Вы здесь

Изменение плодородия почв. 3 ИЗМЕНЕНИЕ АГРОФИЗИЧЕСКИХ СВОЙСТВ ПОЧВ ПОД ВЛИЯНИЕМ ПРАЕСТОЛА И УДОБРЕНИЙ (Е. Е. Кузина, 2013)

3 ИЗМЕНЕНИЕ АГРОФИЗИЧЕСКИХ СВОЙСТВ ПОЧВ ПОД ВЛИЯНИЕМ ПРАЕСТОЛА И УДОБРЕНИЙ

3.1 Структура почвы

Структурное состояние – наиболее достоверный, интегральный показатель плодородия почвы (его агрофизических факторов).

Агрономическое значение структуры заключается в том, что она оказывает положительное влияние на следующие свойства, а также режимы почв: физические свойства – пористость, плотность сложения; водный, воздушный, тепловой, окислительно-восстановительный, микробиологический и питательный режимы; физико-химические свойства – связность, удельное сопротивление при обработке, коркообразование; противоэрозионную устойчивость почв.

Докучаев В.В. писал: «В черноземной полосе России, прежде всего, нужно заботиться о восстановлении первоначальной физики почв вообще и зернистой структуры их в особенности…» (Докучаев В.В., 1949).

Большое значение в раскрытии агрономического значения структуры имеют работы Вершинина П.В. (1956, 1958, 1960), Качинского Н.А. (1947, 1963, 1965), Рассела Э.Д. (1955), Ревута И.Б. (1972), Baver L.D. (1956).

В естественных условиях агрегатный состав почвы весьма изменчив во времени. Изменчивость агрегатного состава может идти как в сторону их измельчения (диспергирования почвы), так и в сторону образования и укрепления агрегатов. Изменчивость агрегатного состава обусловлена влиянием как прямых, так и косвенных факторов.

В результате интенсивного сельскохозяйственного использования почв в условиях острого дефицита органического вещества в них интенсивно протекают процессы распыления микро- и макроагрегатов. Восстановление и сохранение структуры в условиях сельскохозяйственного использования почв осуществляется агротехническими методами.

К традиционным приемам воспроизводства утраченной структуры относятся внесение органических удобрений, посев многолетних трав и известкование кислых почв, использование искусственных структурообразователей.

В результате проведенных исследований было установлено, что серая лесная почва характеризовалась плохим структурным состоянием (опыт № 1). Содержание водопрочных агрегатов на фоне естественного плодородия, в пахотном горизонте, составляло 16,7 % (таблица 1).

Биомелиоранты (навоз, отход грибного производства), за первые два года их одностороннего действия, повышали количество водопрочных агрегатов на 3,2–3,9 %. Коэффициент структурности на этих вариантах увеличился на 0,05–0,06 ед. и составил в 2008 году 0,25– 0,26 ед. при значении на контрольном варианте 0,20 ед. (таблицы 1, 2). На третий год действия биомелиорантов наметилась тенденция по уменьшению количества водопрочных агрегатов.

Содержание водопрочных агрегатов на фоне действия биомелиорантов в 2009 году составляло 19,5–19,6 %. Различия с контролем равнялись 2,8–2,9 %. Коэффициент структурности снизился до 0,24 ед.

На фоне одностороннего действия искусственного структурообразователя количество водопрочных агрегатов по завершении исследований варьировало, в зависимости от нормы мелиоранта, в пределах от 22,8 до 32,5 %. Увеличение по отношению к контрольному варианту составляло 6,1–15,8 %. Коэффициент структурности на фоне химического мелиоранта изменялся в интервале от 0,30 до 0,48 ед., достоверно превышая контроль на 0,1–0,28 ед.

Максимальное количество водопрочных агрегатов было отмечено на вариантах с использованием праестола по фонам биомелиорантов. Количество водопрочных агрегатов на этих вариантах, в зависимости от нормы химического мелиоранта и вида биомелиоранта, варьировало в интервале от 25,7 до 37,1 %. Увеличение по отношению к контролю составляло 9,0–20,4 %. Коэффициент структурности на этих вариантах изменялся в пределах 0,35 до 0,59 ед., превышая контроль на 0,15–0,39 ед.

Таким образом, как свидетельствуют экспериментальные данные, наиболее существенное влияние на воспроизводство ранее утраченной агрономически ценной структуры оказало совместное использование праестола и биомелиорантов.

Математический анализ показал, что количество водопрочных агрегатов (У) в пахотном горизонте серой лесной почвы находится в тесной корреляционной связи с содержанием гумуса (Х). Коэффициент парной корреляции, характеризующий взаимосвязь между изучаемыми факторами равнялся 0,73.


Таблица 1 – Влияние праестола и биомелиорантов на содержание водопрочных агрегатов


Таблица 2 – Влияние праестола и биомелиорантов на коэффициент структурности


Нелинейное выражение взаимосвязи аппроксимировалось уравнением полинома третьей степени:

У = 582,14 – 28,79х – 37,22х
2+25,20х
3

Коэффициент регрессии свидетельствует о том, что с увеличением содержания гумуса в пахотном горизонте серой лесной почвы на 0,1 % количество водопрочных агрегатов возрастает на 5,7 %.

Тесная обратная корреляционная связь была обнаружена между количеством водопрочных агрегатов (У) и концентрацией ионов водорода (Х) в пахотном горизонте серой лесной почвы.

Характер взаимосвязи аппроксимировался уравнением полинома следующего вида:

У = 492,72 – 146,49х + 7,45х
2+0,67х
3

Коэффициент парной корреляции равнялся 0,77.

Важная роль в структурообразовании принадлежит двухвалентным катионам кальция и магния, которые, необратимо коагулируя почвенные коллоиды, способствуют образованию агрономически ценной водопрочной структуры.

Статистическая обработка экспериментального материала показала, что между количеством водопрочных агрегатов (У) в пахотном горизонте серой лесной почвы и суммой обменных оснований существует тесная корреляционная связь (r =0,81). Эта связь аппроксимируется уравнением полинома:

У = 58,31 – 16,22х + 1,57х
2 – 0,04х
3

Коэффициент регрессии свидетельствует о том, что с уменьшением содержания ионов кальция и магния в почвенном поглощающем комплексе на 1 мг-экв./100 г. почвы количество водопрочных агрегатов снижается на 2,5 %.

Анализ структурного состояния чернозема выщелоченного (опыт № 2) показал, что использование полимера «Праестол 650 ВС» в качестве искусственного структурообразователя является одним из приемов восстановления утраченной структуры в пахотном горизонте почвы.

На фоне одностороннего действия полимера количество водопрочных агрегатов в 2008 году увеличилось по отношению к контролю на 6,8 (полимер 5 кг/га) – 15,0 % (полимер 15 кг/га). Количество водопрочных агрегатов на этих вариантах, в зависимости от нормы мелиоранта, варьировало в пределах от 51,4 до 59,6 %, при значении на контроле 44,6 %. Следует отметить, что достоверное повышение количества водопрочных агрегатов обеспечивало увеличение нормы химического мелиоранта до 10 кг/га, дальнейшее увеличение нормы мелиоранта не способствовало достоверному повышению количества водопрочных агрегатов в пахотном горизонте. Так, при увеличении нормы химического мелиоранта от 10 до 15 кг/га количество водопрочных агрегатов возросло на 2,1 %, при значении НСР05 = 3,1 % (таблица 3).

При использовании химического мелиоранта по фону полного минерального удобрения количество водопрочных агрегатов варьировало от 51,6 до 59,9 % и определялось нормой мелиоранта. Увеличение по отношению к контрольному варианту составляло 7,0–15,3 %.

Максимальное количество водопрочных агрегатов было отмечено на варианте с использованием повышенных норм праестола по навозному фону. Количество водопрочных агрегатов на фоне совместного использования навоза и химического мелиоранта составляло 62,8–64,7 %. Различия с контрольным вариантом были достоверными и составляли 18,2–20,1 %.

После уборки ярового ячменя в 2009 году количество водопрочных агрегатов на фоне без химического мелиоранта и удобрений составляло 44,1 %. Структурное состояние пахотного горизонта можно характеризовать как удовлетворительное.

Навоз, на второй год его действия, повышал содержание водопрочных агрегатов в пахотном горизонте чернозема выщелоченного на 8,7 %. Содержание агрономически ценных агрегатов на фоне одностороннего действия навоза составляло 52,8 %.

Количество водопрочных агрегатов на варианте с использованием полного минерального удобрения в 2009 году составляло 44,9 %, т. е. оставалось практически на уровне 2008 года.

На фоне одностороннего действия химического мелиоранта, в зависимости от его нормы, количество водопрочных агрегатов варьировало от 51,5 (праестол 5 кг/га) до 60,0 % (праестол 15 кг/га). Увеличение по отношению к контролю составляло 7,4–15,9 %. Следует отметить, что использование праестола нормами 10 и 15 кг/га обеспечивало перевод почвы из группы с удовлетворительным структурным состоянием в группу с хорошим структурным состоянием. Аналогичная закономерность была отмечена и при использовании данных норм мелиоранта по фону полного минерального удобрения. Количество водопрочных агрегатов на этих вариантах варьировало от 58,9 до 60,8 %, при значении на контроле 44,1 %.


Таблица 3 – Влияние структурообразующего полимера и удобрений на содержание водопрочных агрегатов в черноземе выщелоченном, проц.


Сочетание праестола с рекомендуемой нормой навоза повышало содержание водопрочных агрегатов за период исследований от 16,2 до 24,9 %, при максимальных значениях на фоне повышенных норм химического мелиоранта (23,2–24,9 %).

В конце вегетации гороха (2010 год) количество водопрочных агрегатов на контрольных вариантах составляло 44,2 %.

На фоне одностороннего действия навоза количество водопрочных агрегатов достоверно превышало контроль и составляло 47,0 %. Однако, следует отметить, что на третий год действия навоза его положительное влияние на сохранение вновь образованной водопрочной структуры снижается, что связано с процессами минерализации органического вещества в почве.

Содержание водопрочных агрегатов на варианте с полным минеральным удобрением оставалось на уровне контроля и составляло 44,5 %.

На вариантах с использованием полимера без удобрений количество водопрочных агрегатов в пахотном горизонте варьировало в интервале от 51,4 до 59,7 при максимальных значениях на фоне повышенных норм химического мелиоранта (57,3–59,7 %). Отклонения от контрольного варианта колебались от 7,2 % (праестол 5 кг/га) до 15,5 % (праестол 15 кг/га).

Эффект по восстановлению и сохранению водопрочной структуры на фоне совместного использования различных норм полимера и минеральных удобрений был равнозначным вариантам, где полимер использовался в чистом виде. Количество водопрочных агрегатов на этих вариантах варьировало в зависимости от нормы химического мелиоранта от 51,7 до 60,1 %, превышая контроль на 7,5–15,9 %.

При использовании праестола по навозному фону количество водопрочных агрегатов по завершении исследований варьировало от 57,6 до 65,8 %. Увеличение по отношению к контрольному варианту составляло 13,4–21,6 %.

Таким образом, как свидетельствуют результаты исследований, наиболее существенное влияние на воспроизводство ранее утраченной агрономически ценной структуры оказали повышенные нормы химического мелиоранта, используемые по навозному фону. Причем, нормы полимера 10 и 15 кг/га оказали практически равнозначное влияние на образование водопрочных агрегатов в пахотном горизонте чернозема выщелоченного.

Изучая зависимость количества водопрочных агрегатов (У) в пахотном горизонте чернозема выщелоченного от содержания гумуса (Х1) и лабильного органического вещества (Х2), мы установили тесную корреляционную связь между данными факторами. Коэффициент парной корреляции равнялся по гумусу 0,85, по ЛОВ – 0,86.

Нелинейное выражение взаимосвязей аппроксимировалось уравнениями полинома следующего вида:

для гумуса
У = 10851х13 – 20369х12 + 0,06х1 – 0,06 · 10-3
для ЛОВ У = 1175х
2
3 – 511,1х
2
2 + 163,2х
2 + 39,57

Регрессионный анализ показывает, что с увеличением содержания гумуса в пахотном горизонте на 0,1 % количество водопрочных агрегатов повышается на 11,3 %, а с увеличением содержания ЛОВ на 0,01 % – на 9,9 %.

Составленная математическая модель зависимости количества агрономически ценных агрегатов (У) от содержания обменнопоглощенных катионов кальция и магния (Х) позволила установить наличие средней взаимосвязи между этими показателями плодородия почвы. Коэффициент парной корреляции равнялся 0,57.

Нелинейное выражение этой взаимосвязи аппроксимировалось уравнением полинома третьей степени:

У = -7,46х
3 + 1008,6х
2 – 45471х + 683149

Коэффициент линейной регрессии показывает, что с увеличением суммы обменных оснований на 1 мг-экв./100 г почвы количество водопрочных агрегатов возрастает на 6,8 %.

Важными характеристиками структурного состояния почвы являются коэффициент структурности и степень выпаханности.

Как свидетельствуют экспериментальные данные, коэффициент структурности от действия органических удобрений увеличивался по отношению к контролю на 0,17 ед. и составил в 2008 году 0,98 ед. Степень выпаханности на этом варианте уменьшилась на 5,9 % (таблицы 4, 5).


Таблица 4 – Влияние праестола и удобрений на коэффициент структурности чернозема выщелоченного


Таблица 5 – Влияние праестола и удобрений на степень выпаханности чернозема выщелоченного


Минеральные удобрения не оказали влияния на изменение коэффициента структурности и степени выпаханности чернозема выщелоченного.

На фоне одностороннего действия химического мелиоранта коэффициент структурности, в зависимости от его нормы, составлял 1,06–1,48 ед., а степень выпаханности – 27,7–37,6 %. Отклонение от контроля в первом случае составляли 0,25–0,67 ед., во втором – 8,3– 18,2 %.

Изменения коэффициента структурности и степени выпаханности на фоне совместного использования мелиоранта и минеральных удобрений были аналогичными их изменениям на фоне одностороннего действия праестола.

Наиболее существенное влияние на изменение коэффициента структурности и степени выпаханности оказало использование химического мелиоранта по навозному фону. Коэффициент структурности на этих вариантах составлял 1,31–1,83 ед., а степень выпаханности – 21,5–31,2 %. Отклонение от контроля в первом случае составляло 0,50–1,02 ед., во втором – 14,7–24,4 %.

Перед уборкой ячменя в 2009 году коэффициент структурности на фоне естественного плодородия почвы был равен 0,79 ед., а степень выпаханности составляла 46,5 %. Аналогичные результаты были получены и на варианте с полным минеральным удобрением.

На фоне одностороннего действия химического мелиоранта, в зависимости от его нормы, коэффициент структурности изменялся в интервале от 1,06 (праестол 5 кг/га) до 1,52 ед. (праестол 15 кг/га), а степень выпаханности от 27,2 (праестол 15 кг/га) до 37,5 % (праестол 5 кг/га). Отклонение от контрольного варианта в первом случае варьировало от 0,27 до 0,71 ед., во втором случае – от 9,0 до 19,3 %.

Совместное использование праестола и минеральных удобрений позволило увеличить коэффициент структурности на 0,32 (NРК + праестол 5 кг/га) – (NPK + праестол 15 кг/га). Степень выпаханности на этих вариантах снизилась по отношению к контролю на 10,5–20,3 %.

Максимальные значения коэффициента структурности были зафиксированы на фоне совместного использования праестола нормами 10–15 кг/га и навоза. Коэффициенты структурности на этих вариантах варьировали от 2,06 до 2,23 ед., превышая контроль на 1,27–1,44 ед.

Степень выпаханности на этих вариантах была значительно ниже контроля и составляла 16,3–18,3 %.

В условиях 2010 года, перед уборкой гороха, коэффициент структурности на контрольном варианте и на варианте с односторонним действием минеральных удобрений составлял 0,79–0,80 ед., а степень выпаханности 46,0–46,4 %.

На фоне одностороннего действия навоза коэффициент структурности снизился по сравнению с 2009 годом на 0,23 ед., а степень выпаханности возросла на 7,2 %, что свидетельствует о затухающем действии навоза на данные показатели. Однако, по отношению к контрольному варианту различия остались на уровне достоверных.

На фоне одностороннего действия полимера коэффициент структурности варьировал от 1,06 (праестол 5 кг/га) до 1,48 ед. (праестол 15 кг/га), а степень выпаханности – от 27,5 до 37,6 %. Отклонение от контроля в первом случае составляло 0,27–0,69 ед., во втором – 8,8– 18,9 %.

На вариантах с использованием праестола по фону минеральных удобрений коэффициент структурности превышал контроль на 0,28– 0,72 ед., а степень выпаханности была ниже на 9,1–19,3 %.

Максимальные значения коэффициента структурности, как и в предшествующие годы, были получены на вариантах с использованием повышенных норм праестола по первому фону. Коэффициент структурности на их фоне изменялся в интервале от 1,77 до 1,92 ед., превышая контроль на 0,98–1,13 ед. Степень выпаханности на этих вариантах была ниже контроля на 23,9–26,3 %.

Таким образом, наиболее существенное влияние на коэффициент структурности и степень выпаханности оказывает использование праестола на фоне органических удобрений.

3.2 Плотность почвы

Плотность почвы является одним из важнейших свойств, определяющих ее физическое состояние. В то же время она динамичная величина, находящаяся в сложной зависимости от типа почв, гранулометрического состава, количества осадков, влажности почв, возделываемых культур, внесенных удобрений, способа и глубины обработки поля. Этот показатель является регулятором процессов поступления в почву кислорода, выделения из него углекислого газа, а следовательно, и состава почвенного воздуха. Плотность почвы определяет не только воздушный, но также водный и пищевой режимы почвы.

Плотность почвы оказывает большое влияние на урожайность культурных растений. Но пределы оптимальной плотности почвы для отдельных культур разные. Для большинства сельскохозяйственных культур оптимальная величина плотности пахотного горизонта на суглинистых и глинистых почвах составляет 1,0–1,2 г/см3.

Плотность почвы, особенно в пахотном горизонте, весьма динамична и зависит от характера воздействия на почву орудий обработки, от растительного покрова, от содержания гумуса, от содержания водопрочных агрегатов и физико-химических свойств почвы.

Одним из приемов поддержания оптимальной плотности почвы является использование химических мелиорантов и органических удобрений. Органические удобрения и химические мелиоранты, активизируя процессы образования и накопление гумуса и обменных оснований в почве, положительно воздействуют на весь комплекс агрофизических свойств, в том числе и на плотность.

Проведенные нами исследования подтверждают, что использование химического мелиоранта, биомелиорантов и их сочетаний оказали положительное влияние на плотность пахотного горизонта серой лесной почвы (опыт № 1).

В начале вегетационного периода 2007 года плотность пахотного горизонта на контрольном варианте составляла 1,33 г/см3, дрейф от оптимальной равнялся 0,13 г/см3. На вариантах с односторонним действием биомелиорантов, плотность варьировала в интервале от 1,24 до 1,25 г/см3 и была ниже контроля на 0,08– 0,09 г/см3.

Праестол, в зависимости от его нормы, снижал плотность почвы по отношению к контрольному варианту на 0,02–0,06 г/см3. Использование полимера по фону рекомендуемой нормы навоза позволило снизить плотность пахотного горизонта на 0,11–0,14 г/см3, а при его использовании по фону отхода грибного производства – на 0,12–0,15 г/см3.

Перед уборкой озимой пшеницы величина равновесной плотности на контрольном варианте равнялась 1,37 г/см3, дрейф от оптимальной достиг 0,17 г/см3. На вариантах с односторонним действием навоза и отхода грибного производства плотность в пахотном горизонте была ниже контроля на 0,11–0,13 г/см3 и варьировала в пределах от 1,26 до 1,24 г/см3. Одностороннее действие химического мелиоранта снижало равновесную плотность по отношению к контролю на 0,05 (праестол 10 кг/га) – 0,08 г/см3 (праестол 30 кг/га). Величина равновесной плотности на этих вариантах составляла, в зависимости от нормы мелиоранта, 1,29–1,32 г/см3.

Наиболее существенное разуплотнение почвы в пахотном горизонте наблюдалось на вариантах, где полимерный мелиорант использовался по фонам биомелиорантов. Величина равновесной плотности на вариантах с совместным действием мелиорантов была в пределах оптимальной и изменялась от 1,19 до 1,23 г/см3. Снижение по отношению к контрольному варианту составляло 0,14–0,18 г/см3.

Перед посевом яровой пшеницы в 2008 году плотность пахотного горизонта на варианте без использования мелиорантов составляла 1,31 г/см3 (таблица 6).

На фоне одностороннего действия биомелиорантов плотность почвы в пахотном горизонте варьировала от 1,23 до 1,24 г/см3 и была ниже контроля на 0,07–0,08 г/см3.

На фоне одностороннего действия химического мелиоранта достоверное снижение плотности пахотного горизонта серой лесной почвы обеспечивал праестол нормами 20 и 30 кг/га. Плотность почвы на этих вариантах была ниже контроля на 0,07–0,08 г/см3 и составляла 1,23–1,24 г/см3 (таблица 6).

Наиболее рыхлое сложение почвы перед посевом яровой пшеницы было отмечено на фоне совместного использования праестола и биомелиорантов. Плотность пахотного горизонта на этих вариантах, в зависимости от нормы праестола и вида биомелиоранта, варьировала в интервале от 1,16 до 1,21 г/см3. Отклонение от контрольного варианта составляло 0,10–0,15 г/см3. Преимущество в данном случае имели повышенные нормы полимера.


Таблица 6 – Влияние праестола и биомелиорантов на плотность серой лесной почвы (начало вегетации)

Конец ознакомительного фрагмента.