Вы здесь

Как понять результаты анализов. Диагностика и профилактика заболеваний. Анализы крови (И. В. Милюкова, 2007)

Анализы крови

Кровь (вместе с лимфой и тканевой жидкостью) относится к жидким тканям организма. Тканями называют группы клеток (вместе с расположенным между ними межклеточным веществом), имеющих сходное строение и выполняющих какие-то специфические функции.

Все ткани человека можно условно подразделить на 5 типов:

– эпителиальная (покровная);

– соединительная (костная, хрящевая и собственно соединительная ткань);

– мышечная;

– нервная;

– жидкие ткани.

Жидкие ткани – кровь, лимфа и тканевая жидкость – составляют внутреннюю среду организма. Они омывают все клетки, благодаря чему доставляют им вещества, необходимые для жизнедеятельности, и уносят вещества, которые уже не нужны, то есть конечные продукты обмена веществ.

Общее количество крови в организме взрослого человека составляет примерно 4,5–6 л – 6–8 % массы тела. Объем циркулирующей крови сохраняется относительно постоянным. За счет чего поддерживается это постоянство, ведь в организме все меняется ежесекундно, например, из кишечника непрерывно всасывается вода. Но если в кровь поступает большое количество воды, то часть ее сразу выводится через почки, а другая, бо́льшая, часть, переходит в ткани, откуда затем постепенно снова возвращается в кровь и тоже в конечном итоге выводится через почки. При недостаточном поступлении жидкости извне вода из тканей переходит в кровь, а почки «работают вполсилы»: в них образуется меньше мочи, и, значит, меньше воды выводится из организма.

Резкое уменьшение объема крови на 1/3 (например, при кровотечении) уже представляет опасность для жизни.

Что «делает» кровь в организме

Кровь выполняет очень много функций в организме, и нельзя сказать, какие из них более важные, а какие – менее. Поэтому в приведенном ниже перечне слова «во-первых», «во-вторых» и т. п. можно переставлять как угодно.

Во-первых, кровь, циркулируя по всему организму, переносит ко всем органам, тканям и клеткам определенные вещества, а другие вещества «уносит». Это называется транспортная функция, и она как бы включает в себя ряд других функций.

Дыхательная функция – кровь переносит кислород от легких к тканям и углекислый газ от тканей к легким.

Питательная (трофическая) функция – кровь приносит ко всем клеткам организма питательные вещества: глюкозу, аминокислоты, жиры, витамины, минеральные вещества, воду.

Выделительная (экскреторная) функция – кровь уносит из клеток «шлаки жизни» – конечные продукты обмена веществ: мочевину мочевую кислоту и др. Уносит она их к органам выделительной системы (почкам), которые и выводят эти вещества из организма.

Гуморальная регуляция (humor в переводе с латыни означает «жидкость»). Кровь переносит гормоны и другие физиологически активные вещества от клеток, где они образуются, к другим клеткам и тем самым осуществляет химическое взаимодействие между всеми клетками организма.

Во-вторых, кровь выполняет защитную функцию.

В крови имеются клеточные элементы (лейкоциты), а также определенные вещества (антитела), которые защищают организм от всего чужеродного, в частности, от болезнетворных микроорганизмов.

В-третьих, кровь поддерживает стабильность многих постоянных величин в организме: рН (кислотность), осмотическое давление и пр., так как обеспечивает водно-солевой обмен между нею и тканями.

В-четвертых, кровь участвует в терморегуляции, то есть поддерживает постоянную температуру тела. Кровь омывает все органы и при этом одни из них охлаждает, а другие, наоборот, согревает.

Именно благодаря такому разнообразию функций, благодаря тому, что кровь, так сказать, вездесуща, кровь может «рассказать» очень много.

И в первую очередь – о самой себе, то есть о системе крови. В эту систему входят:

– периферическая кровь, то есть кровь, циркулирующая по сосудам;

– органы кроветворения: красный костный мозг, лимфатические узлы и селезенка;

– органы кроверазрушения;

– регулирующий нейрогуморальный аппарат.

Кроме того, кровь рассказывает о состоянии организма в целом: каких веществ в нем слишком много, а каких не хватает, и т. п.

А также кровь может многое рассказать о функции любого органа. Нужно только знать, «о чем спрашивать», то есть какие вещества «искать» (или определять их концентрацию) в крови – белки, глюкозу, липиды, ферменты, гормоны, электролиты и т. п.

Из чего состоит кровь

Кровь состоит из жидкой части – плазмы – и взвешенных в ней клеток, или форменных элементов крови.

Форменные элементы крови

В крови имеются следующие виды форменных элементов (клеток): эритроциты (красные кровяные тельца), лейкоциты (белые кровяные тельца), тромбоциты (кровяные пластинки). Все они образуются в костном мозге из клеток-предшественников.

Костный мозг находится в плоских и трубчатых костях – грудине, ребрах, костях конечностей и др. Общая масса костного мозга составляет 1,5–2 кг (столько же весит печень). Некоторые формы лейкоцитов, а именно, лимфоциты, образуются не только в костном мозге, но также в лимфатических узлах, селезенке, лимфоидной ткани кишечника и миндалин.

Процесс образования и развития форменных элементов (клеток) крови называется кроветворением. Соответственно, образование эритроцитов называется эритропоэз, образование лейкоцитов – лейкопоэз, а тромбоцитов – тромбопоэз.

Эритроциты и ретикулоциты

Эритроциты, или красные кровяные тельца, предназначены для того, чтобы переносить кислород от легких ко всем тканям и органам, а углекислый газ – в обратном направлении – от тканей и органов к легким.

По форме эритроциты напоминают двояковыпуклые диски. Диаметр эритроцита равен 7,2–7,5 мкм, толщина – 2,2 мкм, а общая поверхность всех эритроцитов превышает площадь поверхности человеческого тела в 1500 раз.

Около 90 % сухого вещества эритроцитов составляет гемоглобин.

В крови взрослого человека в норме циркулирует примерно 25 триллионов эритроцитов. Представить себе это количество можно так: если уложить все эритроциты рядом друг с другом, то получившейся цепочкой (длиной около 200 000 км) можно было бы опоясать земной шар по экватору 5 раз.

Эритроцит живет в среднем 120 дней, а затем гибнет (разрушается). Причем тут возможны два варианта. Во-первых, старые эритроциты подвергаются фагоцитозу, то есть пожираются клетками-фагоцитами, которые для того и предназначены, чтобы уничтожать почему-либо не нужные организму клетки – как чужеродные, например, микробные, так и собственные, «отслужившие свой срок». Фагоцитов особенно много в печени и селезенке, поэтому эти органы называют «кладбищем эритроцитов». Во-вторых, старые эритроциты (они становятся более круглыми) прямо в кровяном русле подвергаются гемолизу – растворению.

Некоторые эритроциты «не доживают» отпущенный им срок и разрушаются из-за механического повреждения во время циркуляции по сосудам (этот процесс называется фрагментоз). Обычно это в чем-то дефектные эритроциты. То есть среди эритроцитов в организме, как и во всей живой природе, происходит своего рода естественный отбор.

Каждые сутки в человеческом организме образуется и разрушается около 200–250 миллиардов эритроцитов. Эритроцит образуется из клетки-предшественника, имеющей, как и все «нормальные» клетки, ядро, – эритробласта, который затем последовательно проходит несколько стадий превращения в нормобласт.

На стадии «зрелого» нормобласта происходит выталкивание ядра и образование «нормального» эритроцита, который так и называется – нормоцит. Но иногда ядро выталкивается на более ранних стадиях, то есть из «недозрелых» нормобластов, и из такой клетки образуется ретикулоцит, то есть соответственно недозрелый эритроцит. Впрочем, через 1–2 суток после выхода из костного мозга в кровь ретикулоциты «дозревают» и становятся нормальными, «взрослыми» эритроцитами-нормоцитами.

Около 90 % сухого вещества эритроцитов составляет гемоглобин – так называемый дыхательный фермент. По химической структуре он представляет собой соединение белка (глобина) и 4 молекул гема, каждая из которых имеет в своем составе атом железа. Атом железа отличается тем, что имеет большое число свободных электронов, благодаря чему легко образует различные комплексы, в частности, способен присоединять (и отдавать) молекулу кислорода.

Гемоглобин в крови содержится в виде 3 физиологических соединений. Гемоглобин, который «взял» кислород и несет его к тканям, называется оксигемоглобин (HbO2). Именно он придает ярко-алую окраску артериальной крови.

Гемоглобин, отдавший кислород тканям, превращается в так называемый восстановленный гемоглобин, или дезоксигемоглобин (Hb). Он циркулирует в венозной крови и придает ей более темный цвет. Гемоглобин, присоединивший углекислый газ и несущий его к легким, называется карбгемоглобин и тоже находится в артериальной крови.

При разрушении эритроцитов гемоглобин выходит в плазму крови, от него отщепляются молекулы гема, и он превращается в желчный пигмент билирубин. Билирубин с желчью поступает в кишечник и выводится из организма с калом и мочой – в форме соответственно стеркобилина и уробилина. Каждые сутки примерно 8 г гемоглобина (около 1 %), находящегося в крови, превращается в билирубин.

Лейкоциты

Лейкоциты подразделяют на две основные группы: гранулоциты (зернистые) и агранулоциты (незернистые). К гранулоцитам относятся нейтрофилы, эозинофилы, базофилы, а к агранулоцитам – лимфоциты и моноциты.

Нейтрофилы

Нейтрофилы – самая многочисленная группа лейкоцитов, они составляют 50–75 % всех белых кровяных телец. Нейтрофилами они называются потому, что их зернистость можно окрашивать нейтральными красками.

Нейтрофилы различают «по возрасту»: молодые и зрелые формы. Молодые – это («по старшинству», начиная с самых младших) миелоциты, юные (метамиелоциты), палочкоядерные; зрелые – это сегментоядерные. В крови здорового человека подавляющее большинство нейтрофилов представлены зрелыми формами – сегментоядерными, а юных и палочко-ядерных (молодых) должно быть не более 1 % и 5 % соответственно.

При этом в крови человека циркулирует не более 1 % нейтрофилов, имеющихся в организме; 99 % их сосредоточены в различных тканях. В частности, резерв нейтрофилов в костном мозге в 50 раз превышает их количество в крови. По первому требованию организма происходит дополнительный выброс нейтрофилов в кровь. С чем же связано это «первое требование»?

Нейтрофилы – главные защитники организма. Нейтрофилы первыми устремляются в место повреждения тканей, так как они наиболее подвижные из всех лейкоцитов. В случае надобности нейтрофил выпускает псевдоподии («ложноножки»), проникает через стенку капилляра и спешит туда, где какой-нибудь микроб «нарушил границу» – попал в организм. Нейтрофилы движутся со скоростью 40 мкм в минуту, что совсем не мало для такой малютки, не превышающей в диаметре 10–15 мкм.

Дальше нейтрофил нападает на врага – микробную клетку или собственные разрушающиеся клетки организма – и буквально пожирает его, и это называется фагоцитозом (от греч. фаго – «пожираю» и цитос – «клетка»), а клетки, способные осуществлять подобные действия, – фагоцитами. Затем фагоцит переваривает и уничтожает то, что «съел», благодаря собственным ферментам и другим веществам. Причем один нейтрофил способен «съесть» (то есть уничтожить) 20–30 бактерий. Иногда, впрочем, он погибает сам в этом неравном бою, и тогда бактерии остаются победителями на поле боя и продолжают размножаться.

Но нейтрофилы способны и к более тонким и сложным методам борьбы: например, они выделяют специальные вещества (лизосомные белки), которые пагубно воздействуют на бактерии, а также интерферон, обладающий противовирусным действием. Нейтрофилы вовсе не всегда так активны и агрессивны, а только тогда, когда в этом возникает необходимость, о чем они узнают по повышению уровня гормонов в крови, в частности, адреналина и ацетилхолина, и некоторых других веществ, а также по увеличению концентрации токсинов – продуктов жизнедеятельности микробов.

Эозинофилы

Эти клетки крови называются эозинофилами потому, что зернистость в их цитоплазме окрашивается кислыми красками, в частности, эозином. Эозинофилы тоже умеют пожирать микробов (то есть обладают фагоцитарной способностью), но их слишком мало, поэтому они не играют заметной роли в процессе фагоцитоза.

Зато они способны обезвреживать и разрушать аллергены. В частности, они вырабатывают фермент (гистаминазу), который разрушает гистамин. А без гистамина не обходится ни одна аллергическая реакция. (Именно поэтому при аллергии применяются антигистаминные препараты – тавегил, супрастин, кларитин и др.) Гистамин содержится в гранулах базофилов и так называемых тучных клеток, а эозинофилы способны «пожирать» эти гранулы.

Эозинофилы вырабатывают также белок плазминоген, который участвует в растворении кровяного сгустка, когда тот уже не нужен.

Базофилы

Базофилы – самая малочисленная группа гранулоцитов: они составляют 0–1 % всех лейкоцитов. Зернистость базофилов хорошо окрашивается щелочными, или основными, красками. Вспомните школьную химию: щелочи иначе называются основаниями. А основание по-латыни – «базис», поэтому эти клетки и называются базофилами. Базофилы вырабатывают гистамин, а также гепарин. Гистамин расширяет капилляры в очаге воспаления, а гепарин препятствует свертыванию крови. Благодаря этому кровообращение в области воспаления улучшается, что способствует стиханию воспалительного процесса.

Моноциты

Моноциты относятся к агранулоцитам – то есть не имеют зернистости. Эти клетки способны двигаться наподобие амеб и обладают выраженной фагоцитарной и бактерицидной активностью. Если один нейтрофил может убить 20–30 бактерий, то моноцит – до 100.

К очагу воспаления моноциты прибывают несколько позже нейтрофилов, и как раз к тому времени, когда там образуется кислая среда, в которой нейтрофилы теряют активность. Моноциты же в кислой среде, наоборот, максимально «оживляются». Они пожирают микробов, погибшие лейкоциты, поврежденные воспалением клетки тканей и таким образом очищают это место и подготавливают его для регенерации. За это моноциты получили название (у физиологов) «дворники организма».

Моноциты, прибывшие в ткани, превращаются в макрофаги («большие пожиратели»). Но они не просто пожирают; они перерабатывают поглощенные чужеродные вещества и переводят их в особое соединение – иммуноген, который совместно с лимфоцитами (см. ниже) формирует уже специфический иммунный ответ, то есть строго определенную защитную реакцию на строго определенное чужеродное вещество.

Макрофаги участвуют также в обмене жиров и железа, а кроме того, обладают противоопухолевым и противовирусным действием. Все это благодаря тому, что они секретируют множество полезных веществ: лизоцим, комплемент, интерферон, эластазу, коллагеназу, активатор плазминогена, а также фиброгенный фактор, который усиливает синтез коллагена и ускоряет формирование рубцовой ткани.

Лимфоциты

Это, наверное, самые уникальные из всех лейкоцитов. В организме взрослого здорового человека присутствует 1012 лимфоцитов. Общий вес такого количества лимфоцитов – 1,5 кг.

По сравнению с другими лейкоцитами (и вообще клетками крови, и не только крови) лимфоциты являются настоящими долгожителями: они живут не несколько дней, как «обыкновенные» клетки, а более 20 лет, а некоторые из них рождаются вместе с самим человеком и с ним же умирают.

Опять же, в отличие от других лейкоцитов, лимфоциты способны не только мигрировать из крови в ткани, но и возвращаться обратно в кровь.

Но самая главная их особенность – это удивительная способность различать в организме «своих» и «чужих», поэтому они выполняют функцию иммунного надзора («цензуры»).

В их оболочке имеются специальные рецепторы, которые активируются при контакте с чужеродным белком.

Лимфоциты делятся на 2 группы (можно сказать – «армии»), у каждой из которых свои, строго определенные задачи.

Первая такая «армия» – Т-лимфоциты (тимус-зависимые).

Т-лимфоциты рождаются в костном мозге из клеток-предшественников, затем попадают в вилочковую железу (тимус), где проходят «обучение» (дифференцировку), после чего отправляются к «месту службы» и расселяются в лимфатических узлах, селезенке или циркулируют в крови. В крови на долю Т-лимфоцитов приходится 50–70 % всех лимфоцитов.

Дифференцировка Т-лимфоцитов в вилочковой железе заключается в том, что они превращаются в особые формы («отряды»), предназначенные для выполнения различных и строго определенных функций.

Клетки-хелперы (помощники) взаимодействуют с В-лимфоцитами (см. ниже), превращая их в плазматические клетки, которые вырабатывают антитела.

Клетки-супрессоры (угнетатели) подавляют чрезмерные реакции В-лимфоцитов и поддерживают постоянное количественное равновесие между разными формами лимфоцитов.

Клетки-киллеры (убийцы) – непосредственные исполнители реакций клеточного иммунитета. Они нападают на чужеродные клетки (опухолевые клетки, чужеродные трансплантаты, клетки-мутанты и пр.) и разрушают их. Одна клетка-киллер убивает одну жертву. Для этого у клетки-киллера есть оружие: вещество лимфокин, которое действует так, что чужеродная клетка как бы растворяет сама себя.

Клетки иммунной памяти, или Т-эффекторы, – специальные Т-лимфоциты, которые запоминают «лицо врага», благодаря чему если в другой раз в организм внедрится тот же враг, то он будет немедленно распознан.

Т-лимфоциты играют главную роль в иммунном надзоре. Когда их функция ослаблена, возрастает опасность развития опухолей, аутоиммунных заболеваний, различных инфекций.

Таким образом, Т-лимфоциты обеспечивают специфический клеточный иммунитет.

Вторая «армия» – В-лимфоциты (бурса-зависимые).

В-лимфоциты составляют 15–35 % всех лимфоцитов, циркулирующих в крови, и тоже рождаются в костном мозге, но затем отправляются «на обучение» не в вилочковую железу, а в другие места: в лимфоидную ткань кишечника, червеобразного отростка (аппендикса), небных и глоточных миндалин.

В-лимфоциты обеспечивают так называемый гуморальный иммунитет (от латинского слова humor – «жидкость»). Но на самом деле суть заключается в том, что в данном случае с врагами борются не сами клетки, а созданные ими антитела. Антитела не являются клетками; это белки – иммунные гамма-глобулины.

В-лимфоциты, встретившиеся с антигеном (чужеродным веществом), мигрируют в костный мозг, селезенку и лимфатические узлы. Там они размножаются и превращаются в плазматические клетки, которые способны вырабатывать антитела. При этом поколение одного В-лимфоцита (или, как говорят, один клон) реагирует только с каким-то одним антигеном и отвечает за выработку антител только против него. То есть В-лимфоциты обладают высокой специфичностью. Правда, их все же можно распределить на 3 основные группы («расы»). В1-клетки «занимаются» чужеродными полисахаридами и соответственно вырабатывают антитела к ним; В2-клетки совместно с Т-хелперами создают иммунитет против чужеродных белков. В3-клетки, или К-клетки, по сути, представляют собой В-киллеров, то есть «лично» нападают на «врагов».

Помимо Т– и В-лимфоцитов существуют еще так называемые «нулевые» лимфоциты (0-лимфоциты). Это, так сказать, «малообразованные» лимфоциты – они не проходят «обучения» (дифференцировки) в органах иммунной системы. Однако при необходимости они способны превращаться в В– или Т-лимфоциты. Всего на долю нулевых лимфоцитов приходится около 10 % лимфоцитов крови.

Тромбоциты

Тромбоциты – бесцветные круглые пластинки, имеющие двояковыпуклую форму, по величине в 2–8 раз меньше эритроцитов. Тромбоциты живут всего 8–12 суток, что неудивительно, если учесть, какая огромная нагрузка на них ложится. Ведь, по сути, тромбоциты – это «служба МЧС» в организме.

Для того чтобы организм оставался живым, необходимы среди прочих такие два условия, как жидкое состояние крови и целостность, или замкнутость, кровеносного русла. Эти условия обеспечиваются за счет системы свертывания крови. Именно эта система сохраняет циркулирующую кровь в жидком состоянии и восстанавливает целостность сосудистого русла – образует кровяные сгустки (тромбы) в поврежденных сосудах.

В современном мире больше половины людей умирают от болезней, связанных с нарушением свертывания крови. К этим болезням относятся инфаркт миокарда, тромбоз сосудов головного мозга (инсульт), тяжелые кровотечения и др.

* * *

Клетки крови – эритроциты и лейкоциты – исследуются при клиническом анализе крови. Для исследования тромбоцитов обычно делают специальный анализ – коагулограмму, по результатам которого оценивают состояние свертывающей системы крови (гемостаз).

Плазма крови

Плазма крови на 90–92 % состоит из воды, а остальные 8–10 % приходятся на многочисленные растворенные в ней вещества. В основном это белки – 7 – 8 %: альбумины (около 4,5 %), глобулины (2–3 %) и фибриноген (0,2–0,4 %).

Другие азотистые вещества в плазме – это, во-первых, аминокислоты и полипептиды («обрывки» белков) пищи, которые всасываются в пищеварительном тракте и используются клетками организма для синтеза собственных белков, а во-вторых, продукты распада собственных белков и нуклеиновых кислот – мочевина, креатин, креатинин, мочевая кислота, которые должны быть выведены из организма. Мочевина составляет примерно половину всего количества небелкового азота в плазме (так называемого остаточного азота).

В плазме присутствуют также органические вещества, не содержащие азота, – глюкоза, нейтральные жиры и липоиды (липиды).

Около 0,9 % всех веществ, содержащихся в плазме, представлены минеральными веществами: солями натрия, калия, кальция.

Наконец, в плазме крови содержатся гормоны, ферменты, антигены, антитела и вообще все, что должно быть доставлено из одного места организма в другое.

* * *

Концентрация любого из этих веществ определяется при биохимических анализах крови, и этих анализов существует фактически столько же, сколько веществ циркулирует в крови. В основном биохимические анализы назначаются при подозрении на конкретное заболевание (или для того, чтобы исключить его) с целью определить содержание или установить сам факт наличия конкретного же вещества.

Клинический анализ крови

Результаты анализа крови обычно записываются на специальном бланке, вид которого, наверное, всем хорошо знаком. О чем же говорят цифры в строчках этого бланка?




Эритроциты

Норма: 4,0–5,5 × 1012 /л у мужчин, 3,5–5,0 × 1012 /л у женщин.

При анализах чаще определяется уменьшенное количество эритроцитов, чем увеличенное, и это называется эритропения. Она может быть абсолютной или относительной.

Абсолютная эритропения – это уменьшение общего числа эритроцитов вследствие либо пониженного образования эритроцитов, либо их усиленного разрушения, либо кровопотери. Абсолютная эритропения чаще всего свидетельствует об анемии, но мало что говорит о ее природе. Чтобы определить причину анемии (и, соответственно, подобрать правильное лечение), часто требуются другие анализы в дополнение к клиническому. Хотя практика показывает, что наиболее частая причина анемии – дефицит железа в организме (по данным ВОЗ, железодефицитной анемией страдают 700–800 миллионов жителей земного шара).

Относительная эритропения – это уменьшение числа эритроцитов в единице объема крови из-за ее «разжижения». «Разжижение крови» происходит тогда, когда по каким-то причинам в кровоток быстро поступает большое количество жидкости. Общее количество эритроцитов в организме при относительной эритропении остается нормальным.

Абсолютный эритроцитоз – увеличение количества эритроцитов в организме – отмечается у больных с хроническими заболеваниями легких и сердца, а также у здорового человека, находящегося на высокогорье. Во всех этих случаях увеличение количества эритроцитов происходит вследствие гипоксии (кислородного голодания). Чтобы справиться с гипоксией, костный мозг начинает вырабатывать больше эритроцитов. Кроме того, абсолютный эритроцитоз может быть при эритроидном лейкозе – опухолевом заболевании крови.

При относительном эритроцитозе общее количество эритроцитов в организме не увеличено, но за счет сгущения крови повышается содержание эритроцитов в единице объема крови. Сгущение крови может быть обусловлено любым состоянием, при котором организм теряет много жидкости: при обильном потении, ожогах, при таких заболеваниях, как, например, холера и дизентерия, которые сопровождаются обильными поносами. Относительный эритроцитоз может также отмечаться при тяжелой мышечной работе, так как в этом случае эритроциты выбрасываются в кровь из селезенки (кровяного депо).

Ретикулоциты

В крови здорового человека число ретикулоцитов не превышает 1,2 % всех эритроцитов. Вообще же количество ретикулоцитов в крови – это показатель того, насколько активно протекает эритропоэз.

«Неправильные» эритроциты

В крови здорового человека эритроциты имеют округлую, иногда овальную, форму, они примерно одинаковы по размерам, а в окрашенном препарате – равномерного розового цвета с небольшим более светлым участком в центре. Такие эритроциты называются нормоциты. При некоторых заболеваниях в крови появляются эритроциты разной формы (пойкилоцитоз), разного размера (анизоцитоз), разной окраски (анизохромия), а иногда и с различными внутриклеточными включениями.

Пойкилоцитоз. В крови появляются вытянутые, звездчатые, грушевидные и прочие эритроциты. Пойкилоцитоз имеет место при всех формах анемии, причем для некоторых анемий характерна определенная форма эритроцитов. Например, серповидные эритроциты обнаруживаются в крови больных серповидно-клеточной анемией, мишеневидные (с интенсивно окрашенным центром) – при талассемии, тяжелых железофицитных анемиях и т. д.

Эритроциты овальной формы могут обнаруживаться в небольшом количестве (до 10 %) в крови здоровых людей, если же число их достигает 80–90 %, то это говорит о наследственном овалоцитозе, эллипсовидноклеточной анемии.

Анизоцитоз. Нормоциты (нормальные эритроциты) имеют 7,2–8,0 мкм в диаметре. Клетки диаметра менее 7,0 мкм называются микроциты, более 8,0 мкм – макроциты, а более 11 мкм – мегалоциты.

Микроцитоз чаще всего развивается при железо-дефицитных анемиях и гемоглобинопатиях.

Макроцитоз характерен для анемий беременных, анемий, связанных с дефицитом витамина В12 и фолиевой кислоты, а также для некоторых (вернее, довольно многих) других заболеваний: гепатитов, гипотиреоза, злокачественных опухолей.

Мегалоцитоз тоже чаще всего свидетельствует о дефиците витамина В12 и фолиевой кислоты (и связанной с этим анемии), анемии беременных, а также может иметь место при глистных инвазиях.

Анизоцитоз «в прямом смысле слова» – то есть появление в крови разных по размеру эритроцитов – отмечается при всех типах анемий.

Анизохромия. Гипохромия – ослабленная окраска эритроцитов – связана с низким насыщением эритроцитов гемоглобином и характерна для многих анемий, но иногда может отмечаться и при нормальных показателях гемоглобина и количества эритроцитов. Гиперхромия – усиленная окраска эритроцитов – характерна для состояний, обусловленных дефицитом витамина В12 и фолиевой кислоты.

Гемоглобин

Нормальное количество гемоглобина: 132–164 г/л у мужчин, 115–145 г/л у женщин. При этом существуют суточные колебания содержания гемоглобина: оно наиболее высоко по утрам, а к вечеру может быть на 15 % меньше.

Пониженное количество гемоглобина практически всегда свидетельствует об анемии. Чтобы уточнить ее природу (причину), следует учесть количество эритроцитов, цветовой показатель, средний объем эритроцитов и другие параметры, для чего нередко требуются дополнительные анализы.

Повышение количества гемоглобина может быть обусловлено полицитемией (заболевание крови) либо реактивным эритроцитозом – усилением нормального процесса кроветворения в костном мозге в связи с определенными заболеваниями (хронический бронхит, бронхиальная астма, врожденные или приобретенные пороки сердца, поликистоз почек и др.), а также в связи с приемом некоторых лекарств, в частности, стероидных гормонов.

Повышенное (не намного) количество гемоглобина нередко определяется у жителей высокогорных районов.

Цветовой показатель

При клиническом анализе крови обычно определяется так называемый цветовой показатель – степень насыщения эритроцитов гемоглобином. При этом условно принимается, что идеальное количество гемоглобина составляет 16,7 г %, а идеальное количество эритроцитов – 5 млн, и в этом случае цветовой показатель равен 1,0. По отношению к этому идеальному цветовому показателю высчитывается цветовой показатель в каждом конкретном случае.

В норме он равен 0,86–1,05. Эритроциты, имеющие такой показатель, называются нормохромными (то есть нормально окрашенными). Если цветовой показатель больше 1,0, то такие эритроциты называются гиперхромными (чрезмерно окрашенными), а если меньше 0,8 – гипохромными (недостаточно окрашенными).

Гематокрит

Норма: мужчины – 40–48 %; женщины – 36–42 %.

Гематокрит показывает, каковы объемные соотношения между плазмой и форменными элементами крови. Этот показатель определяют с помощью специального стеклянного капилляра, разделенного на 100 равных частей, в котором кровь центрифугируется. В норме на долю форменных элементов крови приходится в среднем 40–45 %, на долю плазмы – 55–60 %.

Повышение гематокрита отмечается, прежде всего, при обезвоживании организма (вследствие многократной рвоты, поноса, чрезмерного потоотделения), при таких тяжелых состояниях, как обширные ожоги, шок, перитонит, при которых уменьшается объем циркулирующей плазмы, а также при эритроцитозе любой природы (как первичном, так и вторичном).

Снижение гематокрита характерно для состояний, сопровождающихся увеличением объема циркулирующей плазмы (к таковым относится, в частности, беременность на поздних сроках); гематокрит может быть снижен при отеках (перед их схождением), при введении в кровь большого количества жидкости, а также при анемиях.

Скорость оседания эритроцитов (СОЭ)

Если кровь собрать в пробирку и оставить на некоторое время, то вообще-то она должна свернуться. Но если добавить в нее вещества, препятствующие свертыванию (антикоагулянты), то эритроциты оседают – выпадают в осадок.

Для определения СОЭ взятую кровь смешивают с раствором лимоннокислого натрия (чтобы предупредить свертывание) и помещают в стеклянную трубочку с миллиметровыми делениями. Через час измеряют высоту верхнего прозрачного слоя.

Скорость оседания эритроцитов в норме равна: у мужчин – 2–10 мм в час, у женщин – 4–15 мм в час.

Увеличение СОЭ всегда происходит при активном воспалительном процессе в организме. СОЭ возрастает при снижении количества эритроцитов, то есть при анемии, причем любого рода, а также при многих системных заболеваниях соединительной ткани (например, при системной красной волчанке), при гигантоклеточном артериите и др.

Снижение СОЭ отмечается при эритроцитозе (увеличении количества эритроцитов).

Этот показатель зависит от содержания крупномолекулярных белков в плазме – глобулинов и фибриногена. А при воспалительных процессах как раз и повышается концентрация этих белков. Содержание фибриногена, кроме того, почти в 2 раза повышается в последние недели беременности, поэтому незадолго до родов СОЭ у женщины может достигать 40– 50 мм в час.

Лейкоциты

Лейкоциты, или белые кровяные тельца, играют важнейшую роль в защите организма от различных инфекционных агентов – бактерий, вирусов, простейших, а также от любых чужеродных веществ.

У взрослого человека в норме содержится от 4 до 9 тысяч лейкоцитов в 1 мкл крови (4–9 × 109 /л). Таким образом, количество лейкоцитов в 500–1000 раз меньше, чем количество эритроцитов.

Интересно, что еще в первые десятилетия ХХ века нижней границей нормы считалось 6000 лейкоцитов в 1 мкл крови (6 × 109 /л).

Лейкоцитарная формула

Большое значение для диагностики имеет так называемая лейкоцитарная формула – процентное соотношение отдельных форм лейкоцитов. Нормальная лейкоцитарная формула выглядит следующим образом:

Число лейкоцитов в 1 мкл крови – 4000–9000.

Гранулоциты ( %):

– нейтрофилы:

миелоциты – 0;

юные (метамиелоциты) – 0-1;

палочкоядерные – 1-5;

сегментоядерные – 45-70;

– эозинофилы – 1-5;

– базофилы – 0-1.

Агранулоциты:

– лимфоциты – 20-40;

– моноциты – 2-10.

Что такое «сдвиг влево»

Нейтрофилы в лейкоцитарной формуле распределены по степени их зрелости слева направо. Соответственно, «сдвиг влево», или индекс регенерации, – это отношение молодых форм (миелоцитов, юных и палочкоядерных) к зрелым (сегментоядерным). В норме этот показатель равен 0,05-0,1. Степень сдвига влево возрастает при инфекционных заболеваниях и воспалительных процессах; в тяжелых случаях он может достигать 1-2.

Лейкоцитоз

Лейкоциты – это клетки, которые первыми реагируют на различные влияния извне и изнутри организма, и чаще всего эта реакция проявляется лейкоцитозом – увеличением количества лейкоцитов. Есть два вида лейкоцитоза: физиологический и реактивный.

Физиологический лейкоцитоз, по сути, является перераспределительным, то есть происходит перераспределение лейкоцитов между сосудами разных органов и тканей. Чаще всего это перераспределение обусловлено тем, что лейкоциты поступают в кровь из депо – селезенки, костного мозга и легких, поэтому на развитие такого лейкоцитоза не требуется много времени. Например, пищеварительный лейкоцитоз развивается после еды; миогенный (мышечный) – после тяжелой физической работы; эмоциональный – вследствие стресса. Физиологический лейкоцитоз может возникнуть и при болевых воздействиях.

Физиологический лейкоцитоз отличается тем, что число лейкоцитов увеличивается не намного и не надолго, при этом лейкоцитарная формула не изменяется.

Реактивный, или истинный, лейкоцитоз развивается при инфекциях и воспалительных процессах и представляет собой защитную реакцию организма на болезнетворные воздействия. При реактивном лейкоцитозе усиливается выработка лейкоцитов органами кроветворения, и количество лейкоцитов увеличивается значительно, намного больше, чем при физиологическом лейкоцитозе. Но главное отличие между ними – это то, что для реактивного лейкоцитоза характерны изменения лейкоцитарной формулы. В крови увеличивается количество молодых форм нейтрофилов – миелоцитов, юных и палочкоядерных. Это называется ядерный сдвиг влево. По величине этого сдвига можно оценить тяжесть заболевания и сопротивляемость организма.

Конец ознакомительного фрагмента.