отношении механизма образования гиалинового тромба. В основе образования гиалиновых тромбов могут лежать процессы склеивания эритроцитов, тромбоцитов, лейкоцитов и выпавшего фибрина, превращающихся в гомогенную бесструктурную массу, дающую реакции на фибрин. Получается, что гиалиновый тромб состоит из спрессованных в гомогенную массу кровяных пластинок с примесью фибрина или это результат желатинизации фибрина в капиллярах. Гиалиновые тромбы рассматривают как образования, построенные из необычно уплотненного фибрина, только похожего по своим тинкториальным свойствам на истинный фибрин. Гиалиновые тромбы – результат преципитации белков плазмы, агглютинации и гомогенизации эритроцитов и уплотнения фибрина. Некоторые авторы полагают, что такие тромбы состоят из слившихся и гомогенизированных лейкоцитов крови. Высказывается мнение, что гиалиновые тромбы состоят из гомогенизированного фибрина. Фибрин гиалиновых тромбов неоднороден по своему строению, его выявление зависит от способа фиксации и окраски. Приведенные данные противоречат результатам работ, убедительно показывающих, что основу гиалинового тромба составляют дезинтегрированные и некротизированные эритроциты. Гиалиновый тромб – понятие неоднородное, в связи с чем мнения разных авторов о строении и происхождении этого вида тромбов не совпадают.

Образование фибрина из фибриногена – многофазный процесс, сопровождающийся образованием неоднородных по своей структуре продуктов расщепления, что не может не отразиться на строении гиалинового тромба.

Марантический тромб (от греч. marasmos – изнурение, упадок сил) возникает при наличии истощения, когда развивается дегидратация организма и кровь становится более густой. Образуются марантические тромбы обычно в поверхностных венах конечностей и в синусах твердой мозговой оболочки у стариков. Вопрос об изменении химизма крови при истощении и его значении для тромбоза пока еще остается открытым. По внешнему виду марантические тромбы обычно смешанные.

Опухолевый тромб возникает при врастании клеток в просвет вен и разрастании их по току крови, иногда до полости правого желудочка. По поверхности опухолевых разрастаний образуются тромботические массы смешанного типа. Тромбы возникают иногда при опухолевой эмболии сосудов легких. В мелких сосудах, закупоренных опухолевыми эмболами, возникают тромбы, которые затем организуются, сосуды запустевают и становятся основой для легочной гипертонии.

Тромбы, сопровождающие заболевания кроветворной системы, возникают при полицитемии, лейкозах. При полицитемии в венах обычно возникают красные тромбы, являющиеся источником эмболии, а при лейкозах образуются тромбоцитарные тромбы в сосудах микроциркуляторного русла или обычные белые в тех участках вен, где развиваются лейкозные инфильтраты.

Септический тромб – смешанный тромб, возникающий обычно в венах. Характерным признаком является наличие воспалительного процесса в стенке вены и окружающей ткани (перифлебит, флебит, тромбофлебит и наличие бактерий в тромбе). Существуют следующие возможности для возникновения септического тромба: перифлебит, переходящий на стенку вены; первичные повреждения эндотелия бактериями, циркулирующими в крови, развитие тромбоза и септического тромбофлебита; вторичное попадание бактерий из крови в ранее образовавшийся тромб, который И. В. Давыдовский (1969) называл «больным тромбом», так как он может быть источником грозных гнойных тромбоэмболических осложнений. Вторичному инфицированию из внешней среды и из крови могут подвергаться тромбы, возникающие в венах при катетеризации, проводимой при лечебных мероприятиях.

По течению различают тромбы локализованные и прогрессирующие, а по отношению к просвету сосуда – пристеночные и закупоривающие, или обтурационные. Локализованные тромбы встречаются преимущественно в артериях на ограниченном участке, например на атеросклеротической бляшке. Прогрессирующие тромбы – преимущественно в венозной системе. Они ограничиваются какой-либо одной или несколькими областями. Выделяют еще поздние тромбы, возникающие после перенесенных инфекций, после операций, когда возникает активация факторов свертывания крови или депрессия противосвертывающей системы. Чаще поздние тромбы возникают в венах икроножных мышц и малого таза у лежащих больных. Такие тромбы бывают обычно источником тромбоэмболии легочной артерии. Пристеночные тромбы возникают на ограниченном участке поврежденной интимы сосуда, на клапанах сердца, пристеночном эндокарде. Обтурационные тромбы наблюдаются в артериях мелкого и среднего калибра на атеросклеротической бляшке (например, в венечной артерии). В аорте обтурационные тромбы встречаются редко. В венозной системе описаны мигрирующие тромбы у лиц с нарушенной системой гемостаза.

Тромбоз. Тромбоз (от греч. thrombos – сгусток крови) представляет собой патологическое проявление гемостаза, т. е. прижизненного свертывания крови с образованием в просвете сосуда сгустка крови, называемого тромбом. Он может полностью или частично закрывать просвет сосуда и вызывать серьезные нарушения кровообращения. Процесс гемостаза является защитным механизмом, его активация возникает при повреждении, разрыве стенки сосуда и предупреждает или останавливает кровотечение. Образование тромба может также рассматриваться как гемостаз, но причиняющий вред организму с возможными опасными для жизни последствиями. Тромбоз – это проявление гемостаза, но идущее не на пользу организму. Изменения, приводящие к свертыванию крови, в основном совпадают с наблюдающимися в условиях гемостаза. Механизм прижизненного свертывания крови сложен и является с физиологической точки зрения следствием локального или общего нарушения жидкого состояния крови. Свертывание крови может протекать очень медленно или вообще не происходить. Иногда наблюдается, наоборот, повышенная склонность к свертыванию. Во всех странах отмечается учащение болезней, связанных с нарушением гемостаза: особенно часто встречаются тромбозы и их осложнения.

Эмболия. Эмболия – патологический процесс, который характеризуется циркуляцией в сосудах малого и большого круга кровообращения свободных тел, не смешивающихся с кровью. Ими могут быть кусочки оторвавшегося тромба (венозная и артериальная тромбоэмболия), пузырьки воздуха или газа, капельки жира, кусочки тканей, в частности опухолей, скопления бактерий, плодные воды, плацентарные клетки, чужеродные тела, попавшие в кровоток (например, пули, осколки снарядов).

Эмболия может быть прямой и непрямой. В первом случае эмбол прямо из вен попадает в правый желудочек и в легочную артерию. Во втором – эмбол может через сохранившееся овальное отверстие в межпредсердной или в межжелудочковой перегородке попасть в большой круг кровообращения (парадоксальная эмболия). Выделяют еще ретроградную эмболию, которая наблюдается, когда эмбол из полой вены попадает при повышении внутригрудного давления в вены печени.

Венозная тромбоэмболия – опасное и частое явление. 25–50 % всех венозных тромбозов ведут к эмболии, из которых 5–10 % заканчиваются смертью. Частота смертельных эмболий различна у больных разного профиля. Гинекологические больные погибают от легочной эмболии в 8,3–11,5 % случаев, хирургические – в 5,4 % и терапевтические – в 1,2 % случаев. Источником венозных тромбоэмболий чаще являются бедренная вена и вена малого таза, затем голени. Число тромбозов и венозных тромбоэмболии несколько увеличилось, что связывают с факторами питания (жирная пища). Отмечено, что смертельная легочная тромбоэмболия встречается почти в 4 раза чаще у хорошо упитанных людей, чем у людей с пониженным питанием. Тромбоэмболия легочной артерии встречается чаще у женщин и пожилых людей обоего пола, чем у молодых. Благоприятствуют развитию легочной тромбоэмболии мен струации, роды, операции, прием пероральных контрацептивов (у молодых женщин).

Отмечается учащение венозных тромбозов и тромбоэмболии легочной артерии. Среди погибших от тромбоэмболии легочной артерии преобладают люди пожилого и старческого возраста, преимущественно женщины.

Источники артериальной тромбоэмболии – тромбы левого сердца, аорты и редко легочных вен. Особенно характерны множественные тромбоэмболии, возникающие при затяжном септическом эндокардите, патологический процесс при котором обычно локализуется на створках артериального клапана и морфологически проявляется полипозно-язвенным тромбоэндокардитом. Эти рыхлые клапанные и пристеночные тромбы могут быть источником тромбоэмболии с последующим развитием инфарктов в органах и гангреной конечностей. Когда развиваются множественные тромбоэмболии (венозные и артериальные), говорят о тромбоэмболическом синдроме.

Воздушная эмболия возникает при попадании воздуха в венозную систему при ранении вен, расположенных близко к сердцу. В случае повреждения яремной вены воздух при вдохе может попасть в ее просвет, так как в ней в это время создается отрицательное давление. Возможность воздушной эмболии возникает как осложнение криминального аборта при введении воздуха в полость матки. Воздух попадает через вены в ток крови, образует в ней пенистую массу, пузырьки которой закупоривают легочные капилляры. Воздушная эмболия может возникнуть при внутривенных инъекциях, когда из шприца предварительно не удаляется воздух. Сходна с воздушной эмболией газовая эмболия, возникающая в результате выделения в крови пузырьков растворимого в ней газа при быстром переходе от высокого атмосферного давления к обычному. Это может наблюдаться, например, у водолазов, работающих на большой глубине (кессонная болезнь).

Жировая эмболия возникает при травме костей, сопровождающейся размозжением жира и превращением его в эмульсию. При попадании в кровь мелкие капельки жира закупоривают легочные капилляры и могут привести к острой асфиксии.

Тканевая эмболия обычно возникает у плода при разрушении тканей во время родового акта. Матка может служить источником эмболии плодными водами. В этих случаях в капиллярах легких находят содержимое вод: роговые чешуйки, жировые капельки и т. д. При неполном отслоении плаценты в вены матки могут попадать клетки ворсин хориона, погибающие в капиллярах легких и закупоривающие их. При эмболии клетками опухоли и бактериями (например, кусочками септического тромба) эмболы могут попасть в малый круг кровообращения через артерповенозные анастомозы или открытое овальное окно, а также межжелудочковую перегородку и быть источником развития метастазов опухоли и метастатических абсцессов при септикопиемии.

Инородные тела (осколки снарядов, пули) в редких случаях могут закрывать просветы крупных вен и быть источником ретроградных эмболий. В силу тяжести они опускаются в венозных сосудах против тока крови.

Нарушения микроциркуляции. Материальной основой микроциркуляции является микроциркуляторное русло, построенное из повторяющихся единиц – микрорайонов (гистионов, модулей), объединяющих микрососуды с определенными структурно-функциональными признаками, нервные проводники, клетки, волокна соединительной ткани, промежуточное склеивающее вещество. Эти единицы отделены друг от друга и имеют изолированные пути притока и оттока крови и продуктов обмена. В микроциркуляторном русле следует выделять четыре звена: звено притока и распределения крови (артериолы и прекапилляры); промежуточное, обменное (капилляры, с помощью которых осуществляется транскапиллярный обмен); депонирующее (состоит из посткапилляров и венул, обладает в 20 раз большей емкостью, чем артериолы); дренажное (лимфатические капилляры и посткапилляры).

Между микрососудами (артериолами и венулами, между капиллярами, артериолами, венулами и лимфатическими сосудами) имеются анастомозы. В местах их ответвления в отделе микроциркуляции располагаются группы гладких миоцитов, образующие сфинктеры.

Основная и важнейшая функция микроциркуляции – осуществление обмена между кровью и тканью, необходимого для обеспечения клеточного метаболизма в органах. Через микроциркуляцию клетки получают питание, освобождаются от продуктов обмена в соответствии со своими потребностями. Благодаря деятельности гладкомышечных сфинктеров микроциркуляция контролирует степень тканевого крове- и лимфонаполнения и тем самым осуществляет гемодинамический и метаболический гомеостаз, необходимый для нормальной жизнедеятельности организма. Все эти процессы протекают в тканях под влиянием симпатических, адренергических сосудосуживающих нервов, а также гуморальных (гормональных) и гидростатических факторов.

Микроциркуляторное русло – первая система организма, вовлекающаяся в патологический процесс при различных патогенных воздействиях. При ряде заболеваний микроциркуляция реагирует как целостная система. О ее состоянии в организме возможно судить по результатам изучения отдельных его областей. Очень большое значение для суждения о микроциркуляции имеют данные о биофизических (реологических) свойствах крови, определяемых у больных. Гемореология исследует деформацию и текучесть плазмы и клеточных элементов крови и их отношение к стенкам микрососудов. В связи с этим в клинике весьма важно определение вязкости крови, установление количественной характеристики степени и динамики агрегации и адгезии эритроцитов, тромбоцитов, установление гиперфибриногенемии, эритроцитоза и т. д. Эти клинико-лабораторные показатели помогают установлению внутрисосудистой гиперкоагуляции, которая обычно реализуется на уровне микроциркуляторного русла, развивается при ряде заболеваний, например, при шоке, инфекционных болезнях, гломерулонефрите.

Патология микроциркуляторного русла складывается из сосудистых, внутрисосудистых и внесосудистых изменений.

Сосудистые изменения касаются толщины и формы сосуда, а также изменений его слоев. Их обозначают термином «ангиопатия». В зависимости от степени изменений сосудистой стенки выявляются нарушения ее проницаемости разной степени, а в связи с этим и расстройство транскапиллярного обмена.

Внутрисосудистые изменения кровообращения в микроциркуляторном русле проявляются в различных нарушениях реологических свойств крови. Сюда относятся агрегация и деформация различных клеток крови. Агрегаты эритроцитов и тромбоцитов могут быть разных размеров. Сама кровь становится более вязкой, а феномен агрегации форменных элементов с сепарацией плазмы обозначают как сладж-феномен (от англ. sludge – густая грязь, тина, ил). Образование агрегатов снижает скорость кровотока. Агрегация эритроцитов и тромбоцитов – процесс обратимый, и кровообращение может восстановиться. Если агрегация переходит в необратимую фазу – вязкий метаморфоз, тромбоциты начинают выделять факторы свертывания крови, и образуются микротромбы, имеющие в капиллярах строение гиалиновых. Крупные агрегаты форменных элементов крови могут вызвать закупорку артериол, что приводит к появлению большого числа капилляров, лишенных эритроцитов и содержащих одну плазму. Такие капилляры называют плазматическими. Они не могут обеспечить транскапиллярный обмен. Подобные картины могут наблюдаться при шоках разного происхождения, при коагулопатии потребления, острых инфекциях.

Внесосудистые изменения выражаются развитием периваскулярного отека, кровоизлияний. В сосудах лимфомикроциркуляции наблюдаются явления лимфостаза, запустевания и регенерации лимфатических капилляров.

Изменения в сосудах микроциркуляторного русла при различных заболеваниях довольно однообразны: всегда поражаются все его звенья, но интенсивность изменений оказывается выраженной по-разному. Специфичность какой-либо болезни по изменениям микроциркуляторного русла можно определить только по совокупности признаков.

Артериолы и прекапилляры – это первое резистентное звено притока и распределения крови в микроциркуляторном русле, испытывающее на себе большое давление крови и по существу ведающее кровенаполнением ткани. В нем при различных заболеваниях могут наблюдаться картины артериолита с пролиферацией эндотелия, гиперплазией мышечного слоя, явлениями спазма. Очаговость изменений артериол при ревматизме прослеживается по ходу этих сосудов. При инфаркте миокарда, гипертоническом кризе со стороны артериол эпи- и перикарда отмечаются явления выраженного спазма (просвет не различается), артериолы приобретают змеевидную форму. В висцеральной плевре при хронических воспалительных процессах в легких артериолы изменены мало, но в прекапиллярах наблюдается спазм вплоть до полного спадения просвета. При гипертонической болезни обнаруживаются изменения не только в артериолах, но и во всех звеньях микроциркуляторного русла.

Собственно капилляры – второе промежуточное (обменное) звено микроциркуляции – изменяются при многих заболеваниях. В одних случаях отмечаются острые гемодинамические нарушения в виде распространенного спазма прекапиллярно-капилярного звена, причем можно наблюдать чередование участков спазма и расширения, т. е. гетерогенность поражения. Изменения артериол влияют на состояние капилляров: при спазме артериол или артериолите с сужением просвета артериол капиллярная сеть оказывается на значительном расстоянии заполненной плазмой (плазматические капилляры), а в соседних участках расширенной и переполненной кровью через анастомозы. Эти картины изменений кровенаполнения артериол, прекапилляров и капилляров следует рассматривать как морфологическое проявление вазомоции, т. е. смены фаз сокращения и расслабления прекапиллярных сфинктеров, ведущей к прерывистости движения крови в отдельных капиллярах и обеспечивающей условия тканевого гомеостаза.

Посткапилляры и венулы – третье эфферентное звено микроциркуляции, депонирующее; оказывается наиболее ранимым. Изменения в этом звене наблюдаются при различных заболеваниях, но интенсивность их неодинакова. При явлениях сердечной недостаточности наблюдаются картины резкого расширения посткапилляров и венул. Иногда расширения имеют вид мешковидных набуханий или цилиндрических образований по ходу сосуда. Просвет сосудов увеличивается в 3–5 раз, они переполнены кровью, что связано с их емкостной функцией, отмечается агрегация эритроцитов. Артериолы при этом или не изменяются, или находятся в состоянии спазма. Изменяются реологические свойства крови в виде стаза и агрегации эритроцитов, наличия агрегатов тромбоцитов и образования микротромбов. Особенно хорошо они выражены в посткапиллярах и венулах. По ходу этих микрососудов отмечаются явления повышенной проницаемости с выходом плазмы и форменных элементов в соединительную ткань. При инфаркте миокарда, гипертонической болезни, хронической пневмонии в эпикарде и перикарде наиболее тяжкие изменения сосредотачиваются также в венулах. Помимо расширения просвета, можно наблюдать агрегацию эритроцитов, появление в посткапиллярах сладж-феномена с секвестрацией кровотока, образование микротромбов, распространяющихся с посткапилляров на венулы. При хронической пневмонии, легочной гипертензии и легочном сердце в висцеральной плевре обнаруживаются перестройка капиллярной сети, появление многочисленных изгибов, выбуханий стенок, образование петель по ходу посткапилляров, свидетельствующих о новообразовании сосудов в условиях, требующих добавочной васкуляризации. В расширенных посткапиллярах и венулах отмечаются внутрисосудистые микротромбы. Наряду с изменениями микроциркуляции при хронической пневмонии при жизни у больных обнаружены повышенная склонность тромбоцитов к агрегации, повышение уровня фибриногена и числа эритроцитов в крови. Морфологическим выражением нарушения коагуляционных свойств крови считаются тромбы в системе микроциркуляции, приводящие к изменениям метаболического гомеостаза.

Шок. В связи с изучением микроциркуляторной системы большинство патофизиологов и клиницистов рассматривают шок как неспецифический клинический синдром, обусловленный снижением перфузии тканей кровью. При этом принято считать, что в основе нарушений гемодинамики лежит не столько первичное нарушение центральных нервно-регуляторных механизмов, сколько расстройства ауторегуляции микроциркуляторной системы, возникающие вследствие выброса избыточного количества биологически активных веществ.

Согласно этой концепции, в расстройствах кровообращения при шоке можно выделить фазу компенсации и фазу декомпенсации. Фаза компенсации характеризуется относительным равновесием между системным кровообращением и микроциркуляцией, когда уменьшение сердечного выброса компенсируется шунтированием кровотока и повышением тонуса регуляторных отделов (артериолы). Фаза декомпенсации определяется дискоординацией между системным кровообращением и микроциркуляцией, что выявляется в виде переполнения кровью капиллярного ложа, агрегации эритроцитов, микротромбозов и т. п. Депонирование основной массы крови приводит к развитию механического микроциркуляторного блока, который вследствие выключения из общей циркуляции большой массы эритроцитов приводит к нарастающей гипоксии и системным гемодинамическим расстройствам (снижение АД, уменьшение венозного возврата крови к сердцу, снижение ударного и минутного объемов, ухудшение перфузии тканей и т. д.), регистрируемым клинико-лабораторными методами. В ходе гемодинамических нарушений возникают вторичные явления: гипоксические нарушения тканевого обмена приводят к выбросу вазоактивных веществ, что усугубляет нарушения гемодинамики.

Такой теоретический подход как бы обезличил шоковую реакцию, которая как осложнение тяжелой травмы приобретала некоторые черты нозологичности. Термин «шок» (кардиогенный, плевропульмональный, перитонеальный, ожоговый, травматический, бактериальный, септический, послеоперационный, анафилактический и т. п.) применяется при самых разнообразных заболеваниях, характеризующихся нарушениями гемодинамики. По существу терминальный период любого тяжелого заболевания сопровождается локальными и (или) распространенными нарушениями гемодинамики в системе микроциркуляции, в связи с чем возникла тенденция рассматривать шок как один из вариантов терминального состояния.

Подобное истолкование сущности шоковых реакций в определенной степени нивелирует их этиологические особенности. Полностью стираются, например, различия между понятиями «шок» и «коллапс», которые никогда не были четкими. Однако основанные на этом принципе методы лечения шока, в особенности трансфузионными средствами с целью восполнения относительной (и абсолютной, например, при кровопотере) гиповолемии и коррекции реологических свойств крови, признаны положительными. В лечебных схемах учитывается также и этиология шоковой реакции. Предложена (Weil М., Schubin G., 1971) следующая классификация шока, составленная с учетом его этиологии и патогенеза:

гиповолемический шок: при кровопотере, травме, перитоните, холере, кишечной непроходимости и т. п.;

кардиогенный шок: в основе лежат уменьшение сердечного выброса и циркуляторный коллапс (при инфаркте миокарда, коронарной недостаточности);

бактериальный (бактериемический) шок: токсический шок при бактериемии, обусловленный попаданием в кровь большой дозы бактериальных токсинов;

анафилактический шок: возникает как резко выраженное проявление анафилаксии или атопии;

неврогенный шок: при интоксикации снотворными, ганглиоблокаторами и наркотическими веществами, полном травматическом разрыве спинного мозга. Ведущим звеном патогенеза в этих случаях считается вазомоторный коллапс; патогенетически к этой группе близок ортостатический коллапс;

шок, развивающийся в результате препятствия кровотоку: при тромбоэмболиях легочной артерии, остром артериальном тромбозе и т. п.;

шок, развивающийся при гормональной недостаточности («тиреотоксическая буря», микседемная кома, недостаточность функции надпочечников и т. п.).

Приведенная классификация наглядно демонстрирует современные тенденции оценки американскими учеными шоковых реакций с позиций патогенетической терапии. Насколько эта утилитарно-синтетическая концепция окажется правомерной, покажет клиническая практика. Но уже и теперь видно, что «тиреотоксическая буря», тромбоэмболия легочной артерии и анафилактический шок не могут быть ликвидированы только с помощью стандартных рецептов трансфузионной терапии, что для купирования этих состояний требуются специальные методы гормональной терапии и хирургические вмешательства. К этому следует добавить, что далеко не для всех типов шоковой реакции характерна абсолютная и относительная гиповолемия, которая считается наиболее ярким симптомом шока. Кардиогенный шок и «тиреотоксическая буря», характеризующиеся уменьшением ударного объема крови, как правило, не требуют значительного возмещения объема циркулирующей крови в отличие от травматического шока и острой массивной кровопотери. Экстремальные (или терминальные) состояния различной этиологии и неравноценные по своему патогенезу вошли в понятие шоковых реакций скорее из утилитарных соображений практической реаниматологии, с позиций которой пытаются выработать общие принципы лечения неотложных состояний.

По справедливому замечанию В. К. Кулагина (1978), при таком теоретическом подходе из учения о шоке полностью «выпадает» организм как целое с его сложной регуляцией гомеостаза, осуществляемой нервной и эндокринной системами.

1.2.2.3. Лейкоциты

Лейкоциты (от греч. leukos – белый, cytos, или kytos, – клетка), или белые кровяные клетки, – группа морфологически и функционально разнообразных подвижных форменных элементов, циркулирующих в крови и участвующих в различных защитных реакциях после миграции в соединительную ткань (частично также в эпителии). В соединительной ткани они столь многочисленны, что рассматриваются как ее нормальные клеточные элементы. Некоторые лейкоциты способны повторно возвращаться из тканей в кровь (рециркулировать).

Концентрация лейкоцитов в крови служит важным диагностическим показателем, часто определяемым в клинической практике.

Концентрация лейкоцитов у взрослого в норме составляет 4000–8000 клеток/мкл (по некоторым данным, верхняя граница нормы достигает 10 000). Величина этого показателя существенно варьирует в физиологических условиях, изменяясь у одного и того же человека в связи со временем суток, характером и тяжестью выполняемой работы, приемом пищи и другими факторами.

Концентрация лейкоцитов у детей в норме меняется в зависимости от возраста: у новорожденного она равняется 10 000–30 000 клеток/мкл (в среднем, 20 000 клеток/мкл), на 4-й день снижается до 12 000, к 4-м годам составляет 8000 клеток/мкл. Уровня, характерного для взрослого, этот показатель достигает примерно к 12–14 годам. С возрастом происходят изменения не только количественного, но и качественного состава лейкоцитов.

Лейкоцитоз – увеличение концентрации лейкоцитов в крови. Обычно является следствием их усиленного выброса из костного мозга в связи с возросшей потребностью, определяющейся повышенной гибелью (чаще всего при инфекционных и воспалительных заболеваниях).

Лейкопения – снижение концентрации лейкоцитов в крови. Результат подавления их образования в костном мозге (как следствие тяжелых инфекционных процессов, токсических состояний, облучения).

Движения лейкоцитов можно разделить на пассивные и активные. Пассивное движение обусловлено переносом лейкоцитов с током крови. Активные движения совершаются благодаря наличию в цитоплазме лейкоцитов многочисленных актиновых микрофиламентов и связанных с ними белков; они осуществляются с затратами энергии.

Миграция лейкоцитов из сосудистого русла в периферические ткани служит важнейшим этапом и условием осуществления функций различными видами этих клеток. Этот процесс происходит в микроциркуляторном русле и наиболее активно протекает на уровне посткапиллярных венул. Он включает закономерную серию (каскад) адгезивных взаимодействий между лейкоцитами и клетками эндотелиальной выстилки сосудов. Эти взаимодействия опосредуются последовательной экспрессией на поверхности лейкоцитов и эндотелия характерных комбинаций адгезивных молекул и включают несколько стадий:

случайные контактные взаимодействия между лейкоцитами и эндотелиальными клетками осуществляются постоянно в физиологических условиях с дальнейшим возвращением лейкоцитов в кровоток или переходом к последующим стадиям взаимодействия. Могут усиливаться при изменении условий кровотока, например, при его замедлении;

качение (англ. rolling) лейкоцитов по поверхности эндотелия обусловлено их транзиторной адгезией к выстилке сосуда (посредством адгезивных белков селектинов, экспрессируемых на лейкоцитах и эндотелии). Оно отражает неустойчивое равновесие локальных сил прикрепления (адгезии) лейкоцита к эндотелию и гемодинамических сил, отрывающих его от стенки сосуда. При качении скорость перемещения лейкоцита уменьшается примерно в 100 раз по сравнению с таковой в кровотоке. Начальная активация эндотелия сосуда (расположенного вблизи очага повреждения) цитокинами и медиаторами воспалительных реакций вызывает повышение экспрессии на его поверхности адгезивных молекул и вовлечение в процесс качения все большего числа лейкоцитов. Этот этап является обратимым (быстро блокируется при инактивации селектинов);

остановка качения лейкоцитов, их активация и прочное прикрепление к эндотелию обусловлены продолжающейся стимуляцией эндотелия и лейкоцитов цитокинами (в том числе недавно открытым классом хемотаксических цитокинов – хемокинов), продуктами повреждения тканей и хемоаттрактантами. Лейкоциты распластываются на поверхности эндотелия и по мере усиления адгезивных взаимодействий прочно прикрепляются к выстилке сосуда. Этот этап, как и последующие, является необратимым и опосредуется адгезивными белками интегринами, селектинами и представителями иммуноглобулиноподобных адгезивных белков;

миграция адгезированных лейкоцитов через эндотелий осуществляется путем размыкания ими соединений между эндотелиоцитами и проникновения в межклеточные промежутки. При этом лейкоциты плотно прилегают к поверхности клеток эндотелия, последовательно осуществляют с ними ряд адгезивных взаимодействий и всегда целиком заполняют межклеточное пространство, не увеличивая общей проницаемости сосуда. Перемещаясь, лейкоциты сначала образуют псевдоподию, а в дальнейшем их цитоплазма постепенно «перетекает» в сторону сформированного выпячивания. Базальная мембрана не служит препятствием на пути миграции лейкоцитов;

миграция лейкоцитов за пределами сосуда происходит благодаря сократительной активности элементов их цитоскелета и их многочисленным обратимым адгезивным взаимодействиям с клетками различных тканей (в первую очередь, соединительной) и компонентами межклеточного вещества (базальными мембранами, волокнами, гликопротеинами, протеогликанами и др.). Направленность движений лейкоцитов обусловлена их хемотаксисом (перемещением по градиенту привлекающего химического вещества – хемоаттрактанта) и характером адгезивных взаимодействий. Способность к целенаправленным движениям обеспечивает перемещение лейкоцитов в окружающую сосуды соединительную ткань, миграцию в органы иммунной системы, проникновение в эпителиальные выстилки и накопление в очагах повреждения тканей и инвазии микробов.

Избирательность миграции лейкоцитов в ткани. В физиологических условиях при отсутствии стимуляции активность миграции лейкоцитов различных видов за пределы сосудистого русла существенно различается. Она сравнительно невелика у нейтрофильных, эозинофильных и базофильных гранулоцитов, резко возрастает при воспалении. В то же время нестимулированная миграция моноцитов и лимфоцитов происходит очень активно. Регуляция потока лейкоцитов, мигрирующих за пределы сосудистого русла, имеет некоторые отличия в органах иммунной системы и других тканях и органах, что в значительной мере обусловлено особенностями их сосудов, в частности, посткапиллярных венул.

Посткапиллярные венулы в органах иммунной системы выстланы особым высоким (кубическим) эндотелием, который контролирует перемещение лимфоцитов из кровотока в эти органы. Этот эффект достигается путем экспрессии на поверхности клеток эндотелия специальных адгезивных молекул – адрессинов (различных в отдельных иммунных органах), которые, благодаря специфическому взаимодействию с хоминг-рецепторами на лимфоцитах (от англ. homing – возвращение домой), указывают последним направление миграции.

Посткапиллярные венулы в органах, не относящихся к иммунной системе, выстланы обычным (плоским) эндотелием, который обладает способностью избирательно контролировать активность миграции лейкоцитов. Это осуществляется путем экспрессии на его поверхности специфических комбинаций адгезивных молекул (эндотелиального «почтового индекса»), предпочтительно связывающихся с поверхностью лейкоцитов того или иного вида. Указанный процесс зависит от характера стимуляции эндотелия и лейкоцитов цитокинами, хемоаттрактантами и другими веществами, выделяющимися из очага воспаления. Более того, экспрессия адгезивных молекул на эндотелии количественно и качественно меняется во времени, что обусловливает смену потоков лейкоцитов отдельных видов, которые устремляются в участок повреждения тканей на разных сроках после его возникновения.

Нарушения подвижности лейкоцитов (вследствие дефектов цитоскелета), их способности к адгезивным взаимодействиям или целенаправленному движению (обычно в результате наследственной патологии) обусловливают ряд клинических синдромов, связанных с тяжелыми инфекционными поражениями организма.

Классификация лейкоцитов. Классификация лейкоцитов основана на ряде признаков, из которых ведущим является присутствие в их цитоплазме специфических гранул. На основании этого признака все лейкоциты разделяют на гранулоциты и агранулоциты.

Гранулоциты (зернистые лейкоциты) характеризуются наличием в их цитоплазме специфических гранул, обладающих различной окраской (базофильной, оксифильной или нейтрофильной). Это позволяет подразделять гранулоциты на базофильные, оксифильные (эозинофильные) и нейтрофильные. В гранулоцитах присутствует и второй тип гранул – неспецифические, или азурофильные (окрашиваются азуром и являются лизосомами). Ядро гранулоцитов обычно дольчатое (сегментированное), однако сравнительно немногочисленные менее зрелые их формы, циркулирующие в крови, имеют палочковидное ядро.

Агранулоциты (незернистые лейкоциты) содержат в цитоплазме лишь неспецифические (азурофильные) гранулы; специфические гранулы отсутствуют. Их ядро обычно имеет округлую или бобовидную форму. К агранулоцитам относятся моноциты и лимфоциты.

Лейкоцитарная формула. При проведении клинического анализа крови на ее мазках осуществляется дифференциальный подсчет относительного содержания лейкоцитов отдельных видов. Результаты такого подсчета регистрируются в табличной форме в виде так называемой лейкоцитарной формулы, в которой содержание клеток каждого вида представлено в процентах по отношению к общему количеству лейкоцитов, принятому за 100 %.

Нейтрофильные гранулоциты. Нейтрофильные гранулоциты (нейтрофилы) – наиболее распространенный вид лейкоцитов и гранулоцитов. Они попадают в кровь из красного костного мозга, циркулируют в ней около 6–10 ч, частично располагаясь в пристеночном (близком к эндотелию), или маргинальном, пуле, содержащем до 50 % всех нейтрофилов крови. После циркуляции они мигрируют из крови в ткани, где функционируют от нескольких часов до 1–2 сут (по некоторым данным, до 5–8 сут). Они могут разрушаться значительно быстрее в очаге воспаления или в результате выхода на поверхность слизистых оболочек. За сутки костный мозг взрослого человека выделяет в кровоток около 1011 нейтрофилов, столько же гибнет в тканях (преимущественно в слизистых оболочках и коже). Полагают, что существенная часть этих клеток (как и других гранулоцитов) в физиологических условиях погибает механизмом апоптоза без выделения цитотоксических продуктов их распада в окружающие ткани.

Функции нейтрофильных гранулоцитов:

уничтожение микроорганизмов – возбудителей инфекций – основная функция нейтрофилов, отчего они считаются главными клеточными элементами неспецифической защиты организма. В связи со способностью к захвату (фагоцитозу) и уничтожению микробов И. И. Мечников назвал нейтрофилы микрофагами (в отличие от другой разновидности фагоцитов – макрофагов, поглощающих более крупные частицы). Нейтрофилы могут обеспечивать уничтожение микроорганизмов и без их поглощения – внеклеточными нефагоцитарными механизмами;

разрушение и переваривание поврежденных клеток и тканей, которое наиболее активно происходит на ранних сроках, так как нейтрофилы первыми прибывают в очаг повреждения. Позднее эту функцию берут на себя макрофаги;

участие в регуляции деятельности других клеток, осуществляемой благодаря недавно установленной способности нейтрофилов к выработке ряда цитокинов, которая может резко усиливаться при стимуляции. Данная функция указывает на участие этих клеток не только в неспецифических, но и в специфических (иммунных) защитных реакциях.

Содержание нейтрофилов в крови взрослого в норме составляет: относительное – 65–75 % (от общего числа лейкоцитов), абсолютное – 3000–7000 клеток/мкл. Вследствие расположения около половины нейтрофилов в маргинальном (краевом) пуле их реальная абсолютная концентрация, как предполагают, примерно в два раза выше, чем определяемая при анализе крови.

Содержание нейтрофилов в крови ребенка меняется в зависимости от его возраста. Непосредственно после рождения оно такое же, как у взрослого, затем оно падает, в период с 3–6 дней до 4–5 лет остается сниженным (до минимальных величин порядка 25 %, типичных для первых двух лет жизни). После указанного периода оно возрастает, достигая уровня, характерного для взрослого, ко времени полового созревания.

Нейтропения – снижение содержания нейтрофилов в крови. Обычно является следствием угнетения костного мозга в результате его аутоиммунного, токсического, лучевого или инфекционного поражения. При снижении концентрации нейтрофилов до 1000 клеток/мкл крови существенной опасности для здоровья обычно не возникает, однако при падении этого показателя до 500 клеток/мкл и ниже неизбежно развиваются тяжелые рецидивирующие инфекционные поражения.

Нейтрофилия – повышение содержания нейтрофилов в крови. Возникает в результате усиленного выброса этих клеток из костного мозга при их значительном разрушении в ходе острого воспалительного (обычно инфекционного) процесса. Нейтрофилия при этом обычно сочетается с лейкоцитозом, а ее выраженность пропорциональна активности воспалительного процесса. Умеренная нейтрофилия наблюдается также при физической нагрузке или эмоциональном стрессе, однако при этом она связана не с увеличением числа клеток в крови, а с их перераспределением – переходом части нейтрофилов из маргинального пула в общий (центральный) кровоток.

Размеры нейтрофильных гранулоцитов на мазках варьируют в пределах 10–15 мкм и примерно в 1,5 раза превышают размеры эритроцитов.

Плазмолемма нейтрофильных гранулоцитов обеспечивает разнообразные процессы, связанные с поддержанием жизнедеятельности и функциональной активности этих клеток. Она воспринимает различные сигналы, участвует в распознавании других клеток и компонентов межклеточного вещества (рецепторная функция), формировании многочисленных выпячиваний различной формы (связанных с движением клетки и фагоцитозом), транспорте веществ, процессах эндо- и экзоцитоза (дегрануляции). На плазмолемме находятся рецепторы адгезивных веществ, цитокинов, колониестимулирующих факторов (КСФ), медиаторов воспаления, иммуноглобулинов класса G, (IgG), С3b-компонента комплемента, некоторых микробных продуктов.

Ядро нейтрофильных гранулоцитов имеет неодинаковое строение в клетках разной степени зрелости. По типу строения ядра различают сегментоядерные, палочкоядерные и юные нейтрофильные гранулоциты.

Сегментоядерные нейтрофильные гранулоциты – наиболее зрелые, составляют основную часть нейтрофилов (60–65 % общего числа лейкоцитов). Для них характерно дольчатое ядро, которое представлено 2–5 (наиболее часто – 3–4 сегментами), соединенными узкими нитевидными перетяжками (истончаются при созревании клетки). Оно интенсивно окрашено (преобладает гетерохроматин), что указывает на сравнительно низкую активность синтетических процессов в клетке. У женщин не менее 3 % этих клеток содержат хорошо выявляемый дополнительный мелкий придаток ядра в виде барабанной палочки, который представляет собой неактивную X-хромосому (половой хроматин, тельце Барра).

Палочкоядерные нейтрофильные гранулоциты – более молодые клетки, сравнительно немногочисленны (составляют 3–5 % общего числа лейкоцитов). Их ядро (в форме палочки, подковы или изогнутой колбаски) не сегментировано или содержит лишь намечающиеся перетяжки, которые углубляются по мере созревания клеток. В части палочкоядерных нейтрофилов ядро содержит меньше гетерохроматина, чем в сегментоядерных. Относительное содержание палочкоядерных форм является показателем скорости поступления нейтрофилов в кровоток. Оно обычно повышается при нейтрофилии, сочетаясь в выраженных случаях с нарастанием числа юных нейтрофилов (метамиелоцитов), что оценивается как «сдвиг влево» на гемограмме (юные ← палочкоядерные ← сегментоядерные), в которой молодые формы клеток записываются левее более зрелых. Выраженный сдвиг влево отмечается у новорожденных в течение 1-й недели жизни.

Юные нейтрофильные гранулоциты (метамиелоциты) – наиболее молодые клетки нейтрофильного ряда среди тех, что в норме встречаются в крови. Они обнаруживаются в чрезвычайно малом количестве (до 0,5 % общего числа лейкоцитов). Их ядро имеет бобовидную форму и светлее, чем у палочкои сегментоядерных клеток.

Цитоплазма нейтрофильных гранулоцитов на светооптическом уровне слабооксифильна. При электронно-микроскопическом исследовании в ней выявляются немногочисленные органеллы: отдельные элементы грЭПС, митохондрии, свободные рибосомы, мелкий комплекс Гольджи, центриоли. Из включений преобладают гранулы гликогена.

Цитоскелет нейтрофильных гранулоцитов представлен небольшим числом (12–20 штук на клетку) микротрубочек, умеренно развитыми виментиновыми промежуточными филаментами и многочисленными актиновыми микрофиламентами, расположенными преимущественно в периферической части цитоплазмы, образующей псевдоподии и свободной от других органелл и включений. В покоящихся нейтрофилах менее половины актина находится в виде полимера (F-актина), основная же его часть представлена неполимеризованным глобулярным G-актином. При стимуляции клетки уже в течение нескольких секунд до 90 % имеющегося актина полимеризуется с образованием филаментов в подмембранной зоне, в особенности на участке фагоцитоза.

Цитоплазматические гранулы нейтрофилов сравнительно многочисленны (по 50–200 в каждой клетке) и разделяются на три типа: первичные, вторичные и третичные. Помимо гранул выявлены также мембранные секреторные пузырьки. Согласно современным представлениям, гранулы нейтрофилов не являются сугубо изолированными образованиями, а образуют единую функциональную систему с самостоятельными, но частично перекрывающимися функциями и составом компонентов (в частности, во всех видах гранул содержится лизоцим).

Первичные (азурофильные, или неспецифические) гранулы названы так потому, что появляются первыми в ходе развития (на стадии промиелоцита). В зрелых клетках они составляют лишь 10–30 % общего числа гранул, окрашиваются азуром в розово-фиолетовый цвет и не являются специфическими для нейтрофилов, поскольку встречаются и в лейкоцитах других типов. Эти гранулы имеют самые крупные размеры (диаметр 400–800 нм, в среднем около 500 нм) и соответствуют зернистости, выявляемой на светооптическом уровне. Они имеют вид округлых или овальных мембранных пузырьков с электронноплотным содержимым и часто рассматриваются как лизосомы. В них, однако, имеется большой набор антимикробных веществ, что не характерно для обычных лизосом.

В первичных гранулах содержатся вещества: лизоцим, миелопероксидаза, нейтральные протеиназы, кислые гидролазы, дефензины (на которые приходится 30–50 % белка гранул), катионные антимикробные белки, бактерицидный белок, увеличивающий проницаемость (BPI-белок – от англ. Bactericidal Permeability Increasing), которые обладают высокой микробицидной активностью. Ферменты этих гранул активны преимущественно в кислой среде и обеспечивают внутриклеточное уничтожение микробов.

Вторичные (специфические) гранулы появляются позднее первичных в процессе развития (в конце стадии промиелоцита и особенно активно на стадии миелоцита) и становятся все более многочисленными при созревании нейтрофилов; в зрелых клетках они составляют 80–90 % общего числа гранул. Они плохо выявляются под световым микроскопом, так как имеют мелкие размеры (диаметр – 100–300 нм; в среднем – 200 нм на границе разрешения светового микроскопа). При электронной микроскопии они имеют вид мембранных пузырьков округлой, овальной или гантелевидной формы с зернистым содержимым сравнительно низкой плотности.

Вещества, содержащиеся во вторичных гранулах (лизоцим, лактоферрин, щелочная фосфатаза, коллагеназа, активатор плазминогена, частично – катионные белки), участвуют во внутриклеточном разрушении микробов, а также секре тируются в межклеточное вещество, где они играют роль в мобилизации медиаторов воспалительной реакции и активации системы комплемента. В этих гранулах содержатся также адгезивные белки.

Третичные (желатиназные) гранулы нейтрофильных гранулоцитов описаны недавно и изучены не полностью. По размерам и морфологическим характеристикам они сходны со специфическими гранулами, но отличаются от них по химическому составу. Главными компонентами содержимого этих гранул являются желатиназа (обнаружена в небольшом количестве также в специфических гранулах), небольшое число других ферментов, лизоцим и адгезивные белки. Предполагают, что они участвуют в переваривании субстратов в межклеточном пространстве, в процессах адгезии и, возможно, фагоцитоза. В частности, высказывается мнение, что эти гранулы играют важную роль в процессе миграции нейтрофила через стенку сосуда в ткани: их адгезивные молекулы участвуют в прикреплении нейтрофила к эндотелию, а желатиназа способствует прохождению базальной мембраны, вызывая переваривание содержащегося в ней коллагена IV типа.

Секреторные пузырьки – недавно описанные мембранные структуры, которые образуются в нейтрофилах в процессе их развития по завершении формирования гранул. В них не выявлено специфического содержимого, однако установлено, что их мембрана несет большое количество адгезивных белков и рецепторов хемотаксических факторов, которые они транспортируют к плазмолемме. Доказано, что начальные этапы качения нейтрофила по активированному эндотелию приводят к возникновению сигнала, мобилизующего секреторные пузырьки. Они перемещаются к плазмолемме и сливаются с ней, обеспечивая приток адгезивных молекул, необходимых для формирования прочной связи нейтрофила с эндотелием.

Цитофизиология нейтрофильных гранулоцитов. Нейтрофильные гранулоциты после выхода из сосудистого русла активно перемещаются и первыми появляются в участках повреждения тканей, где они накапливаются в значительных количествах (до 108/мл), быстро поглощают и уничтожают большую часть микроорганизмов. После выполнения своей функции они погибают и фагоцитируются макрофагами. Усиленному притоку нейтрофилов в очаги воспаления и ишемии (ограниченного участка тела со сниженным притоком крови) способствует усиление экспрессии адгезивных молекул на плазмолемме как самих лейкоцитов, так и взаимодействующих с ними клеток эндотелия при стимуляции цитокинами.

Перемещение нейтрофильных гранулоцитов после их выхода из сосудов осуществляется в основном веществе соединительной ткани. Оно происходит благодаря деятельности актиновых микрофиламентов, обеспечивающих быстрые (со скоростью 10–30 мкм/мин) амебоидные движения нейтрофилов в направлении очага поражения. Хемотаксические факторы не ускоряют это движение, но упорядочивают его. Они воздействуют на специфические рецепторы на плазмолемме нейтрофила, связанные с G-белком, стимуляция которых передается на элементы его цитоскелета и изменяет экспрессию поверхностных адгезивных молекул. Вследствие этого формируются и исчезают псевдоподии, которые обратимо прикрепляются к элементам соединительной ткани, что обеспечивает направленную миграцию клеток. После перемещения в очаг воспаления нейтрофилы активно фагоцитируют микроорганизмы.

Фагоцитоз микроорганизма нейтрофилом включает: прикрепление (адгезию) нейтрофила к микробной клетке, ее захват с формированием фагосомы, слияние гранул нейтрофила с фагосомой с образованием фаголизосомы, повреждение и переваривание микроорганизма.

Прикрепление (адгезия) нейтрофила к объекту фагоцитоза (например, бактерии) происходит при взаимодействии его рецепторного аппарата, расположенного на плазмолемме и в гликокаликсе, с молекулами на поверхности микробной клетки. Для многих случаев установлен специфический характер взаимодействия молекул микроба и рецепторов нейтрофила. Адгезия, как правило, протекает в две стадии: в начальной она непрочна и обратима, в поздней характеризуется прочным прикреплением, которое обычно необратимо.

Захват микроорганизма нейтрофилом с формированием фагосомы осуществляется после его прочного прикрепления к объекту фагоцитоза путем формирования псевдоподий, в которых концентрируются актиновые микрофиламенты. Псевдоподии охватывают бактерию и сливаются друг с другом, заключая ее в мембранный пузырек (фагосому). Активность поглощения резко возрастает, если объект фагоцитоза опсонизирован – покрыт иммуноглобулинами класса G(IgG) и (или) С3b-компонентом комплемента. В таком случае нейтрофил, плазмолемма которого содержит рецепторы к этим молекулам, взаимодействует не с собственно объектом фагоцитоза, а с иммуноглобулинами и компонентом комплемента на его поверхности (этот процесс носит название иммунного фагоцитоза).

Способность к иммунному фагоцитозу, благодаря наличию мембранных рецепторов к иммуноглобулинам и С3-компоненту комплемента, послужила основанием для объединения нейтрофильных гранулоцитов и макрофагов в группу «профессиональных фагоцитов», в отличие от многочисленных клеток, поглощающих различные частицы, но не располагающих этими рецепторами и поэтому не способных к иммунному фагоцитозу («непрофессиональных фагоцитов»).

«Респираторный взрыв» – быстро развивающаяся (начиная с первой минуты) метаболическая реакция, сопровождающая фагоцитоз. Она характеризуется резким усилением окислительных процессов в нейтрофильных гранулоцитах (с увеличением потребления ими кислорода в 10–15 раз). Эта реакция обусловлена активацией преимущественно немитохондриальных ферментов, расположенных в плазмолемме и мембранах фагосом, и сопровождается образованием токсических реактивных биоокислителей (метаболитов кислорода).

Слияние гранул нейтрофила с фагосомой с образованием фаголизосомы обеспечивает последующее уничтожение захваченной микробной клетки. С мембраной фагосомы, как правило, сливаются сначала мембраны специфических, а в дальнейшем – азурофильных гранул, а их содержимое выделяется в просвет образованной фаголизосомы. При этом благодаря активности мембранных протонных насосов рН в просвете фаголизосомы быстро снижается до 4,0.

Повреждение и внутриклеточное переваривание микроорганизма. Гибель микроорганизма в фаголизосоме наступает вследствие воздействия на него антимикробных веществ; далее он подвергается перевариванию лизосомальными ферментами. Бактерицидный эффект усиливается токсичными реактивными биоокислителями (перекисью водорода, синглетным кислородом, супероксидным и гидроксильным радикалами), которые образуются в гиалоплазме при респираторном взрыве и транспортируются в фаголизосому. В последней миелопероксидаза катализирует реакцию перекиси водорода с ионами хлора, образуя мощное бактерицидное вещество гипохлорит.

Нефагоцитарные механизмы разрушения микробов нейтрофилами характерны для ситуаций, когда микроорганизмы имеют столь крупные размеры, что не могут поглощаться этими клетками. В таких случаях нейтрофилы накапливаются вокруг микробов, прилегая к их поверхности, и выбрасывают содержимое своих гранул в разделяющее их межклеточное пространство, уничтожая микробные клетки посредством высоких концентраций микробицидных веществ. При этом сами нейтрофилы обычно также гибнут; возможны значительные повреждения и окружающих тканей.

Метаболизм нейтрофилов. Энергия, необходимая нейтрофильным гранулоцитам для осуществления их функций, получается преимущественно путем анаэробного гликолиза, поэтому они способны активно функционировать в тканях, бедных кислородом: воспаленных, отечных или плохо кровоснабжаемых. Они сохраняют активность в очагах воспаления и при низких значениях рН. Источником энергии нейтрофилов служат поглощаемая извне глюкоза и внутриклеточные запасы гликогена, которые быстро истощаются при стимуляции – в ходе фагоцитоза и переваривания микробов. Ферменты обмена арахидоновой кислоты при стимуляции нейтрофилов образуют простагландины и лейкотриены, которые обладают широким спектром биологической активности, в частности хемотаксической активностью для лейкоцитов и макро фагов.

Гибель и разрушение нейтрофилов происходит в значительных количествах в ходе фагоцитоза, после него и в результате разрушения микробов нефагоцитарными механизмами. При этом продукты их распада (как и разрушенных тканей) хемотаксически привлекают другие нейтрофилы, которые также гибнут по прошествии некоторого времени. В очагах поражения скапливается гной – смесь разрушенных тканей, погибших и живых нейтрофилов.

Нарушения функций нейтрофилов могут быть обусловлены снижением их подвижности, нарушениями хемотаксиса, подавлением способности к фагоцитозу микроорганизмов, сопровождающему его «респираторному взрыву» или к внутриклеточному перевариванию микробов (вследствие недостаточности отдельных микробицидных систем). В ряде случаев (например, при ВИЧ-инфекции) срок жизни нейтрофилов укорачивается вследствие их быстрой спонтанной гибели в тканях механизмом апоптоза. Эти функциональные нарушения нейтрофилов (многие из которых наследственно обусловлены) даже при нормальном содержании этих клеток в крови обычно являются причиной рецидивирующих инфекционных поражений организма различной степени тяжести. Одним из таких состояний является дефицит адгезии лейкоцитов (ДАЛ) – наследственное заболевание, обусловленное мутацией гена, кодирующего выработку интегрина нейтрофилов. При этом заболевании нейтрофилы не способны к осуществлению адгезивных взаимодействий, необходимых для выполнения ими различных функций, в частности, для перемещения к очагу повреждения и накопления в нем. По указанной причине клинически это заболевание проявляется рецидивирующими бактериальными и микотическими инфекциями при нарушении образования гноя, несмотря на повышенные (вероятно, компенсаторно) концентрации нейтрофилов в крови (до 100 000 клеток/мкл).

Базофильные гранулоциты. Базофильные гранулоциты (базофилы) – самая малочисленная группа лейкоцитов и гранулоцитов. Они попадают в кровь из красного костного мозга, циркулируют в ней от 6 ч до 1 сут, после чего покидают кровеносное русло и мигрируют в ткани, где находятся от нескольких часов до нескольких суток. Базофилы обладают значительно меньшей подвижностью и более слабой фагоцитарной активностью по сравнению с нейтрофилами. По морфологическим и функциональным свойствам они близки, но не идентичны тучным клеткам (тканевым базофилам), постоянно находящимся в соединительной ткани.

Функции базофильных гранулоцитов в физиологических условиях выяснены не полностью. К ним относятся:

регуляторная, гомеостатическая. Осуществляется благодаря выделению небольших количеств различных биологически активных веществ, накапливающихся в гранулах или синтезируемых при активации клетки. Эти вещества обладают широким спектром биологических эффектов: влияют на сократимость гладких миоцитов (в сосудах, бронхах, органах пищеварительного тракта и других систем), проницаемость сосудов, свертываемость крови, секрецию желез, обладают хемотаксическим влиянием;

защитная – путем локальной массивной секреции медиаторов воспаления, хемотаксических факторов эозинофилов и нейтрофилов, а также других веществ, обладающих хемотаксической активностью, обеспечивается вовлечение ряда клеток (в первую очередь, эозинофилов) в защитные реакции организма, направленные против некоторых паразитов.

Содержание базофильных гранулоцитов в крови составляет в норме: относительное 0,5–1,0 % (от общего числа лейкоцитов), абсолютное – 20–80 клеток/мкл. Изменения концентрации базофилов описаны в различных функциональных и патологических состояниях, однако их диагностическое значение неясно.

Базофилия – повышенное содержание базофилов в крови. Отмечена при иммунных реакциях гиперчувствительности, после облучения, при гипотиреозе, а также при некоторых заболеваниях системы крови.

Базопения – сниженное содержание базофилов в крови. Обычно сочетается с эозинопенией; отмечается при инфекциях, воспалительных заболеваниях, опухолях, тиреотоксикозе.

Размеры базофильных гранулоцитов на мазках составляют 9–12 мкм, т. е. примерно соответствуют размерам нейтрофилов или несколько меньше их. Ядра базофильных гранулоцитов – дольчатые (содержат 2–3 сегмента) или S-образные, относительно плотные, но более светлые (с меньшим содержанием гетерохроматина), чем у нейтрофилов и эозинофилов. Они нередко трудно различимы, так как маскируются ярко окрашенными цитоплазматическими гранулами. Цитоплазма базофильных гранулоцитов, как и нейтрофильных, слабооксифильна. Под электронным микроскопом в ней выявляются митохондрии, элементы цитоскелета, сравнительно слабо развитый синтетический аппарат, скопления гликогена, липидные капли диаметром до 1–2 мкм, разнообразные пузырьки, а также гранулы двух типов – специфические и азурофильные. Гранулы, органеллы и часть элементов цитоскелета располагаются во внутренних участках цитоплазмы, наружные содержат преимущественно элементы цитоскелета и образуют немногочисленные короткие выпячивания.

Специфические (базофильные) гранулы – крупные (диаметром 0,5–2,0 мкм), разнообразной, чаще сферической, формы, хорошо видны в световой микроскоп, окрашиваются метахроматически – с изменением оттенка основного красителя вследствие высокого содержания сульфатированных гликозаминогликанов. На электронно-микроскопическом уровне обнаруживается, что эти гранулы окружены мембраной и заполнены мелкозернистым веществом (матриксом). Матрикс отдельных гранул различается своей плотностью, которая варьирует от умеренной до высокой. Это, как предполагают, отражает различия в их зрелости (более зрелые гранулы обладают большей плотностью матрикса). Содержимое некоторых гранул неоднородно (включает плотные частицы, погруженные в более светлый матрикс).

Содержимое базофильных гранул: сульфатированные гликозаминогликаны, связанные с белками (протеогликаны), – гепарин (антикоагулянт) и хондроитин сульфат, гистамин (расширяет сосуды, увеличивает их проницаемость, вызывает хемотаксис эозинофилов), ферменты (протеазы, пероксидаза), хемотаксические факторы эозинофилов и нейтрофилов.

Азурофильные гранулы – сравнительно немногочисленны, представляют собой лизосомы.

Цитофизиология базофильных гранулоцитов. Деятельность базофилов связана с накоплением и выделением (секрецией) биологически активных веществ, которые запасаются в их гранулах. Выделение содержимого гранул базофилов может происходить в виде медленной секреции с постепенным выделением небольших количеств веществ или резкой массивной дегрануляции, приводящей к выраженным изменениям в окружающих тканях. Первый механизм обусловливает участие базофилов в физиологических регуляторных процессах, второй – в аллергических реакциях.

Участие базофилов в физиологических регуляторных процессах изучено недостаточно и его морфологические основы установлены лишь в самые последние годы. Описан ранее неизвестный механизм медленной (продолжающейся сутками) везикулярной секреции посредством мелких перигранулярных пузырьков (везикул), которые осуществляют транспорт веществ из специфических гранул к плазмолемме и, сливаясь с ней, выделяют свое содержимое в межклеточное пространство.

Участие базофилов в аллергических иммунных реакциях. Базофильные гранулоциты (как и сходные с ними тучные клетки) участвуют в иммунных реакциях, связанных с повреждением тканей: реакциях I типа – гиперчувствительности немедленного типа (ГНТ) и, возможно, также в реакциях IV типа – гиперчувствительности замедленного типа (ГЗТ). Роль базофилов наиболее изучена в аллергических реакциях ГНТ – особом типе локальных или генерализованных реакций, развивающихся в течение нескольких минут после повторного взаимодействия антигена с ранее сенсибилизированным организмом. Первичное воздействие антигена (аллергена) стимулирует выработку иммуноглобулинов класса Е (IgE) у генетически предрасположенных людей. Иммуноглобулины класса IgE связываются с многочисленными (30–100 тыс. на клетку) высокоаффинными рецепторами к Fc-участку IgE на плазмолемме базофилов и тучных клеток. Повторное воздействие поливалентного аллергена (одновременно связывающегося с двумя или тремя молекулами IgE в области Fab-участков) вызывает активацию базофилов и тучных клеток с развитием их быстрой (в течение нескольких минут) секреторной реакции – анафилактической дегрануляции. Установлено, что базофилы значительно более чувствительны к воздействию аллергенов, чем тучные клетки.

Дегрануляция активированных базофилов требует присутствия Са2+ и протекает с выделением веществ:

– ранее накопленных в их гранулах (гепарин, гистамин, хемотаксические факторы эозинофилов и нейтрофилов, ферменты);

– вновь синтезируемых при стимуляции (ФАТ, лейкотриены и простагландины). Субстратом для синтеза эйкозаноидов при этом служит арахидоновая кислота, содержащаяся в составе липидных капель.

В ходе дегрануляции базофилов человека основная масса их гранул выделяет свое содержимое путем слияния мембраны каждой гранулы с плазмолеммой; часть гранул выстраивается в цепочки, в которых они сливаются друг с другом, в дальнейшем содержимое такой цепочки выделяется за пределы клетки.

Действие веществ, выделяющихся при дегрануляции базофилов (и тучных клеток), приводит к сокращению гладких мышц, расширению сосудов и повышению их проницаемости, повреждению тканей (например, эпителия бронхов, кишки). При быстром выделении медиаторов большим числом указанных клеток возможно развитие бронхоспазма, кожного зуда, отеков, поноса, падение кровяного давления.

Клинические проявления реакций ГНТ: бронхиальная астма, аллергический ринит, пищевая аллергия, аллергический дерматит (крапивница). Выраженные в различной мере аллергические реакции выявляются у 20 % населения развитых стран. Более генерализованные реакции выброса медиаторов могут привести к анафилактическому шоку (от греч. аnaphylaxia – беззащитность: ana – обратное действие и phylaxis – охранение) и смерти.

Базофилы выделяют медиаторы не только в ответ на стимуляцию, опосредованную IgE, но при воздействии компонентов комплемента, бактериальных продуктов и цитокинов (интерлейкин-1 (ИЛ-1), интерлейкин-3 (ИЛ-3), интерлейкин-8 (ИЛ-8), гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ), ФАТ и др.)

Эозинофильные гранулоциты. Эозинофильные гранулоциты (эозинофилы) содержатся в крови в небольшом количестве, однако легко узнаются на мазках благодаря многочисленным эозинофильным гранулам, заполняющим их цитоплазму. Они образуются в красном костном мозге, откуда попадают в кровь, циркулируя в ней 3–8 ч (по другим данным, 7–12 ч). После этого они покидают кровеносное русло и выселяются в ткани (преимущественно в кожу, слизистые оболочки дыхательного, пищеварительного и полового трактов), где функционируют, по-видимому, в течение нескольких суток (точная продолжительность жизни в тканях не установлена, но она, очевидно, больше, чем у нейтрофилов).

Основная часть эозинофилов находится не в крови, а в периферических тканях: на один эозинофил в крови приходятся 100–300 в тканях. Они усиленно привлекаются в ткани лимфокинами, иммунными комплексами, компонентами комплемента, а также продуктами, выделяемыми паразитами, опухолевыми клетками, тучными клетками и базофилами (в частности, хемотаксическим фактором эозинофилов и гистамином). Эозинофилы могут проникать в секреты и выявляются в носовой и бронхиальной слизи (при аллергических состояниях – в очень больших количествах). Они обнаруживаются также в лимфатических узлах и лимфе грудного протока (что может указывать на их способность к рециркуляции). Эозинофилы отличаются от нейтрофилов несколько меньшей подвижностью и более слабой фагоцитарной активностью, вместе с тем они являются ведущими клеточными элементами в борьбе с паразитами (гельминтами и простейшими). В тканях эозинофилы подвергаются апоптозу, а их фрагменты фагоцитируются макрофагами.

Функции эозинофильных гранулоцитов:

защитная – поглощение и уничтожение бактерий фагоцитарным механизмом, а также уничтожение микробов и, в особенности, паразитов (гельминтов и простейших) нефагоцитарным механизмом. Осуществляется во взаимодействии с базофилами, тучными клетками, макрофагами, лимфоцитами, IgE и системой комплемента;

иммунорегуляторная – ограничение области иммунной (в частности, аллергической) реакции, создание препятствий в распространении из нее антигенов и медиаторов воспаления, нейтрализация метаболитов, участвующих в уничтожении антигенов; выработка ряда медиаторов воспаления и цитокинов.

Содержание эозинофильных гранулоцитов в крови в норме равно: относительное 2,0–5,0 % (от общего числа лейкоцитов), абсолютное – 100–450 клеток/мкл. В физиологических условиях отмечен суточный ритм концентрации эозинофилов в крови с максимумом в ночные и ранние утренние часы и минимумом – в вечерние (что связывают с колебаниями секреции гормонов коры надпочечников – глюкокортикоидов).

Эозинофилия – повышенное содержание эозинофилов в крови. Наиболее выражена при аллергических состояниях (бронхиальной астме, аллергическом рините, аллергическом дерматите, пищевой аллергии), когда содержание эозинофилов увеличивается в несколько раз. Она характерна также для паразитарных заболеваний (при которых ее добавочному усилению способствует свойственный им аллергический компонент), достигая у отдельных больных 90 % от общего числа лейкоцитов, физиологическая эозинофилия свойственна первым трем месяцам жизни.

Эозинопения – сниженное содержание эозинофилов в крови. Отмечается при острых инфекциях, введении глюкокортикоидов, АКТГ.

Размеры эозинофильных гранулоцитов на мазках больше, чем нейтрофильных и составляют 12–17 мкм. Форма эозинофилов на мазках и в тканях округлая, иногда с небольшими выпячиваниями (псевдоподиями). В мокроте и носовой слизи встречаются эозинофилы в виде отростчатых «клеток-медуз». Плазмолемма содержит низкоаффинные рецепторы к IgG, компонентам комплемента, высокоаффинные рецепторы к IgE (последние отсутствуют у нейтрофилов), цитокинам, гормонам, а также адгезивные молекулы. Ядра эозинофильных гранулоцитов обычно сегментированные (состоят из двух, реже трех сегментов), светлее (содержат меньше гетерохроматина), чем ядра нейтрофилов. Изредка могут встречаться палочкоядерные и юные формы, отдельный подсчет которых обычно не производится. Цитоплазма эозинофильных гранулоцитов содержит умеренно развитые органеллы, многочисленные пузырьки, элементы цитоскелета, включения гликогена, липидные капли и гранулы двух основных типов. Предполагается также наличие особого третьего типа мелких гранул (микрогранул).

Специфические (эозинофильные) гранулы – наиболее характерный признак эозинофильных гранулоцитов; содержатся в количестве около 200 гранул на клетку (составляя более 95 % всех гранул). Они окружены мембраной, имеют овальную или полигональную форму, крупные размеры (0,5–1,5 × 0,2–1,0 мкм), различную (чаще всего – среднюю) электронную плотность. Зрелые гранулы в большинстве содержат плотные кристаллоидные структуры, расположенные по их длине и погруженные в менее электронно-плотный мелкозернистый матрикс. Эти кристаллоиды имеют белковую природу и характеризуются кубической решеткой с периодом около 4 нм. Так как в эозинофильных гранулах находится ряд гидролитических ферментов, их рассматривают как видоизмененные лизосомы.

Содержимое специфических гранул:

– главный основной белок МВР (от англ. Major Basic Protein; название отражает высокое содержание этого белка, составляющего 50 % общего белка специфических гранул, и его основную реакцию) образует их кристаллоид и обусловливает их эозинофилию. Содержит высокие концентрации аргинина, обладает мощным антшельминтным, антипротозойным и антибактериальным эффектами. Токсичен для клеток других тканей (в частности, для эпителия слизистых оболочек воздухоносных путей и пищеварительного тракта). Вызывает гиперреактивность гладких мышц в бронхах. Индуцирует дегрануляцию базофилов, тучных клеток и тромбоцитов, активирует нейтрофилы. Инактивирует гепарин, гистамин, простагландины;

– другие белки специфических гранул располагаются в их матриксе: эозинофильный катионный белок токсичен для бактерий, гельминтов, простейших и клеток организма хозяина; эозинофильная пероксидаза отличается от миелопероксидазы нейтрофильных гранулоцитов, обладает широким спектром антимикробной и антипаразитарной активности в присутствии перикиси водорода; эозинофильный нейротоксин обладает противопаразитарным действием, токсичен для клеток нервной системы; гистаминаза разрушает гистамин; продукты расщепления гистамина оказывают на эозинофилы хемотаксическое действие.

Азурофильные (неспецифические, первичные) гранулы – немногочисленные (менее 5 % всех гранул), крупные и средних размеров (0,1–0,5 мкм), округлой формы, с плотным содержимым. Представляют собой лизосомы и содержат кислую фосфатазу, арилсульфатазу (инактивирует лейкотриены и присутствует в очень большом количестве) и другие ферменты. Содержание этих гранул снижается по мере созревания клетки.

Цитофизиология эозинофильных гранулоцитов. Участие эозинофилов в защите от бактерий, грибов, простейших и гельминтов. Эозинофилы, как и нейтрофилы, способны поглощать и подвергать внутриклеточному уничтожению бактериальные клетки и споры патогенных грибов. Активность фагоцитарного уничтожения микробов у эозинофилов при этом обычно ниже, чем у нейтрофилов. Вместе с тем эозинофильные гранулоциты являются главными клеточными элементами, обеспечивающими высокоэффективную защиту организма от простейших и гельминтов. Они способны уничтожать паразитов непосредственно в кровеносном русле. Выселяясь из кровеносных сосудов, они направляются в слизистые оболочки, где обеспечивают уничтожение паразитов, внедрившихся в ткани и находящихся в просвете органа (обычно кишки). Они окружают паразитов, вступают с ними в контакт, и, активируясь, осуществляют дегрануляцию – выбрасывают токсическое содержимое своих гранул, обладающее высокой противопаразитарной активностью и одновременно вызывающее приток других эффекторных клеток. Цитотоксический эффект в противопаразитарном иммунитете является антителозависимым: активации и прикреплению эозинофила к поверхности паразита способствует наличие на его плазмолемме рецепторов к IgE, IgG и компонентам комплемента.

Иммунорегуляторная функция эозинофильных гранулоцитов обеспечивается в результате их поступления в зону иммунных реакций и ограничения ее распространенности. Они привлекаются в эту зону продуктами, выделяющимися в ходе иммунных реакций, которые они подвергают инактивации, одновременно угнетая деятельность продуцирующих их клеток. Эта функция осуществляется благодаря способности эозинофилов нейтрализовывать лейкотриены, захватывать иммунные комплексы, связывать и разрушать гистамин и угнетать дегрануляцию тучных клеток и базофилов. Фосфолипаза эозинофилов расщепляет ФАТ.

Вместе с тем активированные эозинофилы сами вырабатывают ФАТ (являясь его главным источником в организме) и лейкотриены, которые вызывают увеличение проницаемости сосудов и сокращение гладких мышц. При дегрануляпии эозинофилов выделяются продукты, токсические для тканей человека. Поэтому, наряду с защитой тканей от действия продуктов иммунных реакций, эозинофилы способствуют и их повреждению. Так, установлено, что они являются важным звеном в патогенезе бронхиальной астмы, в частности, играют существенную роль в повреждении бронхиального дерева и респираторного отдела легких, а также в поддержании бронхоспастического синдрома. Помимо участия в регуляции реакций острого и хронического воспаления, эозинофилы, вырабатывая ряд цитокинов (ГМ-КСФ, ИЛ-1, ИЛ-5, ФНО-α), могут также играть определенную роль в регуляции различных процессов, в частности, роста опухолей и заживления ран.

Моноциты. Моноциты – самые крупные из лейкоцитов; относятся к агранулоцитам. Они образуются в красном костном мозге, откуда попадают в кровь, в которой находятся от 8 ч до 3–4 сут и, по-видимому, дозревают. Общее число моноцитов в крови у взрослого составляет 1,7–2,0 × 109 клеток, из которых 3/4 находятся в пристеночном пуле. Из кровеносного русла моноциты перемещаются в ткани со скоростью 4–10 × 108 клеток/сут. Внесосудистый пул моноцитов почти в 20 раз превышает их количество в циркуляции. В тканях под влиянием микроокружения и стимулирующих факторов они превращаются в различные виды макрофагов. Моноциты в совокупности с макрофагами образуют единую моноцитарно-макрофагальную систему или систему мононуклеарных фагоцитов (последнее название произошло от традиционного подразделения всех фагоцитов на полиморфноядерные (сегментоядерные), т. е. нейтрофилы, и мононуклеарные (с несегментированным ядром), т. е. моноциты.

Функции моноцитов в значительной мере связаны с их превращением в макрофаги после миграции из сосудов в ткани, хотя частично они могут реализовываться и самими моноцитами еще до этого превращения:

обеспечение реакций неспецифической защиты организма против микробов, опухолевых и зараженных вирусами клеток;

участие в специфических (иммунных) защитных реакциях – в составе как их афферентного звена (в качестве антиген-представляющих клеток), так и эфферентного звена (в качестве эффекторных клеток);

захват и внутриклеточное переваривание различных стареющих и погибших клеток и постклеточных структур (в том числе форменных элементов крови), а также их фрагментов; обеспечение метаболической переработки и реутилизации продуктов их распада (например, железа гемоглобина разрушенных эритроцитов);

секреция различных веществ, которые регулируют: состояние межклеточного вещества (лизосомальные протеазы, коллагеназы, эластазы, активатор плазминогена и др.); функциональную активность и пролиферацию клеток других типов (монокины – разновидность цитокинов, выделяемых моноцитами/макрофагами).

Содержание моноцитов в крови взрослого в норме: абсолютное – 240–700 клеток/мкл, относительное – 6–8 %; у детей в течение 1-й недели жизни – 0–20 %.

Моноцитоз (повышенное содержание моноцитов в крови) наиболее часто служит проявлением воспалительных или опухолевых заболеваний, а также системных заболеваний крови.

Моноцитопения (сниженное содержание моноцитов в крови) в качестве изолированного состояния встречется редко. Содержание моноцитов снижено при ряде заболеваний системы крови – анапластических анемиях, некоторых лейкозах; оно падает после введения глюкокортикоидов.

Размеры моноцитов на мазках – 18–20 мкм. Они являются самыми крупными клетками среди лейкоцитов.

Форма моноцитов на мазках – округлая, под электронным микроскопом обнаруживаются различные цитоплазматические выпячивания. Ядро моноцитов – крупное (занимает до половины площади клетки на мазке), эксцентрично расположенное, бобовидной или подковообразной формы (реже – дольчатое), светлое (хроматин рассеян в виде мелких гранул), с одним или несколькими мелкими ядрышками. Цитоплазма моноцитов – слабобазофильная, содержит многочисленные мелкие митохондрии, короткие цистерны грЭПС, вариабельное число свободных рибосом, полисом, сравнительно крупный комплекс Гольджи. Цитоскелет моноцитов хорошо развит; множественные микрофиламенты, концентрирующиеся в периферических участках его цитоплазмы под плазмолеммой в области формирующихся псевдоподий обеспечивают его активные амебоидные движения. В цитоплазме присутствуют азурофильные гранулы (лизо сомы), сходные с таковыми в нейтрофилах и богатые гидролитическими ферментами.

Антимикробные системы моноцита включают лизоцим, лактоферрин, кислую фосфатазу, арилсульфатазу, катионные белки, миелпероксидазу, перекись водорода и другие биоокислители, а также токсический метаболит – окись азота (NO), которая синтезируется в цитоплазме при их активации.

Цитофизиология моноцитов и их роль в системе мононуклеарных фагоцитов. Моноциты активно выселяются в ткани из сосудистого русла, причем эта миграция усиливается под влиянием продуктов, выделяемых поврежденными тканями, микробами, а также под действием цитокинов. Моноциты обладают высокой активностью фагоцитоза и способны осуществлять иммунный фагоцитоз благодаря взаимодействию их плазмолеммы с опсонизированными микроорганизмами, которое опосредуется рецепторами к IgG и С3-компоненту комплемента. При фагоцитозе в моноцитах, как и в нейтрофилах, генерируются токсические биоокислители (перекись водорода, супероксидный и гидроксильный радикалы, синглетный кислород), а также окись азота. Моноциты, как и образующиеся из них макрофаги, способны также к нефагоцитарному уничтожению микрорганизмов путем воздействия на них микробоцидных веществ, секретируемых в межклеточное пространство.

Превращение моноцитов в макрофаги происходит в тканях под влиянием местных факторов микроокружения. Некоторые исследователи полагают, что до этого превращения моноциты способны несколько раз делиться. Образующиеся макрофаги обладают, наряду с общими свойствами, некоторыми частными отличиями, обусловленными ткане- и органоспецифическими особенностями их существования и функционирования.

Моноциты, мигрирующие в ткани, дают начало макрофагам соединительной ткани (гистиоцитам), ряду органоспецифических макрофагов – клеткам Купфера печени, альвеолярным макрофагам легкого, макрофагам костного мозга, селезенки, тимуса, лимфатических узлов, полостей тела (перитонеальным, плевральным, перикардиальным), центральной нервной системы (микроглии), остеокластам (рис. 1.2). Предполагают, что и специализированные макрофаги в тканях способны к делению, однако оно недостаточно для поддержания их популяций, которое осуществляется путем постоянного притока моноцитов из крови и их преобразования в макрофаги.


Рис. 1.2. Основные направления преобразования моноцитов в различные типы макрофагов и антиген-представляющие клетки:


АПК – антиген-представляющие клетки; МО – моноцит (в просвете кровеносного сосуда и мигрирующий через его стенку); МО* – моноцит в тканях, дифференцирующийся в АПК или один из видов макрофагов: гистиоцит (ГЦ), клетку Купфера (КК) синусоидов печени, альвеолярный макрофаг (аМФ), перитонеальный МФ (пМФ), клетку микроглии (МГ) и остеокласт (ОКЛ). В очаге воспаления ГЦ могут дать начало гигантской клетке (ГК) или эпителиоидным клеткам (ЭК)

Структурно-функциональные изменения моноцитов при их превращении в макрофаги:

– существенное увеличение размеров клетки (до 25–50 мкм), а также содержания в ее цитоплазме митохондрий, пиноцитозных пузырьков и, в особенности, лизосом; размеров комплекса Гольджи;

– преобразования плазмолеммы с формированием значительного числа складок, увеличением количества микроворсинок, нарастанием содержания рецепторов к IgG и С3-компоненту комплемента;

– повышение активности дыхательных и лизосомальных ферментов, одновременное снижение содержания пероксидазы;

– усиление подвижности, общей метаболической активности, адгезивных свойств, способности к пиноцитозу и фагоцитозу, общее возрастание микробицидности;

– изменения чувствительности к гормонам.

Фагоцитоз у макрофагов, как у моноцитов и нейтрофилов, сопровождается «респираторным взрывом». Он может осуществляться как неиммунный фагоцитоз (в отсутствие воздействия специфических факторов сыворотки) или как иммунный фагоцитоз (после опсонизации), благодаря наличию рецепторов к IgG и С3-компоненту комплемента на плазмолемме макрофага.

Макрофаги из различных органов и тканей обладают неодинаковыми свойствами, в частности, различиями в способности к уничтожению микробов; определенная специфика характерна и для отдельных клеток среди однотипных макрофагов.

Резистентность микроорганизмов к действию микробицидных механизмов макрофагов обеспечивается несколькими путями. Так, некоторые микробы, например возбудители туберкулеза (лат. Mycobacterium tuberculosis) и токсоплазмоза (лат. Toxoplasma gondii), избегают действия микробицидных механизмов и выживают в фагосомах макрофагов благодаря тому, что выделяют вещества, которые препятствуют слиянию лизосом с фагосомами. Другие (например, лейшмании) сохраняют жизнеспособность в фаголизосомах, так как обладают стенкой, резистентной к действию лизосомальных ферментов и низких зна чений рН, третьи (например, Trypanosoma cruzi) могут проникать из фагосом в гиалоплазму.

Активация макрофагов – процесс, обеспечивающий дальнейшее усиление их метаболической, локомоторной, фагоцитарной, антимикробной, противоопухолевой и секреторной способности – происходит при непосредственном контакте с микроорганизмами, а также под влиянием их продуктов или цитокинов – ИЛ-2, ИЛ-4, ФНО, ИФН-у, ФАТ, КСФ. Активированные макрофаги приобретают способность к уничтожению ряда микроорганизмов, которые могли выживать в фаголизосомах неактивированных клеток и даже разрушать их. Индукция выработки значительных количеств окиси азота усиливает цитотоксичность макрофагов по отношению к опухолевым клеткам и микроорганизмам. Макрофаги, не способные уничтожить фагоцитированные ими микроорганизмы, благодаря своей подвижности превращаются в их разносчиков и тем самым могут содействовать распространению инфекции по организму.

Секреция активированных макрофагов. При активации усиливается продукция макрофагами и секреция ими во внеклеточное пространство различных веществ – ИЛ-1, ФНО-ос, ТРФР, простагландинов, лейкотриенов, ФАТ, ТФР-ос, ТФР-р, компонентов комплемента, ИФН, катионных белков, свободных радикалов кислорода, перекиси водорода, окиси азота, хемотаксических факторов для нейтрофилов, колониестимулирующего фактора макрофагов (М-КСФ), ГМ-КСФ. Часть этих веществ важна для непосредственной защиты от микроорганизмов и опухолевых клеток, другая оказывает влияние на сами макрофаги и другие клетки, регулируя активность воспалительных реакций. Так, ИЛ-1, ФНО-ос и ряд других пептидов, воздействуя на гипоталамический терморегуляторный центр, играют роль эндогенных пирогенов (от греч. pyros – огонь и genes – происшедший), т. е. веществ, вызывающих повышение температуры тела. Микробные продукты, обусловливающие выделение эндогенных пирогенов, носят название экзогенных пирогенов. Секретируемые активированными макрофагами лизосомальные ферменты в сочетании с микробицидными веществами обеспечивают уничтожение микроорганизмов нефагоцитарным путем, однако они способны вызвать разрушение и окружающих их тканей. Секреция медиаторов воспаления макрофагами угнетается кортикостероидными препаратами.

Макрофаги обладают и другими механизмами влияния на воспалительные реакции, так как они способны разрушать компоненты комплемента, иммуноглобулины, кинины. В очагах воспаления макрофаги могут стимулировать процессы регенерации ткани путем удаления погибших клеток и секреции факторов, вызывающих пролиферацию и функциональную активацию фибробластов – клеток, обеспечивающих выработку компонентов межклеточного вещества.

Видоизменения макрофагов в тканях и особые виды макрофагов. В тканях могут встречаться макрофаги, перегруженные продуктами неполного переваривания фагоцитированных ими субстратов, а также макрофаги, изменившиеся в результате взаимодействия между собой и с другими клетками, в первую очередь, лимфоцитами (в очагах хронического воспаления). Такие макрофаги приобретают ряд морфологических особенностей, столь характерных, что они служат их диагностическими признаками и обусловливают особые названия этих клеток:

– «пылевые» клетки – альвеолярные макрофаги легкого, перегруженные частицами пыли из вдыхаемого воздуха и выявляемые в мокроте;

– клетки «сердечных пороков» – альвеолярные макрофаги, содержащие в цитоплазме большое количество железа в результате переваривания эритроцитов, попадающих в просвет альвеол при некоторых пороках сердца вследствие повышения давления в легочных сосудах и увеличения проницаемости их стенки;

– «пенистые», или «ксантомные» (от греч. хanthos – желтый – по цвету включений) клетки – макрофаги с резко вакуолизированной цитоплазмой, перегруженные различными по химическому составу липидами (например, в очагах атеросклеротических поражений артерий, при повышенных уровнях липидов в крови, при наследственных заболеваниях, связанных с накоплением липидов – болезни Нимана – Пика, Гоше, Фабри и др.);

– гигантские многоядерные клетки. Образуются в очагах хронического воспаления в результате слияния нескольких макрофагов друг с другом, поэтому их точнее следовало бы отнести к симпластам. Имеют разнообразную форму и нередко достигают очень крупных размеров. В их цитоплазме могут находиться фагоцитированные микроорганизмы, различные клетки и их фрагменты;

– эпителиоидные клетки располагаются в очагах хронического воспаления в виде рядов и скоплений, внешне напоминая клетки эпителия. Характеризуются редукцией лизосомального аппарата, падением фагоцитарной активности при одновременном развитии синтетического аппарата. Специализируются на секреции различных регуляторных веществ (цитокинов, хемотаксических веществ, факторов роста) и ферментов в межклеточное пространство. Характер секретируемых веществ зависит от особенностей микроокружения этих клеток. Тем самым они оказывают сложное регулирующее действие на течение хронического воспаления.

Преобразование моноцитов в дендритные антиген-представляющие клетки (АПК) в тканях – наиболее вероятный путь образования последних; допускается также возможность развития дендритных АПК из самостоятельного костномозгового предшественника.

Основной функциональный признак дендритных АПК – наиболее высокая (по сравнению с клетками других типов) способность представления антигенов лимфоцитам. Они образуют функционально единую систему морфологически сходных клеток, распределенных по всему организму; наиболее многочисленны популяции АПК в слизистых оболочках и коже (входных воротах поступления антигенов), а также в органах иммунной системы (области наиболее активного представления антигенов).

Дендритные АПК в разных локализациях соответствуют не сугубо самостоятельным клеточным типам, а клеткам одного или нескольких близких типов на различных стадиях деятельности, для которых характерны поэтапная миграция, смена микроокружения и изменения ряда фенотипических свойств. Так, клетки Лангерганса, являющиеся наиболее изученной и самой крупной популяцией дендритных АПК, захватывают антигены в коже и различных слизистых оболочках, после чего мигрируют в лимфатические узлы, где осуществляют их представление в переработанном виде. В тканях дендритные АПК обладают собственной подвижностью; они переносятся также пассивно с током лимфы и крови.

Основной морфологический признак дендритных АПК – наличие многочисленных подвижных и меняющих форму ветвящихся цитоплазматических отростков, что послужило основанием для их наименования (от греч. dendron – дерево). Отростки АПК проникают между клетками других типов, пронизывают значительные объемы тканей и обладают большой совокупной поверхностью, посредством которой они способны воспринимать антигены. При стандартных методах гистологической окраски дендритные АПК практически не выявляются. Их наиболее надежная идентификация производится при использовании иммуногистохимических методов. Для клеток Лангерганса характерно присутствие в цитоплазме особых мембранных гранул Бирбека в форме теннисной ракетки (выявляются только под электронным микроскопом), функция которых до конца не выяснена. Несмотря на высокую пиноцитозную активность, АПК, в отличие от моноцитов и макрофагов, обладают сравнительно низкой активностью лизосомальных ферментов. Ядро дендритных АПК – неправильной формы, обычно с многочисленными вдавлениями.

Лимфоциты. Лимфоциты занимают второе место по численности среди лейкоцитов крови взрослого (после нейтрофильных гранулоцитов). Они представляют собой группу морфологически сходных, но функционально разнообразных лейкоцитов, относящихся к агранулоцитам. Лимфоциты различаются экспрессией ряда молекул (маркеров) на своей поверхности, которые выявляются лишь при использовании специальных иммуноцитохимических методов. Источником развития лимфоцитов служат красный костный мозг и лимфоидные органы, из которых они попадают в кровь и лимфу. Большая часть этих клеток после циркуляции в крови проникает из сосудов в различные ткани, впоследствии вновь возвращаясь в кровь (рециркулирует). Лимфоциты составляют большую часть клеток в лимфоидных органах, относящихся к иммунной системе (лимфатических узлах, миндалинах, селезенке, пейеровых бляшках, аппендиксе и др.). Общий суммарный объем лимфоцитов в организме эквивалентен размерам такого органа, как печень.

Циркуляция и рециркуляция лимфоцитов зависят от экспрессии на их плазмолемме особых хоминг-рецепторов, взаимодействующих с адгезивными молекулами на эндотелии сосудов микроциркуляторного русла. Кровь содержит лишь около 2 % лимфоцитов, находящихся в организме, остальные 98 % находятся в тканях. За день кровь переносит около 5–10 × 1011 лимфоцитов (что примерно соответствует их общему содержанию в организме); среднее время пребывания лимфоцита в кровотоке составляет около 30 мин. Из лимфоцитов, проходящих через кровь, примерно 50 % мигрируют через селезенку, через грудной проток проходят 5–10 %. Часть лимфоцитов в сосудах находится в маргинальном пуле. Продолжительность жизни различных субпопуляций лимфоцитов существенно различается и варьирует от нескольких часов до многих лет. Из лимфоцитов крови 65–75 % – долгоживущие (продолжительность жизни – от нескольких месяцев до 5 лет), 15–35 % – короткоживущие (продолжительность жизни – от нескольких часов до 5 дней).

Функции лимфоцитов:

обеспечение реакций иммунитета – специфической защиты от чужеродных и измененных собственных антигенов, которая осуществляется благодаря выработке антител (гуморальный иммунитет) или контактному воздействию клеток-эффекторов иммунной системы (клеточный иммунитет). Лимфоциты являются главными клетками иммунной системы;

регуляция деятельности клеток других типов в иммунных реакциях, процессах роста, дифференцировки и регенерации тканей посредством контактных взаимодействий и секреции ряда цитокинов (лимфокинов).

Содержание лимфоцитов в крови взрослого в норме составляет: относительное – 20–35 % (по некоторым источникам – 20–50 %), абсолютное – 1000–3000 клеток/мкл.

Содержание лимфоцитов в крови ребенка меняется с возрастом. Сразу же после рождения оно такое же, как у взрослого, в период с 3–6 дней до 4–5 лет существенно превышает его (достигая максимума порядка 65 % в течение первого-второго года жизни), затем снижается, приближаясь к уровню, характерному для взрослого, ко времени полового созревания.

Характер возрастных изменений содержания лимфоцитов в крови обратен таковому у нейтрофилов, причем концентрации этих клеток в детском возрасте сравниваются дважды: на 4–5-й дни и 4–5-й годы жизни, что обозначают как первый и второй «лейкоцитарные перекресты», соответственно.

Лимфоцитоз – повышенное содержание лимфоцитов в крови. Характерен для некоторых инфекций, опухолей, реакций гиперчувствительности, тиреотоксикоза, лимфопролиферативных заболеваний; «физиологический лимфоцитоз» типичен для детей до 4–5 лет.

Лимфоцитопения – сниженное содержание лимфоцитов в крови. Наиболее часто связана с опухолями, инфекциями, коллагенозами. Она может быть обусловлена подавлением выработки лимфоцитов (при врожденном иммунодефиците, апластической анемии, химиотерапии опухолей, облучении), их усиленным разрушением (при инфекционных заболеваниях, например при ВИЧ-инфекции, аутоиммунных поражениях), измененным распределением между кровью и различными тканями (при инфекциях, хирургических операциях).

Размеры лимфоцитов варьируют в широких пределах и позволяют выделить три их группы, которые различаются также по своим морфологическим и функциональным особенностям: малые, средние и большие лимфоциты.

Малые лимфоциты (диаметр на мазках – 6–7 мкм) – наиболее многочисленная группа (в крови составляют до 80–90 % всех лимфоцитов). Их считают зрелыми клетками, которые, однако, способны при антигенной стимуляции или воздействии веществ, индуцирующих митоз (митогенов), превращаться в более крупные, пролиферативно активные (властные) клетки в результате так называемого процесса бласт-трансформации. Процесс бласт-трансформации лимфоцитов включает ряд морфологических и биохимических изменений, начинающихся с увеличения размеров ядрышка, за которым следуют увеличение объема ядра с нарастанием в нем содержания эухроматина, увеличение массы цитоплазмы и содержания в ней органелл – рибосом, элементов грЭПС, лизосом, размеров комплекса Гольджи. Возникшие описанным путем в результате иммунной стимуляции клетки (иммунобласты) в дальнейшем пролиферируют и дифференцируются. Ядро малых лимфоцитов – круглое, овальное или бобовидное, темное (с преобладанием гетерохроматина и плохо различимыми на стандартно окрашенных мазках ядрышками), занимает до 90 % площади клетки. Цитоплазма малых лимфоцитов, окружающая ядро в виде узкого ободка, окрашивается резко базофильно. Она содержит сравнительно слабо развитые органеллы – рибосомы, полисомы, цистерны грЭПС, центриоли, митохондрии, азурофильные гранулы (лизосомы), включения гликогена, отдельные вакуоли. Цитоскелет лимфоцитов сравнительно хорошо выражен; он представлен микротрубочками, промежуточными виментиновыми филаментами и микрофиламентами. Последние накапливаются по мере дифференцировки и в покоящемся лимфоците сосредоточены преимущественно под плазмолеммой. При активации клетки они концентрируются в микроворсинках и псевдоподиях (с помощью которых лимфоцит мигрирует через стенку венул).

Средние лимфоциты (диаметр на мазках – 8–9 мкм) в крови человека составляют около 10 % всех лимфоцитов. Морфологически они сходны с малыми лимфоцитами, однако их ядро светлее (содержит меньше гетерохроматина), цитоплазма развита значительнее и занимает относительно больший объем в клетке.

Большие лимфоциты (диаметр на мазках – 10–18 мкм) в значительном количестве встречаются лишь в лимфоидной ткани и обычно отсутствуют в крови. У них относительно светлое (с преобладанием эухроматина) ядро округлой или бобовидной формы с отчетливо выявляемыми ядрышками, обширной слабобазофильной цитоплазмой со сравнительно хорошо развитыми органеллами. Они обычно являются активно делящимися (бластными) формами развивающихся клеток лимфоидного ряда – лимфобластами или иммунобластами.

Большие гранулярные лимфоциты (БГЛ) – особая разновидность больших лимфоцитов, циркулирующих в крови взрослого человека. Они составляют 5–10 % (по некоторым источникам – до 15 %) лимфоцитов крови. Ядро БГЛ – бобовидное, с вдавлениями, умеренно плотное, смещенное к одному краю клетки, что делает ее асимметричной. Цитоплазма светлая, содержит 30–50 крупных азурофильных гранул диаметром 0,5–2,0 мкм, которые концентрируются на полюсе, противоположном тому, где располагается ядро. Гранулы содержат ряд веществ (перфорин, гранзимы и др.), обеспечивающих цитотоксическую активность этих клеток. Под электронным микроскопом в них выявляется плотный гомогенный центр, окруженный мелкозернистым матриксом низкой электронной плотности.

БГЛ выполняют функцию NK-клеток, или натуральных киллеров (от англ. Natural Killercells), – особой разновидности эффекторных клеток иммунной системы.

Классификация лимфоцитов по функциональному признаку выделяет Ти В-лимфоциты. Они различаются:

– местом своей дифференцировки;

– характером экспрессии интегральных белков (клеточных маркеров) на плазмолемме;

– ролью в обеспечении клеточного (Т-лимфоциты) или гуморального (В-лимфоциты во взаимодействии с Т-лимфоцитами) иммунитета;

– содержанием в крови (табл. 1.1);

– распределением в органах иммунной системы и периферических тканях.


Таблица 1.1. Содержание лимфоцитов различных видов в крови

Примечание. Относительное содержание лимфоцитов отдельных видов приведено в процентах от общего содержания лимфоцитов, принятого за 100 %.


Помимо указанных двух основных групп лимфоцитов, выделена также особая группа – нулевые лимфоциты, которые не обладают маркерами ни Т-, ни В-клеток (см табл. 1.1). Эта группа, по-видимому, представлена несколькими различными видами лимфоцитов, основными из которых являются NK-клетки (БГЛ).

Лимфа. Лимфа (от греч. lympha – чистая влага, ключевая вода) – биологическая жидкость, образующаяся из интерстициальной (тканевой) жидкости, проходящая по системе лимфатических сосудов через цепочку лимфатических узлов (в которых она очищается и обогащается форменными элементами) и через грудной проток попадающая в кровь.

Механизм образования лимфы связан с фильтрацией плазмы из кровеносных капилляров в интерстициальное пространство, в результате чего образуется интерстициальная (тканевая) жидкость. У молодого человека с массой тела 70 кг в интерстициальном пространстве содержится около 10,5 л жидкости. Эта жидкость частично вновь всасывается в кровь, частично поступает в лимфатические капилляры, образуя лимфу. Образованию лимфы способствует повышенное гидростатическое давление в интерстициальном пространстве и различия в онкотическом давлении между кровеносными сосудами и интерстициальной жидкостью, обеспечивающие ежедневное поступление 100–200 г белков из крови в тканевую жидкость. Эти белки через лимфатическую систему полностью возвращаются в кровь.

Объем лимфы в организме человека – 1–2 л. Различают периферическую лимфу (оттекающую от тканей), промежуточную лимфу (прошедшую через лимфатические узлы) и центральную лимфу (находящуюся в грудном протоке).

Основные функции лимфы:

гомеостатическая – поддержание постоянства микроокружения клеток путем регуляции объема и состава интерстициальной жидкости;

метаболическая – участие в регуляции обмена веществ путем транспорта метаболитов, белков, ферментов, воды, минеральных веществ, молекул биологически активных веществ;

трофическая – транспорт питательных веществ (преимущественно липидов) из пищеварительного тракта в кровь;

защитная – участие в иммунных реакциях (транспорт антигенов, антител, лимфоцитов, макрофагов и АПК).

Состав лимфы. Лимфа состоит из жидкой части (плазмы) и форменных элементов. Чем ближе лимфатический сосуд к грудному протоку, тем выше в его лимфе содержание форменных элементов. Однако и в центральной лимфе форменные элементы составляют менее 1 % ее объема.

Плазма лимфы по концентрации и составу солей близка к плазме крови, обладает щелочной реакцией (рН 8,4–9,2), содержит меньше белков и отличается от плазмы крови по их составу.

Форменные элементы лимфы. Концентрация форменных элементов варьирует в пределах 2–20 тыс/мкл (2–20 × 109/л), существенно меняясь в течение суток или в результате различных воздействий.

Клеточный состав лимфы: 90 % лимфоцитов, 5 % моноцитов, 2 % эозинофилов, 1 % сегментоядерных нейтрофилов и 2 % других клеток. Эритроциты в норме в лимфе отсутствуют, попадая в нее лишь при повышении проницаемости кровеносных сосудов микроциркуляторного русла. Благодаря присутствию тромбоцитов, фибриногена и других факторов свертывания лимфа способна свертываться, образуя сгусток.

1.2.2.4. Клеточный цикл

Функция воспроизведения и передачи генетической информации обеспечивается в ходе клеточного цикла.

Клеточный цикл – совокупность явлений между двумя последовательными делениями клетки или между ее образованием и гибелью. Клеточный цикл включает собственно митотическое деление и интерфазу – промежуток между делениями (рис. 1.3).


Рис. 1.3. Клеточный цикл: G0, G1, G2, S – периоды интерфазы, М – митоз, D – гибель клетки


Интерфаза. Интерфаза значительно более длительна, чем митоз (не менее 90 % всего времени клеточного цикла). Подразделяется на три периода: пресинтетический или постмитотический (G1), синтетический (S) и постсинтетический или премитотический (G2).

1. Пресинтетический или постмитотический период (G1) (от англ. gap – промежуток) наступает сразу же после митотического деления клетки и характеризуется активным ростом клетки и синтезом белка и рибонуклеиновой кислоты (РНК), благодаря чему клетка достигает нормальных размеров и восстанавливает необходимый набор органелл. G1-период длится от нескольких часов до нескольких дней. В течение этого периода синтезируются особые «запускающие» белки (англ. trigger proteins), или активаторы S-периода. Они обеспечивают достижение клеткой определенного порога (точки R – рестрикции или ограничения), после которого она вступает в S-период.

Контроль, осуществляемый на уровне точки R (при переходе из G1 в S), ограничивает возможность нерегулируемого размножения клеток. Проходя эту точку, клетка переключается на последующую регуляцию внутренними факторами клеточного цикла, которая обеспечивает закономерное завершение ее деления.

Если клетка не достигает точки R, она выходит из цикла и вступает в период репродуктивного покоя (G0). В зависимости от причин остановки ее цели – дифференцироваться и выполнить свои специфической функции, выжить в условиях недостаточности питательных веществ или факторов роста, осуществить репарацию поврежденной ДНК. Клетки одних тканей при соответствующей стимуляции вновь способны возвращаться из периода G0 в клеточный цикл, клетки других – утрачивают эту способность по мере дифференцировки.

2. Синтетический период (S) характеризуется удвоением содержания (репликацией) ДНК и синтезом белков, в частности, гистонов, которые поступают в ядро из цитоплазмы и обеспечивают нуклеосомную упаковку вновь синтезированной ДНК. В результате происходит удвоение числа хромосом. Одновременно удваивается число центриолей. S-период длится у большинства клеток 8–12 ч.

3. Постсинтетический, или премитотический, период (G2) следует за S-периодом и продолжается вплоть до митоза (часто обозначаемого буквой М). В течение этого периода клетка осуществляет непосредственную подготовку к делению. Происходит созревание центриолей, запасается энергия, синтезируются РНК и белки (в частности, тубулин), необходимые для процесса деления. Длительность – 2–4 ч. Возможность выхода клетки из G2-периода в G0-период с последующим возвращением в G2-период в настоящее время большинством авторов отрицается.

Контроль вступления клетки в митоз осуществляется двумя специальными факторами с противоположно направленными эффектами: митоз тормозится до момента завершения репликации ДНК М-задерживающим фактором и индуцируется М-стимулирующим фактором. Действие последнего проявляется лишь в присутствии других белков – циклинов (синтезируются на протяжении всего цикла и распадаются в середине митоза).

Митоз (деление клеток). Митоз (от греч. mitos – нить) – универсальный механизм деления клеток. Называется также кариокинезом или непрямым делением клеток. Следует за G2-периодом и завершает клеточный цикл. Длится 1–3 ч и обеспечивает равномерное распределение генетического материала в дочерние клетки. Четыре основные фазы митоза: профаза, метафаза, анафаза и телофаза.

Профаза начинается с конденсации хромосом, которые становятся видимыми в световой микроскоп как нитевидные структуры. Каждая хромосома состоит из двух параллельно лежащих сестринских хроматид, связанных в области центромеры. Ядрышко и ядерная оболочка к концу фазы исчезают (последняя распадается на мембранные пузырьки, сходные с элементами эндоплазматической сети (ЭПС)), а поровый комплекс и ламина диссоциируют на субъединицы. Кариоплазма смешивается с цитоплазмой. Центриоли мигрируют к противоположным полюсам клетки и дают начало нитям митотического (ахроматинового) веретена. В области центромеры образуются особые белковые комплексы – кинетохоры, к которым прикрепляются некоторые микротрубочки веретена (кинетохорные микротрубочки). Кинетохоры сами способны индуцировать сборку микротрубочек и поэтому могут служить центрами организации микротрубочек. Остальные микротрубочки веретена называются полюсными, т. к. протягиваются от одного полюса клетки к другому. Лежащие вне веретена микротрубочки, расходящиеся радиально от клеточных центров к плазмолемме, получили наименование астральных или микротрубочек (нитей) сияния.

Метафаза соответствует максимальному уровню конденсации хромосом, которые выстраиваются в области экватора митотического веретена, образуя картину экваториальной (метафазной) пластинки (вид сбоку) или материнской звезды (вид со стороны полюсов). Хромосомы перемещаются в экваториальную плоскость и удерживаются в ней благодаря сбалансированному натяжению кинетохорных микротрубочек. Сестринские хроматиды к концу этой фазы разделяются щелью, однако удерживаются в области центромеры.

Анафаза начинается с синхронного расщепления всех хромосом на сестринские хроматиды (в области центромеры) и движения дочерних хромосом к противоположным полюсам клетки, которое происходит вдоль микротрубочек веретена со скоростью 0,2–0,5 мкм/мин. Сигнал к началу анафазы включает резкое (на порядок) повышение концентрации Са2+ в гиалоплазме, выделяемого мембранными пузырьками, образующими скопления у полюсов веретена. Механизм движения хромосом в анафазе окончательно не выяснен. Установлено, что в области веретена помимо актина имеются такие белки, как миозин и динеин, а также ряд регуляторных белков и Са2+-аденозинтрифосфатаза (АТФаза). По некоторым наблюдениям, оно обусловлено укорочением (разборкой) микротрубочек, прикрепленных к кинетохорам. Анафаза характеризуется удлинением митотического веретена за счет некоторого расхождения полюсов клетки. Она завершается скоплением на полюсах клетки двух идентичных наборов хромосом, которые образуют картины звезд (стадия дочерних звезд). В конце анафазы благодаря сокращению актиновых микрофиламентов, концентрирующихся по окружности клетки (сократимое кольцо), образовывается клеточная перетяжка, которая, углубляясь, в следующей фазе приведет к цитотомии.

Телофаза – конечная стадия митоза, в течение которой реконструируются ядра дочерних клеток и завершается их разделение. Вокруг конденсированных хромосом дочерних клеток из мембранных пузырьков (по другим данным, из агранулярной эндоплазматической сети (аЭПС)) восстанавливается кариолемма. С ней связывается формирующаяся ламина, вновь появляются ядрышки, которые образуются из участков соответствующих хромосом. Ядра клеток постепенно увеличиваются, хромосомы прогрессивно деспирализуются и исчезают, замещаясь картиной хроматина интерфазного ядра. Одновременно происходит углубление клеточной перетяжки. Клетки в течение некоторого времени остаются связанными суживающимся цитоплазматическим мостиком, содержащим пучок микротрубочек (срединное тельце). Дальнейшая перешнуровка цитоплазмы завершается формированием двух дочерних клеток. В телофазе происходит распределение органелл между дочерними клетками. Равномерности этого процесса способствует то, что одни органеллы достаточно многочисленны (например, митохондрии), другие (подобно ЭПС и комплексу Гольджи) во время митоза распадаются на мелкие фрагменты и пузырьки.

Атипические митозы возникают при повреждении митотического аппарата, характеризуются неравномерным распределением генетического материала между клетками – анэуплоидией (от греч. an – не, еu – правильное, ploon – складываю); во многих случаях цитотомия отсутствует, в результате чего формируются гигантские клетки. Атипические митозы характерны для злокачественных опухолей и облученных тканей. Чем выше их частота и значительнее степень анэуплоидии, тем более злокачественной является опухоль.

Нарушение нормального митотического деления клеток может обусловливаться аномалиями хромосом, которые называют хромосомными аберрациями (от лат. aberratio – отклонение). Вариантами хромосомных аберраций служат слипание хромосом, их разрыв на фрагменты, выпадение участка, обмен фрагментами, удвоение отдельных участков хромосом и др. Хромосомные аберрации могут возникать спонтанно, но чаще развиваются вследствие действия на клетки мутагенов и ионизирующего облучения.

Кариотипирование – диагностическое исследование с целью оценки кариотипа (набора хромосом) – производится путем изучения хромосом в метафазной пластинке. Для кариотипирования получают культуру клеток, в которую вводят колхицин – вещество, блокирующее формирование митотического веретена. Из таких клеток извлекают хромосомы, которые далее окрашивают и идентифицируют. Нормальный кариотип человека представлен 46 хромосомами – 22 парами аутосом и двумя половыми хромосомами (XY у мужчин и XX у женщин). Кариотипирование позволяет диагностировать ряд заболеваний, связанных с хромосомными аномалиями, в частности, синдромы Дауна (трисомия 21-й хромосомы), Эдвардса (трисомия 18-й хромосомы), Патау (трисомия 13-й хромосомы), а также ряд синдромов, связанных с аномалиями половых хромосом – синдром Кляйнфельтера (генотип XXY), Турнера (генотип ХО) и др.

Эндомитоз и полиплоидизация. Эндомитоз (от греч. endon – внутри и mitos – нить) – вариант митоза, при котором происходит удвоение числа хромосом внутри ядерной оболочки без ее разрушения и образования веретена деления. При повторных эндомитозах число хромосом в ядре может значительно увеличиваться при соответствующем кратном двум нарастании содержания в нем ДНК – полиплоидии (от греч. poly – много и ploon – складываю) и увеличении объема ядра. Полиплоидия может явиться также результатом неоконченных обычных митозов. Основной смысл развития полиплоидии заключается в усилении функциональной активности клетки.

Сходный результат достигается при образовании двухъядерных клеток вследствие митотического деления, не сопровождающегося цитотомией. При последующем митотическом делении такой двухъядерной клетки хромосомные наборы ядер объединяются в метафазе и приводят к образованию двух дочерних полиплоидных клеток. Наличие полиплоидных – тетра- (4n) и октаплоидных (8n) клеток – нормальное явление в печени, эпителии мочевого пузыря, клетках концевых отделов поджелудочной и слюнных желез. Мегакариоциты (гигантские клетки костного мозга) начинают формировать кровяные пластинки, достигнув определенного уровня полиплоидии (16–32n) в результате нескольких эндомитозов.

Регуляция клеточного цикла. По уровню обновления клеток все ткани организма подразделяются на три группы:

стабильные клеточные популяции. Состоят из клеток с полной потерей способности к делению (нейроны, кардиомиоциты). Число клеток в такой популяции стабилизируется в начале их дифференцировки; по мере старения организма оно снижается вследствие невосполняемой естественной убыли клеток;

растущие клеточные популяции. Способны не только к обновлению, но также и к росту, увеличению массы ткани за счет нарастания числа клеток и их полиплоидизации. Их долгоживущие клетки выполняют специализированные функции, но сохраняют способность при стимуляции вновь вступать в цикл с тем, чтобы восстановить свою нормальную численность. Такие популяции клеток образуют почки, печень, поджелудочную и щитовидную железы;

обновляющиеся клеточные популяции характеризуются постоянным обновлением клеток. Убыль дифференцированных, выполняющих специализированные функции, и не способных к делению клеток вследствие их гибели уравновешена образованием новых в результате деления малодифференцированных камбиальных клеток и их последующей дифференцировки. К таким популяциям относят эпителий кишки и эпидермис, а также клетки костного мозга и крови.

Регуляция клеточного цикла в различных тканях организма осуществляется сбалансированной сложной системой механизмов, стимулирующих или ингибирующих клеточное деление. Система регуляции клеточного цикла получает два вида информации:

– о действии на клетку различных внешних факторов, способствующих активации или торможению ее деления. Она обрабатывает и интегрирует ее в виде сигналов, определяющих, будет ли клетка вступать в митотический цикл или дифференцироваться и пребывать в периоде репродуктивного покоя (G0);

– об интактности генома. При повреждении генома клетки прохождение ею цикла останавливается и включается система репарации ДНК. Тем самым снижается вероятность нежелательной репликации поврежденной ДНК. Многочисленные сигналы, регулирующие деятельность клетки, замыкаются на ген р53, который блокирует прохождение клеточного цикла до устранения возникшего повреждения. Если это повреждение слишком серьезно, р53 (в совокупности с другими регуляторами) запускает программу апоптоза – запрограммированной гибели клетки.

При описании интерфазы были упомянуты внутриклеточные продукты, регулирующие отдельные этапы подготовки клетки к делению (активаторы S-периода, M-задерживающий фактор, М-стимулирующий фактор, циклины). Вместе с тем имеется ряд факторов, обеспечивающих общий контроль активности деления клеток, к которым относятся протоонкогены и антионкогены.

Протоонкогены (от греч. protos – первый и onkos – опухоль) – группа генов-активаторов, контролирующих нормальное клеточное деление и дифференцировку. Продукты экспрессии этих генов (особые белки) воздействуют на разные механизмы регуляции деления клетки: на уровне активирующего сигнала, его рецептора в мембране, второго посредника или транскрипции. К настоящему времени идентифицировано более 50 протоонкогенов.

Активация функции протоонкогенов и развитие опухолей. Изменения структуры и усиление активности экспрессии протоонкогенов вызывает развитие опухолей (что определило их название). Повышение активности протоонкогенов может быть связано с изменениями строения ДНК (в результате мутаций), увеличением количества генов (генной амплификации) или их реаранжировкой, при которой гены размещаются вблизи активного промотора. Измененные мутацией, но активные формы протоонкогенов носят название онкогенов. Злокачественная трансформация клетки может возникнуть не только вследствие повышения активности протоонкогенов, но и в результате снижения активности другой группы генов, называемых антионкогенами.

Антионкогены – гены, продукты которых (супрессоры опухолевого роста) угнетают митотическую активность клеток. Из них наиболее подробно изучены гены RB (ретинобластомы), DCC, APC, WT1, NF1 и особенно ген р53.

Ген р53 – один из наиболее мощных и универсальных антионкогенов (естественный онкосупрессор). Обеспечивает поддержание стабильности генетического аппарата (благодаря чему его называют «охранителем» клеточного генома), контролирует клеточный цикл. Его экспрессия, умеренная в нормальных условиях, резко усиливается при повреждении ДНК.

Активация гена р53 приводит к остановке клеточного цикла для репарации ДНК, в которой активное участие принимает продукт этого гена (белок р53) благодаря способности связываться с поврежденным участком ДНК и регулировать восстановление его структуры. При тяжелых повреждениях, не устранимых путем репарации ДНК, р53 запускает программу апоптоза. Оба вида реакций защищают организм от репликации и амплификации генетически поврежденного материала. Продукт гена р53 (белок р53) индуцирует синтез продуктов генов р21, р15 и р16, которые блокируют ферменты циклин-зависимые киназы (CDK), обеспечивающие переход G1S и прохождение других периодов клеточного цикла.

Инактивация функции антионкогенов и развитие опухолей. Потеря функции гена р53 (в результате мутации или делеции) приводит к утрате контроля над клеточным циклом: клетки-мутанты продолжают активно пролиферировать, несмотря на повреждения ДНК. Выявлена четкая связь между утратой функции гена р53 и развитием более 50 видов злокачественных опухолей у человека. Так, изменения гена р53 обнаружены в 55–70 % случаев рака легкого, в 25–30 % ка молочной железы. Опухоли с потерей функции гена р53 характеризуются наиболее злокачественным течением. В некоторых видах опухолей (в 60 % меланом и лейкозов, в 80 % глиом) обнаруживаются изменения гена р16; описаны опухоли, связанные с дефектами гена р15. Клетки рака шейки матки часто содержат инактивированные гены RB и р53. Мутация гена RB обнаруживается при ретинобластоме, опухолях костей, мочевого пузыря, легкого и молочной железы. Делеция гена DCC характерна для опухолей толстой и прямой кишки, АРС – для аденоматозного полипоза толстой кишки.

Факторы роста – важные стимуляторы клеточного деления. Они представляют собой белки, усиливающие митотическую активность в определенных тканях (тканях-мишенях). Их действие опосредуется специфическими рецепторами на плазмолемме клеток. К ним относятся: фактор роста нервов (ФРН), ЭФР, ТРФР, инсулиноподобные факторы роста (ИФР), фактор роста фибробластов (ФРФ), КСФ – стимуляторы отдельных этапов гематопоэза, интерлейкины (ИЛ)-1, -2 и -3. Список факторов роста постоянно расширяется. Высказывается предположение, что большинство типов клеток реагирует не на один специфический фактор роста, а на их комбинации. Некоторые факторы роста циркулируют в крови, но большинство действует в тканях локально (паракринно). Описаны также факторы, подавляющие клеточное деление.

Кейлоны (от греч. chalao – успокаивать) представляют собой класс гормоноподобных регуляторов, угнетающих клеточное размножение. Они являются полипептидами или гликопротеинами и обладают тканевой и клеточной специфичностью. Кейлоны образуются всеми зрелыми дифференцированными клетками и локально воздействуют на незрелые клетки этой же ткани, способные к делению. Они обеспечивают гомеостаз численности клеточной популяции, а их выделение контролируется механизмом отрицательной обратной связи. Уменьшение численности популяции клеток (например, потеря клеток эпидермиса при ранении или лейкоцитов при кровотечении) вызывает снижение ингибирующего воздествия кейлонов и подъем митотической активности в соответствующей ткани. Кейлоны участвуют в регуляции роста тканей, заживления ран, иммунных реакций и других процессах.

Блокирование клеточного цикла с целью задержки размножения быстро растущих раковых клеток лежит в основе действия ряда препаратов, используемых для лечения опухолей. К сожалению, эти препараты действуют также на нормальные клетки и оказывают на них вредное влияние – побочное действие препарата. Оно особенно выражено в отношении быстро обновляющихся популяций, так как значительная часть их клеток находится в цикле. В наибольшей степени при введении противоопухолевых препаратов нарушается образование форменных элементов крови (с развитием анемии), а также клеток кишечного эпителия (с возможным возникновением его изъязвлений).

Реакция клеток на стресс. На различные виды стресса (повышение температуры, угнетение энергетического обмена, заражение вирусами, нехватка кислорода или глюкозы, повреждение окислителями, химическими препаратами, тяжелыми металлами и др.) все клетки, в том числе клетки млекопитающих и человека, отвечают стереотипной реакцией, охватывающей ядерный аппарат и компоненты цитоплазмы. В основе – резкое изменение характера экспрессии генов. Это проявляется усилением синтеза особой группы защитных стрессорных белков при подавлении продукции остальных.

Стрессорные белки первоначально были обнаружены при изучении реакции клетки на повышение температуры, поэтому их назвали белками теплового шока, или HSP (от англ. Heat Shock Proteins). В дальнейшем был установлен их универсальный характер. HSP представляют собой группу белков, важнейшим из которых является HSP70. Различные представители группы HSP действуют на уровне ядра и отдельных компонентов цитоплазмы. Они выполняют роль молекулярных спутников, обеспечивая сборку, поддержание нативной конформации (свертывание, развертывание и упаковку) других белков, их взаимодействие между собой и направленный транспорт. Предотвращают агрегацию белков и их дальнейшее повреждение в условиях нарушенного метаболизма клетки, способствуют разборке и расщеплению возникших белковых агрегатов.

Повышенная экспрессия стрессорных белков защищает клетки от повреждений и препятствует развитию их гибели механизмом апоптоза. Предполагают, что известный эффект возрастания резистентности организма при лихорадке может быть связан с усиленной выработкой белков группы HSP в условиях повышенной температуры. Характерно, что экспрессия главного стрессорного белка, HSP70, резко снижается с возрастом. Опухолевые клетки часто экспрессируют повышенные уровни HSP70, который защищает их от гибели.

1.2.2.5. Старение и гибель клеток

Старение клеток. После функционирования в течение определенного периода времени клетка гибнет, ее гибели часто предшествует период старения. У соматических клеток имеется запрограммированный предел возможности деления, их пролиферативный потенциал обратно пропорционален возрасту организма и прямо пропорционален максимальной продолжительности жизни индивидуумов данного вида. При старении клетка утрачивает способность к репликации ДНК и задерживается в G1-фазе клеточного цикла, переходя в G0-фазу; в отличие от нормальной покоящейся клетки на нее не действуют митогены.

Механизмы и смысл клеточного старения остаются предметом дискуссии. Согласно одной гипотезе, клеточное старение – результат катастрофического накопления ошибок биосинтетических механизмов клетки, согласно другой – является способом защиты организма от рака путем ограничения возможностей роста клеток. Возможно, старение клеток служит механизмом стабилизации размеров взрослого организма.

Морфологические признаки старения и приближающейся гибели клетки: уменьшение ее объема, редукция большинства органелл, увеличение содержания крупных лизосом и элементов цитоскелета, накопление пигментных и жировых включений, нарастание проницаемости клеточных мембран, вакуолизация цитоплазмы и ядра.

Гибель клеток. Число клеток в организме, органах и тканях регулируется гомеостатическими механизмами и определяется динамическим равновесием между образованием клеток путем пролиферации и их гибелью. Поэтому гибель клеток, наряду с их размножением и дифференцировкой, – один из ключевых процессов и факторов в обеспечении нормальной жизнедеятельности различных тканей. При гибели клеток могут наблюдаться два вида морфологических изменений, которые соответствуют различным механизмам ее развития, – некроз и апоптоз.

Некроз (от греч. nekrosis – умирание) возникает под действием резко выраженных повреждающих факторов: перегревания (гипертермии), переохлаждения (гипотермии), недостатка кислорода (гипоксии), нарушения кровоснабжения (ишемии), метаболических ядов, химических препаратов, механической травмы и др. Некроз представляет собой «смерть в результате несчастного случая» и часто охватывает различные по численности группы клеток.

Структурно-функциональные изменения клеток при некрозе на начальных этапах его развития проявляются набуханием цитоплазмы и отдельных органелл (в особенности митохондрий). Отмечается дисперсия рибосом, расширение цистерн ЭПС. Эти морфологические изменения обусловлены нарушением избирательной проницаемости плазмолеммы и развиваются в ответ на прекращение деятельности мембранных ионных насосов (из-за непосредственного повреждения мембраны или вследствие отсутствия необходимой энергии). Повышение концентрации Са2+ в гиалоплазме вызывает активацию связанных с мембраной фосфолипаз, которые разрушают мембранные фосфолипиды и вызывают обширные повреждения мембран. Разрушение клеточных структур резко ускоряется на поздних стадиях некроза после выделения гидролаз и других ферментов из поврежденных лизосом.

Конец ознакомительного фрагмента.