Вы здесь

Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева. Часть II. Как создаются и расщепляются атомы (Сэм Кин, 2015)

Часть II. Как создаются и расщепляются атомы

4. Откуда берутся атомы: «Мы все – звездная материя[33]»

Откуда берутся элементы? В течение многих веков в науке процветало заблуждение, что они ниоткуда не берутся. Велись долгие метафизические споры о том, кто (или Кто) мог создать мироздание и почему Он это сделал, но все соглашались, что все элементы – ровесники нашей Вселенной. Они не появляются и не исчезают, а просто существуют. Более новые теории, в частности теория Большого взрыва, сформулированная в 1930-е годы, также принимали эту точку зрения за аксиому. Если все началось около четырнадцати миллиардов лет назад с первозданного мирового зернышка, в котором содержалась вся материя Вселенной, то все, что окружает нас сегодня, очевидно, было заключено именно в нем. Конечно, там не было ни алмазных диадем, ни жестяных банок, ни алюминиевой фольги, но всё сырье для создания элементов там имелось.

Один ученый подсчитал, что уже через десять минут после Большого взрыва сформировалась вся известная материя, а потом резюмировал: «элементы были изготовлены быстрее, чем хорошая хозяйка зажарит утку с картошкой». Опять же, здесь мы имеем дело с общепринятым мнением о том, что история всех элементов протекает исключительно стабильно и является, в сущности, «астроисторией».

Но после 1930-х эта теория начала постепенно распадаться. К 1939 году немецкие и американские ученые доказали[34], что энергия Солнца и других звезд выделяется в ходе реакций ядерного синтеза, при которых из атомов водорода образуются атомы гелия. Объемы этой энергии совершенно несоизмеримы с крошечными размерами атомов. Другие ученые парировали: хорошо, количество водорода и гелия может незначительно колебаться, но нет никаких доказательств, что содержание других элементов в природе хоть как-то изменяется. Но наука не стояла на месте, телескопы совершенствовались, и ряды скептиков множились. Теоретически в результате Большого взрыва элементы должны были быть «равномерно разбросаны» во всех направлениях. Но наблюдения показали, что в самых молодых звездах содержатся почти исключительно водород и гелий, а в старых встречаются десятки элементов. Кроме того, некоторые крайне нестабильные элементы, отсутствующие на Земле, – например, технеций – существуют в некоторых звездах с «экзотической химией»[35]. Какие-то силы должны ежедневно создавать такие элементы.

В середине 1950-х годов некоторые дальновидные астрономы пришли к выводу, что звезды можно сравнить с небесными вулканами. Группа ученых – Джеффри Бербидж, Элинор Маргарет Бербидж, Уильям Фаулер и Фред Хойл – в общих чертах описали теорию звездного ядерного синтеза в своей знаменитой статье, вышедшей в 1957 году. Специалисты называют ее просто – В2FH[36]. В отличие от большинства научных статей, B2FH имеет эпиграф, в который вынесены две зловещие и противоречивые цитаты из Шекспира. В них авторы задаются вопросом, управляют ли звезды судьбами человечества[37]. И далее отстаивают точку зрения о том, что да, управляют. В начале статьи рассказывается, что в начале времен Вселенная была первозданной кашей из водорода, с небольшими включениями гелия и лития. Постепенно атомы водорода стали слипаться друг с другом, образуя звезды. Огромное гравитационное давление, возникавшее внутри звезд, провоцировало слияние атомов водорода в атомы гелия. В результате этого процесса сияют все звезды в небе. Но этот процесс, исключительно важный в космологии, неинтересен с научной точки зрения. В течение миллиардов лет звезда только и делает, что выпекает гелий. Лишь после полного выгорания водорода, указывают авторы В2FH, – и в этом заключается основная научная ценность статьи – ситуация начинает стремительно меняться. Звезда, которая целую вечность висела в пространстве и неспешно перерабатывала свой водород, преобразуется в нечто новое гораздо быстрее, чем мог бы мечтать любой алхимик.

Звезды, отчаянно пытающиеся поддержать высокую температуру при отсутствии водорода, начинают сжигать и плавить в своих недрах атомы гелия. Иногда два атома гелия целиком сплавляются друг с другом, образуя элементы с четными номерами, а в других случаях они теряют при этом часть протонов и нейтронов; так получаются элементы с нечетными номерами. Достаточно скоро внутри звезд накапливаются существенные количества лития, бора, бериллия и особенно углерода. В основном это происходит в глубине звезды – внешний слой, сравнительно холодный, состоит преимущественно из водорода до самой гибели звезды. К сожалению, при сжигании гелия выделяется меньше энергии, чем при сжигании водорода, поэтому звезда успевает израсходовать весь свой гелий всего за несколько сотен миллионов лет. Некоторые маленькие звезды после этого «умирают», на их месте остаются массы сплавленного углерода, известные нам как «белые карлики». Более тяжелые звезды (не менее чем в восемь раз массивнее Солнца) продолжают бороться за жизнь, синтезируя из углерода шесть еще более тяжелых элементов, вплоть до магния. Так они могут просуществовать еще несколько сотен тысяч лет. После данного углеродного этапа умирает еще часть звезд, но самые крупные и горячие звезды (в недрах которых может поддерживаться температура до пяти миллиардов градусов) за несколько миллионов лет сжигают и эти тяжелые элементы. В статье В2FH авторы анализируют разнообразные реакции синтеза и объясняют, как создаются все легкие элементы вплоть до железа. Эти процессы – настоящая эволюция элементов. В наше время благодаря статье В2FH астрономы могут объединить все элементы от лития до железа в категорию «звездных». Если на какой-то звезде обнаружено железо, то можно не заниматься поисками более легких элементов, поскольку на звезде обязательно присутствуют и все остальные двадцать пять первых элементов периодической системы.

Логично предположить, что в более крупных звездах должен происходить и дальнейший синтез с участием атомов железа, а также синтез более тяжелых атомов, до самых глубин периодической системы. Но здесь логика вновь нас подводит. Если обратиться к математике и подсчитать, сколько энергии выделяется при слиянии атомов, то можно убедиться, что на слияние легких элементов в атом железа с его двадцатью шестью протонами требуется очень много энергии. Таким образом, ядерный синтез элементов тяжелее железа[38] уже не идет на пользу изголодавшейся звезде. Железное ядро – последняя часть жизненного пути самых долговечных звезд.

Итак, откуда же берутся все остальные более тяжелые элементы, от двадцать седьмого (кобальта) до девяносто второго (урана)? Как ни странно, указывают авторы В2FH, они возникают при «маленьких больших взрывах». Массивнейшие из звезд (примерно в двенадцать раз тяжелее Солнца), спалив весь свой магний и кремний, очень быстро выгорают до железного ядра. Этот процесс занимает всего лишь около одного земного дня. Но прежде, чем погибнуть, звезда корчится в апокалипсической агонии. Когда у звезды не остается никакой энергии, которая позволила бы ей поддерживать собственный объем (его сравнительно легко поддерживать раскаленному газу), выгоревшая звезда схлопывается под действием собственной невероятной тяжести, всего за несколько секунд сокращаясь до считаных сотен километров. В ядре этой звезды протоны и электроны слипаются вместе, образуя нейтроны, пока там не остается практически ничего, кроме нейтронов. Затем, преодолев этот коллапс, звезда взрывается, разбрасывая материю во все стороны. Это не метафора. Возникает ослепительная сверхновая звезда, существующая примерно в течение месяца. Она простирается на миллионы километров и сияет ярче миллиардов звезд. И за этот месяц мириады частиц, обладающие непостижимыми импульсами, сливаются столько раз в секунду, что быстро преодолевают обычные энергетические барьеры и начинают образовывать элементы тяжелее железа. Многочисленные железные ядра покрываются толстым слоем нейтронов. Некоторые нейтроны вновь распадаются, превращаясь в протоны, так и образуются новые элементы. В этом рое частиц рождаются все существующие в природе комбинации элементов и изотопов, изрыгаемые в пространство.

Только в нашей Галактике сотни миллионов сверхновых прошли такой цикл от реинкарнации до катастрофической гибели. В ходе одного из таких взрывов зародилась наша Солнечная система. Примерно 4,6 миллиарда лет назад сверхновая пронизала сверхзвуковым энергетическим всплеском плоское облако космической пыли шириной около 15 миллиардов километров. Раньше на месте этого облака существовало не менее двух других звезд. Частички пыли стали сцепляться с атомной пеной, прилетевшей от сверхновой, и все облако забурлило маленькими смерчами и вихрями, как гладь огромного пруда, в который швырнули множество камешков. Плотный центр облака стал закипать и превратился в Солнце (которое буквально выросло из останков других звезд), а вокруг него начали накапливаться более мелкие тела, ставшие планетами. Самые крупные планеты нашей системы, газовые гиганты, сформировались на том этапе, когда солнечный ветер – поток заряженных частиц, идущих от Солнца, – выдул легкие элементы на периферию системы. Среди всех гигантов наиболее богат газами Юпитер, который по разным причинам стал фантастическим заповедником элементов. На Юпитере некоторые из них могут существовать в формах, невозможных на Земле.

С античных времен человеческий разум занимали фантазии о блестящей Венере, кольценосном Сатурне, Марсе, населенном инопланетянами. Именно в честь небесных тел были названы и некоторые элементы. Планета Уран была открыта в 1781 году. Этот факт так воодушевил научное сообщество, что уже в 1789 году в ее честь был назван уран-металл, несмотря на то что на той планете едва ли найдется и несколько граммов этого элемента. Именно по той же традиции получили названия нептуний и плутоний. Но в последние десятилетия самой интригующей планетой остается Юпитер. В 1994 году комета Шумейкеров – Леви 9 врезалась в Юпитер, это было первое космическое столкновение, которое доводилось наблюдать людям. Зрелище астрономов не разочаровало: в планету попал двадцать один ледяной кусок, огненные шары разлетались более чем на 2000 километров. Это драматическое событие заинтересовало и широкую публику, вскоре специалистам NASA пришлось отвечать на некоторые ошеломляющие вопросы, поступавшие во время конференций в прямом эфире. Кто-то спросил, правда ли ядро Юпитера – это огромный алмаз, превышающий по размерам Землю. Другой участник конференции поинтересовался, как связано гигантское Красное Пятно Юпитера с земной «гиперпространственной физикой», о которой он «что-то слышал». Якобы такая физика допускает возможность путешествий во времени. Через несколько лет после столкновения с кометой Шумейкеров – Леви Юпитер своей гравитацией изменил траекторию эффектной кометы Хейла – Боппа и направил эту комету к Земле. Вскоре после этого в Сан-Диего тридцать девять членов секты «Врата Рая» совершили самоубийство, так как полагали, что Юпитер чудесным образом направил ее к нам вместе с заключенным в ней космическим кораблем, который должен перенести их души в высшие духовные миры.

В настоящее время эти странные мнения не подтверждаются. Кстати, Фред Хойл, один из соавторов В2FH, несмотря на свою профессиональную квалификацию и заслуги, не верил ни в дарвиновскую теорию эволюции, ни в Большой взрыв, а выражение это впервые употребил в насмешку в одной из радиопередач на Би-би-си. Но упомянутый выше вопрос об алмазе все-таки научно обоснован. В свое время некоторые ученые всерьез доказывали (или втайне верили), что огромный Юпитер действительно может породить такой гигантский драгоценный камень. Некоторые по-прежнему надеются, что на Юпитере удастся обнаружить не только жидкие алмазы, но и твердые, размером с «Кадиллак». А если уж говорить о действительно экзотических веществах, отметим, что, по мнению ученых, странное магнитное поле Юпитера может генерироваться лишь океаном жидкого черного «металлического водорода». На Земле металлический водород удавалось зафиксировать лишь в течение нескольких наносекунд, в самых экстремальных условиях, какие только можно создать в лаборатории. Но многие физики убеждены, что Юпитер – необъятный резервуар металлического водорода и океан этого вещества достигает глубины в 30 тысяч километров.

Причина, по которой элементы существуют на Юпитере в столь необычном состоянии, заключается в том, что эта планета (а также, в меньшей степени, Сатурн, второй по величине газовый гигант нашей планетарной системы) является своеобразной переходной формой. Юпитер – не столько огромная планета, сколько маленькая неудавшаяся звезда. Если бы на этапе формирования Юпитер вобрал в себя примерно в десять раз больше дейтерия, чем имеет сейчас, то мог бы стать бурым карликом. Бурый карлик – это звезда, массы которой едва хватает для вялотекущего ядерного синтеза и излучения «низковаттного» рыжеватого света[39]. Тогда в нашей Солнечной системе было бы две звезды. Далее мы увидим, что в этом нет ничего из ряда вон выходящего. Юпитер действительно остыл настолько, что какой-либо ядерный синтез на нем невозможен, но сохранил достаточную массу, температуру и давление, чтобы атомы на нем оказывались очень близко друг к другу и вели себя совсем не так, как на Земле. Внутри Юпитера создается «переходная среда», свойства которой неблагоприятны как для ядерных, так и для привычных нам химических реакций. В таких условиях вполне могут существовать и алмазы величиной с небольшую планету, и маслянистый металлический водород.

Атмосферные условия на поверхности Юпитера также приводят к удивительным взаимодействиям между элементами. Но такие явления вполне нормальны на планете, где существует Большое Красное Пятно. Это огромный циклон, в три раза шире нашей Земли, который уже несколько веков продолжает бушевать в атмосфере Юпитера. Возможно, метеорологические процессы в нижних слоях атмосферы Юпитера еще более зрелищные. Поскольку солнечный ветер донес до орбиты Юпитера лишь самые легкие, а значит – самые распространенные элементы, состав этой планеты, в принципе, должен быть почти как у настоящей звезды: 90 процентов водорода, почти 10 процентов гелия и следовые количества других легких элементов, вплоть до неона. Но последние спутниковые наблюдения показали, что содержание гелия в верхних слоях атмосферы Юпитера на четверть меньше ожидаемого, а содержание неона на 90 % меньше, чем полагали ученые. Неслучайно, что в более глубоких слоях атмосферы эти элементы обнаружились в изобилии. Очевидно, какие-то силы переместили гелий и неон из одних мест в другие. Вскоре астрономы поняли, что получить представление об этих силах позволит метеорологическая карта Юпитера.

В ядре настоящей звезды все ядерные микровзрывы уравновешиваются постоянным центростремительным воздействием гравитации. На Юпитере такая ядерная печь отсутствует, поэтому ничто не мешает сравнительно тяжелым атомам гелия и неона проникать из внешних газообразных слоев вглубь атмосферы. Пройдя примерно четверть пути к центру планеты, эти газы оказываются в непосредственной близости от слоя жидкого металлического водорода, где сильнейшее атмосферное давление превращает эти газы в жидкости.

Большинство читателей видели, как гелий и неон красочно светятся в стеклянных трубках – так называемых неоновых лампах. Трение, возникающее при перемещении капелек этих элементов, плавающих в атмосфере Юпитера, может возбуждать атомы газов аналогичным образом, так что капельки напоминают жидкие метеоры. Таким образом, если сравнительно крупные капли падают достаточно быстро и достаточно далеко, то кто-нибудь, парящий прямо над поверхностью водородного юпитерианского океана, мог бы взглянуть в кремово-оранжевые небеса планеты и полюбоваться невообразимым световым шоу. Представьте себе фейерверки, озаряющие юпитерианскую ночь триллионами ярко-малиновых линий, которые уже получили среди ученых название неоновый дождь.

* * *

История скальных планет Солнечной системы (Меркурия, Венеры, Земли, Марса) иная, их драмы не столь зрелищны. На первом этапе формирования Солнечной системы образовались газовые гиганты, для этого потребовалось всего около миллиона лет. Тем временем сравнительно тяжелые элементы скапливались в небесном «каменном поясе», примерно по центру которого пролегает орбита Земли. Там они тихо дожидались своего часа в течение еще нескольких миллионов лет. Когда Земля и другие планеты земной группы наконец приняли форму плотных шарообразных тел, эти элементы были распределены в них более-менее равномерно. Как заметил великий Уильям Блейк, можно было бы поднять горсть земли и подержать в руке всю Вселенную, всю периодическую систему сразу. Но элементы начали перемешиваться друг с другом, группируясь вместе со своими близнецами и собратьями по периодической системе. После миллиардов таких переходов вверх и вниз по земной коре сформировались значительные залежи многих элементов. На всех скальных планетах тяжелое железо опустилось вниз, ближе к ядру. Именно там и сосредоточены основные его запасы. Например, на Меркурии можно наблюдать не менее чудесное явление, чем в атмосфере Юпитера: иногда меркурианское жидкое ядро выделяет железные «снежинки». Причем они не шестиугольные, как всем знакомые земные снежинки из замерзшей воды, а больше напоминают микроскопические кубики[40]. Земля могла превратиться просто в летящий ком урана, алюминия и других элементов, но события стали разворачиваться иначе: планета достаточно сильно остыла и затвердела, в результате дальнейшее перемешивание элементов осложнилось. Сегодня на нашей планете многие элементы сгруппированы в компактные отложения, которые, однако, встречаются повсюду в земной коре. За исключением некоторых известных случаев, ни одна страна не обладает монополией на добычу какого-либо элемента.

По сравнению со скальными планетами других звездных систем, четыре планеты в нашей системе обладают различным содержанием каждого элемента. Вероятно, большинство планетарных систем сформировались на месте взрывов сверхновых, и точное соотношение элементов в каждой системе зависит от того, какое количество энергии выделилось при конкретном взрыве и сформировало элементы. Кроме того, важен состав окружающей среды (космической пыли), с которой смешивались звездные выбросы. В результате состав элементов каждой планетарной системы получился уникальным. Из уроков химии вы, вероятно, помните, что под каждым элементом в периодической системе записан номер, соответствующий его атомной массе. Этот номер равен средней сумме масс протонов и нейтронов, содержащихся в атомах данного элемента. Так, атомная масса углерода равна 12,011 единицы. Это именно среднее значение. Большинство атомов углерода весит ровно 12 единиц, а оставшиеся 0,011 приходятся на незначительную долю атомов с массой 13 или 14 единиц. Но в другой галактике средняя атомная масса углерода может быть чуть выше или чуть ниже. Более того, сверхновые звезды порождают множество радиоактивных элементов, которые начинают распадаться сразу же после взрыва. Крайне маловероятно, что в двух разных звездных системах соотношение радиоактивных и нерадиоактивных элементов окажется одинаковым, если только две эти системы не образовались одновременно.

Учитывая существенное разнообразие звездных систем, а также их невероятно древнее происхождение, читатель может задать резонный вопрос: откуда у ученых есть хотя бы приблизительное представление о том, как образовалась Земля? Принцип таков: ученые анализируют количество и положение распространенных и редких элементов в земной коре и дедуктивным методом пытаются объяснить, как те или иные простые вещества оказались там, где они есть сейчас. Например, «дату рождения» нашей планеты помогли установить сравнительно распространенные свинец и уран. Соответствующими исследованиями (невероятно скрупулезными и тщательными) занимался один аспирант, работавший в Чикаго в 1950-е годы.

Все самые тяжелые элементы радиоактивны. Большинство из них, в частности уран, в результате распада превращаются в стабильный свинец. Наш следующий герой, Клэр Паттерсон, профессионально сложился в годы работы над Манхэттенским проектом. Поэтому он точно знал скорость распада урана. Он также знал, что на Земле встречаются три разновидности свинца. Каждый тип (изотоп) свинца имеет свою атомную массу – 204, 206 или 207. Некоторое количество свинца всех трех типов существовало еще до того, как родилась наша сверхновая, а какие-то атомы «моложе», так как появились в результате распада урана. Но самое интересное заключается в том, что при распаде урана могут получаться лишь два из трех изотопов – 206 и 207. Содержание изотопа 204 в природном свинце постоянное, поскольку он не образуется при распаде какого-либо другого элемента. Важнейшее открытие заключалось в том, что отношение количества изотопов 206 и 207 к изотопу 204 увеличивается со строго определенной скоростью, так как распадающийся уран продолжает пополнять запасы двух более тяжелых изотопов. Если бы Паттерсон смог определить, насколько это соотношение повысилось сегодня по сравнению с первыми днями существования Солнечной системы, он смог бы вычислить возраст системы.

Как водится, в этой бочке меда была своя ложка дегтя. Ведь никто не знал исходного содержания свинца, поэтому Паттерсону оставалось лишь догадываться, как далеко в прошлое придется отследить данную тенденцию. Но он нашел способ обойти эту проблему. Ведь не вся космическая пыль, парящая вокруг Солнца, вошла в состав планет. Из нее же образовались метеориты, астероиды и кометы. Поскольку они сформировались из того же материала, что и планеты, и с тех самых пор плавают в холодном вакууме, эти тела сохранили в себе кусочки материи, из которых состояла первозданная Земля. Более того, поскольку на вершине пирамиды звездного ядерного синтеза находится железо, оно содержится во Вселенной в огромном изобилии. Так, многие метеориты состоят из чистого железа. Здесь важно отметить, что химически железо и уран не смешиваются, а железо и свинец – напротив, смешиваются. Поэтому содержание свинца в метеоритах ровно такое же, как в новорожденной Земле, поскольку в этих глыбах железа отсутствует уран, который мог бы подмешать в них новые атомы свинца. Паттерсон принялся с воодушевлением собирать куски метеоритов в Каньоне Дьявола, штат Аризона, а затем приступил к работе.

Но почти сразу ему пришлось столкнуться с более серьезной и общей проблемой, связанной с индустриализацией. Люди с античных времен использовали мягкий и ковкий свинец для масштабных архитектурных работ, в частности при создании водопроводов. А с тех пор как были изобретены свинцовые красители, а в конце XIX – начале XX века – бензин с антидетонационными свинцовыми присадками, содержание свинца в окружающей среде стало расти так же быстро, как уровень углекислого газа в атмосфере. Повсеместное присутствие свинца поставило крест на первых опытах Паттерсона, связанных с анализом метеоритов. Ему пришлось пойти на гораздо более радикальные меры – например, кипятить оборудование в концентрированной серной кислоте, чтобы не допускать попадания «антропогенного» испаряющегося свинца в первозданные космические камни. Как позже замечал Паттерсон в одном интервью: «Если вы войдете в такую чистую лабораторию, как моя, то свинец из ваших волос загрязнит ее к чертям».

Такая скрупулезность вскоре переросла в одержимость. Читая воскресный выпуск комикса «Мелочь пузатая», Паттерсон счел, что грязнуля Пиг-Пен, герой этого сериала, напоминает ему все человечество: мы все измазаны в свинце, как Пиг-Пен – в уличной пыли. Но эта зацикленность Паттерна на борьбе со свинцом дала два важных результата. Во-первых, когда он максимально вычистил свою лабораторию, ему удалось дать наиболее точную на сегодняшний день оценку возраста Земли – 4,55 миллиарда лет. Во-вторых, эта непримиримость помогла Паттерсону стать общественным активистом. Именно его мы должны поблагодарить за то, что наши дети больше не едят чипсов с красителями, содержащими свинец, а на автоматах на бензозаправочных станциях уже никто не клеит рекламы «не содержит свинца». Заслуга Паттерсона в том, что запрет свинцовых красителей сегодня представляется как нечто само собой разумеющееся, и мы знаем, что автомобиль не должен выбрасывать в воздух свинец, который потом осядет у нас на волосах и в легких.

Итак, Паттерсону удалось определить дату рождения Земли, но это лишь один из многих вопросов. Венера, Меркурий и Марс появились одновременно с нашей планетой, но они совершенно не похожи на Землю, за исключением некоторых общих поверхностных деталей. Чтобы сложить воедино все мелкие подробности нашей истории, ученым предстояло пробраться по некоторым темным коридорам, пролегающим по таблице Менделеева.

В 1977 году отец и сын, физик и геолог Луис и Уолтер Альваресы изучали в Италии залежи известняка, сформировавшиеся примерно в ту же эпоху, когда вымерли динозавры. Слои известняка казались равномерными, но оказалось, что в узкой прослойке, образовавшейся около 65 миллионов лет назад (именно тогда и произошло это массовое вымирание), присутствуют едва заметные следы красной глинистой пыли. Еще более удивительным было то, что содержание элемента иридия в этой глине в шестьсот раз превышает его обычный уровень. Иридий – сидерофил, так называются «железолюбивые»[41] элементы. Именно поэтому бо́льшая часть иридия сосредоточена в расплавленном железном ядре нашей планеты. Основными источниками иридия являются железные метеориты, астероиды и кометы – что и заставило Альваресов призадуматься.

На многих небесных телах, например на Луне, зияют кратеры от древнейших столкновений с космическими камнями. Нет никаких причин полагать, что Земля избежала подобных «бомбардировок». Если 65 миллионов лет назад в Землю действительно врезался такой космический странник размером с большой город, то он мог присыпать всю планету толстым слоем пыли, насыщенной иридием. Это колоссальное облако пыли должно было окутать всю планету и погубить значительную часть растительности. Такой катаклизм вполне мог бы привести к тому, что не только динозавры, но и 75 % всех видов (99 % существ, обитавших на Земле в ту эпоху) вымерли за очень короткое время. Убедить в этой гипотезе научное сообщество было непросто, но Альваресы вскоре установили, что слой иридиевой пыли прослеживается по всему миру. Это позволило уверенно исключить альтернативную гипотезу о том, что залежи пыли являются последствием выброса, сопровождавшего взрыв какой-то близкой сверхновой. Когда другие геологи (работавшие на нефтедобывающую компанию) открыли на полуострове Юкатан в Мексике кратер шириной 180 километров и глубиной около 900 метров, образовавшийся около 65 миллионов лет назад, теория об астероиде, иридии и вымирании динозавров получила веское подтверждение.

Правда, сохранялись небольшие сомнения, всегда сопровождающие научный поиск. Допустим, астероид затмил небо пылью, вызвал кислотные дожди и километровые цунами, но за несколько десятков лет все должно было прийти в норму. Загвоздка, в том что, по данным археологии, вымирание динозавров растянулось на сотни и даже тысячи лет. Сегодня многие геологи полагают, что крупные вулканы, располагавшиеся на территории современной Индии, по случайному совпадению активно извергались незадолго до юкатанского взрыва и вскоре после него, внеся свою лепту в уничтожение динозавров. В 1984 году некоторые палеонтологи стали доказывать, что вымирание динозавров вписывается в длительную периодическую закономерность; возможно, примерно каждые 26 миллионов лет на Земле происходят массовые вымирания видов. Вдруг мы имеем дело с простым совпадением: астероид упал на Землю, когда эра динозавров близилась к концу?

Геологи начали обнаруживать и другие слои красной глины, богатой иридием. Эти вкрапления хронологически совпадали с другими крупными вымираниями видов. Вслед за Альваресами некоторые люди стали полагать, что именно астероиды или кометы вызывали все подобные катаклизмы в истории Земли. Альварес-отец считал эту идею сомнительной, в особенности потому, что никто не мог объяснить ее наиболее важную и совершенно неправдоподобную деталь – регулярность таких космических катастроф. Интересно отметить, что Альварес изменил свое мнение благодаря еще одному неприметному элементу – рению.

Коллега Альвареса-старшего Ричард Мюллер вспоминал в своей книге «Немезида», как однажды в 80-е годы Альварес ворвался к нему в кабинет, размахивая перед собой «смехотворной» спекулятивной статьей о периодических вымираниях, на которую он должен был написать экспертную рецензию. Луис уже кипел от гнева, но Мюллер решил еще сильнее его раззадорить. Двое ученых стали спорить до хрипоты. Суть аргументации Альвареса, по версии Мюллера, была такова: учитывая беспредельные размеры космоса, Земля – просто микроскопическая цель. Астероид, пролетающий мимо Солнца, может угодить в нашу планету с вероятностью чуть выше, чем один шанс на миллиард. Происходящие столкновения могут быть исключительно редкими и случайными, неравномерно распределенными во времени. Как же можно полагать, что подобные катаклизмы происходят регулярно?

Мюллер никак не мог обосновать свою точку зрения, но все-таки стал аргументировать возможность того, что какое-то явление способно вызывать регулярные падения крупных метеоритов. Наконец дебаты утомили Альвареса, и он потребовал от Мюллера ответить, что же это может быть за явление. Далее наступил момент, который Мюллер описал как «приправленный адреналином миг импровизированной гениальности». Он сел и выпалил, что, возможно, у Солнца есть блуждающая поблизости звезда-спутник, вокруг которой Земля также вращается, но слишком медленно и незаметно для нас. И именно сила притяжения этой звезды направляет на Землю астероиды, когда наша планета в очередной раз сближается с ней. Вот так!

Возможно, Мюллер теоретизировал об этой звезде-соседке, позже прозванной Немезидой (в греческой мифологии – богиня возмездия)[42], лишь полусерьезно. Тем не менее эта идея озадачила Альвареса, так как она соблазнительно легко объясняла одно из свойств рения. Как мы помним, для каждой звездной системы характерно свое уникальное соотношение изотопов. В слоях глины, богатой иридием, также прослеживались небольшие примеси рения. Основываясь на соотношении двух типов рения (радиоактивного и нерадиоактивного), Альварес знал, что любой предполагаемый убийственный астероид должен был прилететь из нашей Солнечной системы, так как указанное соотношение в слоях глины было точно таким же, как на Земле. Если Немезида действительно пролетает мимо раз в двадцать шесть миллионов лет и одну за другой сбрасывает на нас космические скалы, то во всех этих астероидах содержание рения также должно быть одинаковым. Важнее всего то, что гипотеза о Немезиде позволяла объяснить, почему динозавры вымирали так медленно. Возможно, мексиканский кратер был лишь самой большой воронкой, возникшей в результате артобстрела, длившегося на протяжении многих тысяч лет, пока Немезида была поблизости. Возможно, следует говорить о миллионах мелких ударов, положивших конец славной эпохе ужасных ящеров, а не об одном смертельном столкновении.

В тот день в кабинете Мюллера возмущение Альвареса мгновенно утихло, как только Луис осознал, что регулярно падающие на Землю астероиды, возможно, реальность. Удовлетворенный, он удалился. Но Мюллер не мог избавиться от своей интуитивной идеи, и чем больше размышлял над ней, тем сильнее убеждался в ее реалистичности. Почему Немезида не может существовать? Он стал беседовать об этом с коллегами-астрономами и публиковать статьи о Немезиде. Собрав доказательства и приложив определенные усилия, он написал свою книгу. В середине 80-х выдалось несколько славных лет, в которые казалось, что если даже Юпитер при достаточной массе мог бы воссиять, то почему у Солнца не может быть звезды-соседки?

К сожалению, в пользу существования Немезиды не было приведено никаких серьезных доказательств. Если первая теория о катастрофическом столкновении Земли с астероидом страдала от нападок критиков, то теория о Немезиде заставила скептиков выстроиться и дать по ней ружейный залп. Казалось крайне маловероятным, что астрономы, в течение многих тысячелетий изучавшие ночное небо, просто просмотрели такое тело, даже если Немезида в последнее время и была максимально удалена от нас. Это тем более маловероятно потому, что если ближайшая к нам звезда, Альфа Центавра, удалена от нас на четыре световых года, то Немезида должна была бы приблизиться на половину светового года, чтобы совершить очередное возмездие. До сих пор существуют романтики и убежденные сторонники существования Немезиды, пытающиеся разгадать, где она скрывается. Но чем дольше ее не удается увидеть, тем менее вероятным представляется ее существование.

Тем не менее никогда не следует недооценивать, на что способны люди, которым дали пищу для размышлений. В руках у ученых имелось три факта: регулярные вымирания видов; колебания уровня иридия, предполагающие «космическое вмешательство»; а также уровень рения, подсказывающий, что гипотетические «снаряды» прилетают именно из нашей Солнечной системы. Ученые чувствовали, что напали на какой-то след, даже если эти события не были вызваны Немезидой. Исследователи искали другие циклические явления, способные приводить к подобным результатам. Вскоре возникла идея, что катастрофы могли быть вызваны движением Солнца.

Многие люди полагают, что после революции в астрономии, произведенной Коперником, Солнце заняло незыблемое место во времени и в пространстве, но на самом деле это не так.

Солнце медленно движется под действием «приливных сил» нашей спиральной галактики и немного раскачивается, как на карусели[43]. Некоторые ученые полагают, что именно из-за такого покачивания Солнце иногда приближается к колоссальному облаку дрейфующих комет и другого естественного космического мусора, окружающему нашу систему. Его называют «облаком Оорта». Все объекты из облака Оорта появились одновременно с рождением нашей сверхновой. И всякий раз, когда Солнце оказывается на пике или на дне своей волнообразной траектории, что происходит примерно раз в двадцать шесть миллионов лет, оно может захватывать небольшие опасные тела, которые на огромной скорости летят в сторону Земли. Большинство из них отклоняется под действием гравитации Солнца (или Юпитера, который уберег нас от удара кометы Шумейкеров – Леви), но многие из этих глыб успевают проскользнуть и могут обрушиться на нашу планету. Эта теория пока не доказана, но если она когда-нибудь подтвердится, то окажется, что мы несемся по Вселенной на огромной, смертельно опасной карусели. Как минимум стоит поблагодарить иридий и рений за подсказку об этом. Ведь вскоре нам, возможно, потребуется уклониться от следующего астероида.

В определенном смысле периодическая система практически бесполезна при изучении звездной истории элементов. Все звезды состоят почти исключительно из водорода и гелия, это же можно сказать и о планетах-гигантах. Как ни важен водородно-гелиевый цикл для космологии, сам по себе он малоинтересен. Но чтобы осознать самые интересные детали нашего существования – роль сверхновых или углеродную основу жизни, – нужно изучать периодическую систему. Как писал философ и историк Эрик Скерри, «все элементы кроме гелия и водорода составляют лишь 0,04 процента Вселенной. Казалось бы, вся остальная периодическая система не имеет особого значения. Но, как бы то ни было, мы живем на Земле, а на этой планете набор элементов гораздо сложнее».

Это верная мысль, но ныне покойному астрофизику Карлу Сагану удалось выразить ее гораздо поэтичнее. Без ядерных печей, описанных в статье В2FН (как мы помним, там появились важнейшие элементы, в частности углерод, кислород, азот), и без взрывов сверхновых, способных засеять жизнью такие гостеприимные места, как Земля, нас бы никогда не существовало. Как красиво сказал Саган, «Все мы – звездная материя».

К сожалению, горькая правда звездной истории такова, что сагановская «звездная материя» распределена на нашей планете крайне неравномерно. Несмотря на то, что при взрыве сверхновой элементы распространялись во всех направлениях и многократно перемешивались в полужидкой незастывшей Земле, в некоторых регионах планеты концентрация редких минералов гораздо выше, чем в других.

Иногда, как в Иттербю, такое разнообразие становится пищей для научного гения. Но гораздо чаще такое изобилие порождает алчность и хищничество, особенно если какие-то малоизвестные элементы находят применение в бизнесе, на войне или даже в обеих этих сферах одновременно.

5. Элементы на войне

Многие столпы современной культуры, в частности демократия, философия, драматургия, уходят корнями в древнегреческую эпоху. То же можно сказать и о химическом оружии. Когда в 400 году до н. э. войска Спарты осадили Афины, спартанцы решили принудить неуступчивого соперника к капитуляции, просто выкурив его из города. При этом была применена наиболее совершенная химическая технология того времени – дымовая атака. Немногословные спартанцы подошли к Афинам с вязанками ядовитой древесины, дегтем и зловонной серой. Затем они подожгли все это и затаились вокруг окруженного города, ожидая, пока беззащитные кашляющие афиняне в панике побегут, оставив свои дома на разграбление. Несмотря на то что это была не менее блестящая тактическая находка, чем троянский конь, она не сработала. Клубы ядовитого дыма пронеслись по городу, но он выдержал эту газовую атаку, а позже афиняне вышли победителями из этой войны[44].

Эта неудача оказалась лишь предвестницей многих других. Приемы химической войны практически не совершенствовались на протяжении следующих двадцати четырех веков и оставались крайне примитивными – например, известны случаи обливания врагов кипящим маслом. Вплоть до Первой мировой войны газы не имели почти никакого стратегического значения. Дело не в том, что государства нового времени не осознавали их силы. Все научно развитые страны мира кроме одной воздержавшейся, подписали в 1899 году Гаагскую конвенцию о запрете химического оружия в боевых действиях. Но эта воздержавшаяся страна – Соединенные Штаты Америки – обосновала свою точку зрения. Американцы считали лицемерной мерой запрет газов (которые на тот момент были не более опасны, чем перцовый аэрозоль) со стороны тех держав, которые ничтоже сумняшеся косили восемнадцатилетних юнцов из пулеметов и топили боевые корабли торпедами, обрекая матросов на гибель в холодном море. Представители других стран, понося американский цинизм, демонстративно подписали Гаагский пакт, но уже очень скоро нарушили данное слово.

Ранние секретные разработки химического оружия касались в основном брома – элемента-гранаты. Как и другие галогены, бром имеет на внешнем энергетическом уровне семь электронов и отчаянно пытается приобрести восьмой. Бром действует по принципу «цель оправдывает средства» и образует вокруг атомов других, более слабых элементов прочные клетки, чтобы иметь возможность распоряжаться электронами своих узников. Таким слабым элементом может оказываться и углерод. Бром особенно сильно раздражает глаза и нос, и к 1910 году армейские химики разработали на основе брома такие сильные слезоточивые газы, которые вполне могли вывести из строя взрослого человека.

Французское правительство имело полное право использовать слезоточивые газы против собственных граждан (ведь Гаагская конвенция касалась только боевых действий). В 1912-м при помощи ацетата брома были нейтрализованы и задержаны опасные грабители французских банков, собравшиеся на сходку. Известия об этом событии быстро долетели до соседей Франции, у которых появились серьезные основания для беспокойства. Когда в августе 1914 года разразилась Первая мировая война, французы немедленно встретили наступавшие немецкие войска бромовыми снарядами. Но даже спартанцам за два с лишним тысячелетия до этого химическая атака удалась лучше. Снаряды попали на продуваемую ветром равнину, и газ не оказал практически никакого эффекта – его унесло ветром еще до того, как немцы поняли, что их «атакуют». Тем не менее правильно было бы сказать, что бромовые снаряды не оказали сиюминутного эффекта, поскольку вскоре истерические слухи о боевом газе заполонили газеты, как во Франции, так и в Германии. Немцы только подливали масла в огонь. Как раз в то время в одном немецком бараке произошел несчастный случай – массовое отравление угарным газом. Германия заявила, что здесь было применено секретное французское удушающее вещество. Это делалось для оправдания собственной немецкой программы по разработке химического оружия.

Благодаря одному человеку – лысому усатому химику в пенсне – немецкие исследования боевых газов вскоре стали самыми передовыми в мире. Фриц Габер был одним из величайших гениев за всю историю химии, а около 1900 года стал и одним из известнейших ученых в мире. Дело в том, что именно Габер нашел способ превращать самый распространенный в мире газ – атмосферный азот – в промышленный продукт. Конечно, в чистом азоте можно задохнуться, но вообще этот газ практически безвреден или даже совершенно бесполезен. Единственная важная функция азота – удобрение почвы. Для растений он не менее важен, чем витамин С – для человека. Кстати, когда росянка и венерина мухоловка охотятся на насекомых, они стремятся высосать из своих жертв именно азот. Но даже при том, что азот составляет около восьмидесяти процентов атмосферы – четыре из пяти вдыхаемых нами молекул, – он удивительно плохо накапливается в почве, так как он почти ни с чем не реагирует и не связывается в почве. Неудивительно, что такая комбинация изобилия, практической непригодности и важности привлекала многих амбициозных химиков.

Процесс «захвата» азота, изобретенный Габером, – многоступенчатый. В ходе него образуется и разлагается множество химических соединений. Вкратце процесс сводился к следующему: Габер нагревал азот до нескольких сотен градусов, впрыскивал в него водород, увеличивал давление так, что оно в сотни раз превышало атмосферное, добавлял важнейший катализатор – осмий, и все: обычный газ превращался в аммиак, NH3, сырье для всех удобрений. Когда стали доступны дешевые удобрения, которые получали в промышленных масштабах, крестьяне могли питать почву уже не только компостом или навозом.

К началу Первой мировой войны Габер, вероятно, спас миллионы людей от мальтузианского голода[45], и мы до сих пор должны быть благодарны ему, так как его технология кормит большинство из семи миллиардов наших современников[46].

Однако самого Габера мало интересовали удобрения, хотя иногда он утверждал обратное. В действительности он стремился получать дешевый аммиак, чтобы помочь Германии синтезировать взрывчатые вещества. Речь идет о бомбах из очищенных удобрений вроде той, при помощи которой Тимоти Маквей подорвал федеральное здание в Оклахома-Сити в 1995 году[47]. Горькая правда такова, что люди, подобные Габеру, нередко появляются в истории. Их можно назвать «высокомерными фаустами», превращающими научные достижения в новые эффективные средства для массовых убийств. История Габера еще мрачнее, учитывая, насколько он был умен. Вскоре после начала Первой мировой войны немецкое военное руководство стало искать пути к прекращению позиционного (окопного) противостояния, обескровливавшего экономику. Тогда в отдел разработки химического оружия был приглашен Габер. Ученый решил воспользоваться теми серьезными выгодами, которые были связаны с работой на правительство и основывались на использовании «аммиачных патентов», но не мог так быстро забросить другие свои исследования. Весь отдел вскоре стали называть «кабинетом Габера», а военные даже помогли ему (сорокашестилетнему еврею, принявшему лютеранство) получить чин капитана, что было необходимым условием для карьерного роста. Габер по-детски этим гордился.

Его родных эта ситуация воодушевляла куда меньше. Габеровские настроения истинного фатерляндца испортили его отношения с близкими людьми, особенно с женой, Кларой Иммервар, – единственной, кто мог бы на него повлиять. Она была очень умной женщиной, первой, кому удалось получить степень доктора философии в родном городе Габера Бреслау (ныне Вроцлав в Польше). Но, в отличие от своей современницы Марии Кюри, Иммервар так и не состоялась в науке, поскольку вышла замуж не за такого открытого и прогрессивного человека, как Пьер Кюри, а за Габера. Нельзя сказать, что брак получился совсем неудачным для женщины с научными амбициями, но Габер, при всей его химической гениальности, был порочным человеком. Как отметил один историк, «Иммервар никогда не снимала передника», а она сама однажды горестно призналась подруге, что «Фриц так выпячивает себя в нашем браке, что он просто раздавил бы женщину, которая не стала бы все сносить так безропотно, так это делаю я». Она во всем поддерживала Фрица, переводя его рукописи на английский язык и во всем помогая ему в работах с азотом. Но Клара отказалась иметь дело с разработками бромовых газов.

Габер этого практически не заметил. Десятки молодых химиков желали работать под его началом, так как Германия проигрывала ненавистной Франции химическую войну. К началу 1915 года немцам было нечего противопоставить французскому слезоточивому газу. Особенно предосудительным кажется то, что немцы впервые испытали химические снаряды в бою против англичан, у которых не было своих газов. К счастью, как и при первой французской газовой атаке, ветер рассеял газ, и британцы, изнывавшие от скуки в окопах, даже не поняли, что были под обстрелом.

Немецких генералов это ничуть не смутило, они решили потратить еще больше средств на разработку химического оружия. Но вот незадача – пришлось бы нарушить тот досадный гаагский пакт, чего политические лидеры не хотели (вновь) делать открыто. Было принято решение интерпретировать документ предельно буквальным образом (при этом существенно искажая его суть). Подписав пакт, Германия соглашалась на «неупотребление снарядов, имеющих единственным назначением распространять удушающие или вредоносные газы». Немецкие юристы, внимательно изучившие эту формулировку, пришли к выводу, что документ не запрещает использовать снаряды, поражающие противника и газом, и шрапнелью. Потребовались некоторые хитроумные инженерные ухищрения – ведь текучий жидкий бром, превращавшийся в газ при ударе, оказался ненадежным оружием из-за непредсказуемой траектории снаряда. Но немецкая военно-промышленно-научная машина смогла справиться с этой проблемой. Пятнадцатисантиметровый снаряд стали наполнять ксилилбромидом, каустическим слезоточивым веществом. Такое оружие было готово к концу 1915 года. Немцы называли новый газ «вайскройц», что означает «белый крест». Вновь не ввязываясь в химическую войну с Францией, Германия перебросила свои мобильные военно-химические бригады на восток, где обрушила восемнадцать тысяч «белых крестов» на русские части. Необходимо отметить, что эта попытка окончилась еще бо́льшим провалом, чем первая. В России стояли такие холода, что ксилилбромид просто замерз.

Габер, изучавший провальные результаты этих полевых испытаний, отказался от использования брома и принялся за исследование его ближайшего «родственника» – хлора. Хлор находится в периодической системе прямо над бромом и гораздо более ядовит при вдыхании. Он более агрессивно атакует другие элементы, вырывая у них восьмой электрон. Поскольку атомы хлора гораздо мельче, чем у брома, – по весу почти вполовину, – этот газ поражает человеческие клетки гораздо более метко. В результате отравления хлором кожа жертвы желтеет, зеленеет и чернеет, на глазах развивается катаракта. Несчастные попросту захлебываются жидкостью, которая быстро накапливается у них в легких. Если бромистые газы можно сравнить с фалангой пехотинцев, атакующих слизистые оболочки, то хлор напоминает скоростной танк, сметающий оборону организма, разрывающий носовые пазухи и легкие.

Именно по вине Габера потешные перестрелки бромовыми снарядами уступили место безжалостным хлорным бойням, которые красочно описаны в исторических книгах. Солдаты, сражавшиеся против Германии, вскоре научились бояться хлорных соединений «грюнкройц» (зеленый крест), «блаукройц» (синий крест), а также кошмарного кожно-нарывного вещества «гельбкройц» (желтый крест), получившего известность под названием «горчичный газ». Габер, которого не удовлетворяла одна лишь слава ученого, с энтузиазмом продолжал исследования и добился первой в истории успешной газовой атаки. В грязных окопах близ французской реки Ипр остались лежать пять тысяч обезумевших французов, обожженных и покрытых рубцами. В свободное время Габер также открыл страшный биологический закон, получивший название «правило Габера». Это правило выражает количественное отношение между концентрацией газа, длительностью его воздействия и уровнем смертности.

Вероятно, для формулировки этого закона понадобился немалый объем чудовищных данных.

Клара пришла в ужас от этих газовых проектов и уже в самом начале работ требовала от Фрица, чтобы он прекратил эти исследования. Как обычно, муж пропускал ее слова мимо ушей. На самом деле, он всерьез скорбел, когда несколько его коллег погибли на работе при постановке очередного газового опыта. Но, вернувшись с Ипра, Габер задал званый ужин, чтобы отпраздновать успех нового оружия. Хуже того, Клара узнала, что Фриц планирует провести дома лишь одну ночь, а потом снова отправиться на фронт (теперь на восточный) и руководить новыми атаками. Супруги сильно поругались. В ту же ночь Клара вышла в домашний сад, прихватив армейский пистолет мужа, и выстрелила себе в сердце. Несомненно, Фриц был в отчаянии, но не мог позволить себе слабости. Не оставив никаких распоряжений об организации похорон, он отбыл следующим же утром, как и планировал.

Благодаря Габеру, Германия приобрела на фронте бесспорное преимущество, но в конце концов проиграла эту войну, которая, казалось, была последней крупной войной в истории.

Отныне немцев презирали во всем мире как нацию негодяев. Отношение к Габеру оказалось более противоречивым. В 1919 году, когда еще не успела осесть (газовая) пыль мировой войны, Габер получил Нобелевскую премию по химии за 1918 год, которая оставалась без обладателя, так как Нобелевский комитет приостановил работу на время войны. Премия была вручена за изобретение процесса получения аммиака из азота, пусть даже удобрения Габера не смогли спасти тысячи немцев, умерших от голода в годы войны. Через год Габера обвинили в военных преступлениях за разработку химического оружия. Из-за его исследований остались искалечены сотни тысяч людей, а еще миллионы пребывали в ужасе.

На этом беды Габера не закончились. Германия была обязана выплатить Антанте по итогам войны огромные репарации. Это казалось Габеру унизительным, и он потратил шесть лет, тщетно пытаясь наладить добычу золота из морской воды, надеясь, что сможет погасить долги родины самостоятельно. Параллельно он вел и другие, не менее бесплодные проекты. Единственная работа, благодаря которой Габер пользовался вниманием в те годы (кроме консультаций по применению химического оружия, которые он пытался выгодно продать советскому руководству), заключалась в создании инсектицидов. Еще до войны Габер изобрел газ «Циклон-А». Одна немецкая химическая компания поработала над его формулой в послевоенные годы и синтезировала усовершенствованный, значительно более смертоносный газ. Прошло еще немного времени, и в Германии установился новый режим, не отличавшийся хорошей исторической памятью. Вскоре нацисты изгнали Габера из страны за его еврейские корни. Ученый умер в 1934 году на пути в Англию, где надеялся найти приют. Тем временем работа над инсектицидами продолжалась. А всего через несколько лет немцы погубили в газовых камерах миллионы евреев, в том числе родственников Габера. Для этих массовых убийств использовался ядовитый газ второго поколения – «Циклон Б».

* * *

Германия избавилась от Габера не только из-за его еврейского происхождения, но и потому, что его считали отработанным материалом. Параллельно с инвестициями в химическое оружие в годы Первой мировой войны немецкие милитаристы всерьез интересовались другой группой элементов периодической системы. В итоге немцы пришли к выводу, что уничтожение вражеских солдат при помощи двух других элементов – молибдена и вольфрама – более эффективно, чем сжигание дыхательных путей хлором и бромом. Опять же, война превратилась в цепочку простых химических реакций. Вольфраму предстояло стать незаменимым металлом уже в годы Второй мировой войны, но история молибдена в некотором отношении даже более интересна. Мало кто знает, что самая отдаленная от основных фронтов битва Первой мировой войны имела место не в Сибири и не в Азии, где сражался Лоуренс Аравийский, а на молибденовой шахте в Скалистых горах на территории штата Колорадо.

Если не считать боевых газов, самым страшным оружием немцев были их «Большие Берты». Эти сверхтяжелые осадные пушки с одинаковым успехом разносили в прах и французские и бельгийские редуты, и боевой дух солдат. Первые «Берты», каждая из которых весила по 43 тонны, приходилось транспортировать к лафету частями на тягачах. Сборку пушки двести человек выполняли за шесть часов. Такое орудие могло в считаные секунды отправить шестнадцатидюймовый снаряд весом почти в тонну на 14,5 километров. Правда, «Берты» имели один серьезный недостаток. Чтобы выстрелить таким снарядом, требовалась масса пороха, при сгорании которого орудие очень сильно разогревалось. В свою очередь, из-за таких высоких температур шестиметровые стальные стволы обгорали и искривлялись. Через несколько дней такой артиллерийской подготовки пушка приходила в негодность, даже если производить всего несколько выстрелов в час.

Знаменитая оружейная компания «Крупп», никогда не бывавшая внакладе, производя арсеналы для Фатерлянда, разработала способ упрочнения стали: оказалось, ее нужно соединять с молибденом. Молибден способен противостоять исключительно высоким температурам, так как плавится на отметке 2623 °C, более чем на тысячу градусов выше, чем железо, основной компонент стали. Атомы молибдена крупнее, чем у железа, поэтому переходят в возбужденное состояние медленнее. Кроме того, у атомов молибдена на 60 процентов больше электронов, чем у железа, поэтому они поглощают больше тепла и прочнее связываются друг с другом. Необходимо также отметить, что атомы твердых веществ спонтанно и зачастую чрезвычайно сильно перестраиваются при изменении температуры (подробнее об этом явлении – в главе 16). Это приводит к хрупкости металла, который трескается и разрушается. При легировании стали молибденом атомы железа «склеиваются» и перестают распадаться. Немцы не первыми заметили такое свойство молибдена. Уже в XIV веке один искусный японский мастер добавлял молибден в свое оружие и ковал самые лучшие на островах самурайские мечи, которые никогда не притуплялись и не трескались от времени. Но этот японский Вулкан[48] унес свой секрет в могилу, и его знания были утеряны на века. Этот случай еще раз доказывает, что передовая технология не всегда распространяется и со временем может забыться.

Вернемся на фронты Первой мировой. Через некоторое время немцы с успехом перепахивали французские и британские окопы, обстреливая их из новых пушек, изготовленных из молибденовой стали. Но уже скоро германским силам пришлось столкнуться с новой проблемой – страна не имела надежных источников молибдена и вот-вот должна была израсходовать его запасы. Единственным известным на тот момент месторождением этого металла была почти обанкротившаяся полузаброшенная шахта у горы Бартлетт в штате Колорадо.

Еще до Первой мировой войны местный промышленник заявил свои права на месторождение Бартлетт, открыв там жилы руды, напоминавшей свинцовую или оловянную. Эти металлы стоили считаные центы за килограмм, но молибден, который, как оказалось, в изобилии содержится в этой шахте, стоил и того меньше. Поэтому хозяин вскоре продал свои права на разработку некому Отису Кингу, тучному коренастому банкиру из Небраски. Кинг, отличавшийся деловой хваткой, применил новый метод извлечения металла. Вскоре он извлек из породы более 2,5 тонн чистого молибдена, что его практически разорило. Такое количество металла на 50 процентов покрывало годовой общемировой спрос на молибден: Кинг не просто наполнил рынок, но и обрушил его. Американское правительство отметило новаторский подход, примененный Кингом, и его предприятие было упомянуто в минералогическом вестнике за 1915 год.

Почти никто не обратил внимания на эту заметку, кроме представителей колоссальной транснациональной металлургической компании, центр которой был расположен во Франкфурте-на-Майне, а американское представительство – в Нью-Йорке. По свидетельствам современников, металлообрабатывающий концерн Круппа располагал множеством плавилен, шахт, очистительных заводов и раскинул свои «щупальца» по всему миру. Как только руководители компании, близко общавшиеся с Фрицем Габером, узнали о копях Кинга, они связались со своим главным представителем в Колорадо, Максом Шоттом, и приказали прибрать к рукам Бартлетт-Маунтин.

Макс Шотт, о котором говорили, что он обладает «гипнотическим пронизывающим взглядом», нанял молодчиков, которым поручил захватить старательский участок Кинга и застолбить выработки, а также развернул судебную тяжбу с Кингом, нанося непоправимый ущерб уже пошатнувшемуся бизнесу американца. Захватчики все более агрессивно давили на горняков, угрожая их женам и детям, разоряя их лагеря в самую холодную зимнюю пору, когда температура падала до двадцати градусов ниже нуля. Пытаясь защитить шахту, Кинг обратился за помощью к отъявленному головорезу по кличке Адамс – Два Ствола. Но немецкие агенты все-таки добрались до Кинга, встретив его с ножами и кирками на горном перевале и столкнув с отвесной скалы. Делец выжил только благодаря тому, что угодил в глубокий сугроб. Как отмечала в своих воспоминаниях невеста одного шахтера, немцы пошли «на все, кроме открытой бойни, чтобы сорвать работу компании». Суровые рабочие Кинга с трудом умели произносить название металла, который добывали в этой глуши, рискуя жизнью, и называли его просто «проклятая Молли»[49].

Кинг с трудом представлял, зачем эта Молли могла понадобиться в Германии, но он был единственным не-немцем во всей Северной Америке и Европе, у кого были хоть какие-то предположения. Только в 1916 году, когда британцам удалось захватить немецкие орудия и, расплавив пушки, определить их состав, союзники догадались, что за «вундерметалл» (чудесный металл) подмешивали туда немцы. Тем временем стычки в Скалистых горах не утихали. Соединенные Штаты вступили в Первую мировую войну только в 1917 году, поэтому у них не было никаких особых причин присматриваться к деятельности представительства Круппа в Нью-Йорке, особенно учитывая «патриотическое» название этой дочерней компании – «Америкэн Метал». Именно на «Америкэн Метал» работали молодчики Макса Шотта, и, когда в 1918 году у властей возникли закономерные вопросы к Шотту, тот заявил, что владеет шахтой на законных основаниях, так как запуганный Отис Кинг продал ее немецкому агенту за жалкие 40 тысяч долларов. Кроме того, Шотт признавал, что просто так сложилось, что он поставлял молибден в Германию… Федеральные власти быстро заморозили активы Круппа в США и взяли под контроль Бартлетт-Маунтин. К сожалению, эти меры были приняты слишком поздно, чтобы нейтрализовать немецкие «Большие Берты». Еще в 1918 году Германия обстреливала Париж из молибденовых стволов с умопомрачительной дистанции в 120 километров.

После войны справедливость в какой-то мере восторжествовала. Компания Шотта обанкротилась в 1919 году, когда цены на молибден резко упали. Кинг вернулся к своему бизнесу и стал миллионером, убедив Генри Форда использовать молибденовую сталь в автомобильных двигателях. Но молибден навсегда покинул театры военных действий. К моменту начала Второй мировой войны молибден уступил свое место в сталелитейной промышленности другому элементу, который находится в периодической системе прямо под ним. Этим элементом был вольфрам.

Слово «вольфрам» (химический символ W) можно перевести с немецкого языка как «волчья пена», и этот «волчий» металл действительно сыграл мрачную роль в войне. Нацистская Германия высоко ценила вольфрам, применявшийся для производства механизмов и бронебойных снарядов. Для немцев вольфрам был притягательней трофейного золота, за которое нацистские функционеры с готовностью приобретали вольфрам. А кто же продавал вольфрам немцам? Не Италия и Япония – другие страны Оси, и не те государства, которые немцам удалось оккупировать (в частности, под властью немцев оказались Бельгия и Польша). Это была официально нейтральная Португалия, чей вольфрам так хорошо утолял волчий аппетит германской военной промышленности.

В годы войны Португалия оставалась противоречивой страной. Она сдавала в аренду союзникам важнейшую авиабазу на Азорских островах в Атлантическом океане, и все, кто видел фильм «Касабланка», знают, как сильно стремились беженцы попасть в столицу Португалии Лиссабон, откуда можно было спокойно улететь в Великобританию или Соединенные Штаты.

Тем не менее португальский диктатор Салазар сквозь пальцы смотрел на присутствие сторонников нацистов в своем правительстве и предоставлял убежище для шпионов Оси. Кроме того, он достаточно лицемерно поставлял тысячи тонн вольфрама обоим воюющим лагерям одновременно. Салазар имел звание профессора экономики, которое блестяще оправдывал, обращая фактическую вольфрамовую монополию Португалии (почти 90 процентов европейских запасов) в огромные прибыли. Во время войны вольфрам стоил почти в тысячу раз дороже, чем в мирное время. Такая позиция могла бы показаться обоснованной, имей Португалия длительные довоенные торговые связи с Германией – в таком случае страна оправданно защищала бы свои рынки сбыта, чтобы защититься от бедности в военные годы. Но Салазар начал поставлять в Германию существенные объемы вольфрама лишь в 1941 году. Очевидно, он полагал, что нейтралитет позволяет драть шкуры со всех участников войны.

Вольфрамовый бизнес сводился к следующему. Усвоив урок с молибденом и отлично понимая стратегическое значение вольфрама, Германия старалась запасать этот металл до тех пор, пока не стали портиться отношения с Польшей и Францией. Вольфрам – один из самых прочных металлов в природе, из сплавов вольфрама и стали получаются превосходные бурильные головки и лесопильные рамы. Кроме того, даже среднего размера снаряды, усиленные вольфрамом, – так называемые снаряды ударного действия – легко выводили из строя танки. Причина, по которой вольфрам превосходит любые другие добавки к стали, понятна из периодической таблицы. Вольфрам находится на один период ниже молибдена, поэтому два металла имеют схожие свойства. Но у вольфрама еще больше электронов, поэтому он плавится лишь при температуре около 3380 °C. Кроме того, поскольку атом вольфрама гораздо тяжелее, чем атом молибдена, он еще лучше удерживает вокруг себя атомы железа. Помните, каким убийственным оказывался меткий хлор при газовых атаках? Но, когда речь идет о металлах, твердость и крепость вольфрама сложно переоценить.

Вольфрам оказался незаменим, так что расточительные нацисты истратили все свои запасы к 1941 году, и тогда проблемой занялся уже сам фюрер. Гитлер приказал своим приспешникам закупить столько вольфрама, сколько могли увезти поезда через покоренную Францию. Прискорбно, но никакого «черного рынка» этого сероватого металла не существовало, весь процесс был крайне прозрачен. Вольфрам везли из Португалии через фашистскую Испанию, еще одно «нейтральное» государство. То золото, которое немцы в изобилии отобрали у евреев – в том числе из зубных коронок, собранных с трупов удушенных в газовых камерах людей, – отмывалось в банках Лиссабона и Швейцарии, еще одной нейтральной страны. Еще долгие годы правление крупнейшего лиссабонского банка настаивало, что его сотрудники не имели ни малейшего понятия, что 44 тонны полученного ими золота были грязными, несмотря на то что на многих слитках была отчеканена свастика.

Даже непреклонной Британии приходилось закрывать глаза на то, откуда берется вольфрам, убивающий ее солдат. В неофициальной беседе премьер-министр Уинстон Черчилль назвал португальскую торговлю вольфрамом «постыдным делом», но, чтобы это высказывание не истолковали неверно, добавил, что «вполне понимает» Салазара, поставляющего вольфрам открытым врагам Великобритании. И опять в лагере союзников нашелся справедливый критик – США. Весь этот голый капитализм, выгодный национал-социалистической Германии, провоцировал на рынке Соединенных Штатов все новые апоплексические удары. Американские власти просто не могли понять, почему Великобритания не порекомендует Португалии или даже не принудит ее отказаться от такого выгодного нейтралитета.

Только после длительного американского давления Черчилль согласился помочь оказать нажим на диктатора Салазара.

До тех пор Салазар (если не учитывать морального аспекта этой ситуации) блестяще водил за нос руководителей союзников и стран Оси, потчуя их туманными обещаниями, заключая секретные соглашения и занимая выжидательную позицию, пока поезда с вольфрамом неслись по рельсам. Он смог увеличить стоимость единственного стратегического ресурса своей страны с 1100 долларов за тонну в 1940 году до 20 тысяч долларов в 1941-м и накопил в банках 170 миллионов долларов всего за три года бурных спекуляций. Только когда кончились все отговорки, Салазар установил полное эмбарго на поставку вольфрама нацистам – это произошло 7 июля 1944 года. Сутками ранее союзники высадились в Нормандии, у военачальников было слишком много дел, чтобы сводить счеты с Салазаром, который у многих не вызывал ничего кроме отвращения. Насколько помню, это Ретт Батлер из фильма «Унесенные ветром» сказал, что состояния сколачиваются лишь тогда, когда создаются или рушатся империи, и Салазар, несомненно, обеими руками подписался бы под этими словами. В пресловутой вольфрамовой войне именно португальский диктатор оказался настоящим оборотнем и хорошо посмеялся последним.

Вольфрам и молибден стали лишь первыми ласточками настоящей металлической революции, которая развернулась во второй половине XX века. Три четверти всех элементов являются металлами, но, если не считать алюминия, железа и некоторых других, большинство из них до Второй мировой войны считались лишь бесполезными значками в периодической системе. Поистине эта книга не могла быть написана и сорок лет назад – рассказать было бы практически нечего. Но примерно с 1950 года почти все металлы нашли свое место. Гадолиний незаменим для магнито-резонансной томографии (МРТ). Неодим позволяет создавать лазеры беспрецедентной мощности. Скандий в настоящее время используется как вольфрамоподобная присадка в алюминиевых бейсбольных битах и велосипедных рамах. В Советском Союзе в 1980-е годы скандий применялся в производстве легких вертолетов. Говорят даже, что он входил в состав наконечников советских межконтинентальных баллистических ракет, спрятанных глубоко в Арктике. Оснащенные таким образом боеголовки легко пробивали бы толстые слои льда.

Увы, при всех технологических прорывах в ходе технологической революции из-за некоторых элементов продолжали вспыхивать войны – и не когда-то давно, а в последние десять лет. Примечательно, что два металла, о которых пойдет речь, названы в честь персонажей древнегреческой мифологии, на долю которых выпали ужасные страдания. Ниоба навлекла на себя гнев богов, хвастаясь своими семью прекрасными дочерями и семью мужественными сыновьями. Боги-олимпийцы, которых ничего не стоило уязвить, вскоре перебили ее детей, наказав мать за дерзость. Тантал, отец Ниобы, убил собственного сына и приказал подать его мясо на царском пиру. В наказание боги обрекли Тантала вечно стоять по горло в реке, а прямо над головой у него висела ветвь со спелыми яблоками. Но стоило ему попытаться попробовать плод или глотнуть воды, как ветвь ускользала от рук, а вода отступала. Итак, мифологические Тантал и Ниоба страдали от недосягаемости благ и от невосполнимых потерь. Но каждый десятый житель Экваториальной Африки погиб именно из-за того, что здесь в избытке встречаются названные в их честь элементы. Вполне вероятно, что какое-то количество тантала и ниобия сейчас лежит у вас в кармане. Как и их соседи по периодической системе, оба металла отличаются высокой плотностью, устойчивостью к высоким температурам, не подвержены коррозии и хорошо держат электрический заряд. В середине 1990-х годов производители сотовых телефонов резко взвинтили спрос на эти металлы (особенно на тантал) и стали требовать его у крупнейшего поставщика – центральноафриканского государства. Сегодня эта страна называется Демократическая Республика Конго, а в описываемые годы именовалась Заир. Демократическая Республика Конго находится в Экваториальной Африке западнее Руанды. Возможно, читатели помнят геноцид в Руанде в середине 1990-х годов[50]. Но вряд ли широко известен тот факт, что в 1996 году свергнутое руандийское правительство, состоявшее из этнических хуту, бежало в Конго. Тогда казалось, что конфликт просто расширился к западу, но теперь понятно, что это был скрытый пожар, повлекший за собой целое десятилетие масштабных расовых войн. В конце концов девять стран и двести племен, каждое из которых имело старинные союзы и наболевшие претензии, вступили в тотальную войну в густых джунглях.

Тем не менее если бы в войну были втянуты лишь крупные армии, то конголезский конфликт, вероятно, вскоре угас бы. Ведь эта территория крупнее Аляски, а леса там гуще, чем в Бразилии. При этом попасть в Конго гораздо труднее, чем на Аляску или в Бразилию, и поэтому там очень сложно вести затяжную войну. Кроме того, бедные крестьяне не могут позволить себе сняться с обжитых мест и пойти воевать, если на кону не стоят деньги. И вот в конфликте появился фактор тантала, ниобия и сотовых телефонов. Нет, я не порицаю высокие технологии как таковые. Действительно, войны начинаются не из-за сотовых телефонов, а из-за ненависти и затаенной вражды. Но не менее очевидно, что бесконечное побоище подпитывалось денежными потоками. Из Конго на рынок поступает 60 % ниобия и тантала, которые в земле образуют единый минерал колтан. Как только сотовые телефоны вошли в повседневную жизнь – с 1991 по 2001 год продажи этих устройств подскочили практически с нуля до миллиарда, – голод Запада оказался не менее неутолимым, чем у Тантала. Цены на колтан выросли в десятки раз. Люди, приобретавшие руду для производителей сотовых телефонов, не задавали вопросов и не беспокоились о том, откуда она поступает. Конголезские добытчики понятия не имели, зачем нужен этот минерал, а знали лишь о том, что за него готовы платить и что на вырученные деньги можно поддерживать свою воюющую группировку.

Конец ознакомительного фрагмента.