Вы здесь

Избавляемся от варикоза и тромбофлебита. Фитотерапия заболеваний сосудов. Часть первая. Биология тромбообразования (Е. В. Корсун, 2010)

Часть первая

Биология тромбообразования

Жидкое состояние крови и целостность кровеносного русла являются необходимыми условиями жизнедеятельности организма. Эти условия создает система свертывания крови, сохраняющая циркулирующую кровь в жидком состоянии. Система свертывания крови входит в состав более обширной системы – системы регуляции агрегатного состояния крови и коллоидов (система РАСК). Она поддерживает агрегатное состояние внутренней среды организма на таком уровне, который необходим для нормальной жизнедеятельности. Система РАСК удерживает кровь в жидком состоянии и обеспечивает восстановление свойств стенок сосудов, изменяющихся даже при нормальном их функционировании. Таким образом, в организме имеется особая биологическая система, обеспечивающая, с одной стороны, сохранение жидкого состояния крови, а с другой – предупреждение и остановку кровотечений путем поддержания структурной целостности стенок кровеносных сосудов и быстрого тромбирования их при повреждениях. Эта система получила название система гемостаза.

Кровотечения и тромбозы вызывают нарушение гемостаза. Угнетение гемостаза приводит к спонтанным кровотечениям, а стимуляция процесса гемостаза приводит к развитию тромбозов. Тромбоциты занимают центральное место во всех тромбоэмболических заболеваниях. Белый тромб первоначально развивается в артериях, где кровяные пластинки приклеиваются к сосудистой стенке. Процесс склейки кровяных пластинок (тромбоцитов) сопровождается выделением аденозиндифосфата (АДФ) – мощного индуктора агрегации тромбоцитов (Каркищенко Н.Н., 1996). Растущий тромб снижает кровоток. Локальное сужение сосуда запускает процесс формирования фибрина, и вокруг белого тромба возникает красный. Красные тромбы формируются в венах, где давление ниже, чем в артериях. Этот процесс чаще всего протекает в клапанном аппарате венозной системы. На первичных тромбах образуются вторичные, которые состоят из нитей фибрина с вплетенными в них эритроцитами. Такие тромбы могут отрываться и уноситься кровотоком в различные места организма, приводя к возникновению эмболий (закупорке).

Гемостаз – это процесс спонтанного прекращения кровотечения из места повреждения. Первичный гемостаз всегда сопряжен с вазоконстрикцией, рефлекторным сужением сосудов. В течение второй фазы гемостаза тромбоциты склеиваются с коллагеном кровеносных сосудов (адгезия тромбоцитов), а также друг с другом (агрегация тромбоцитов). Затем мембраны тромбоцитов растворяются, и они формируют единую желатинообразную массу, которая способствует прекращению кровотечения. Однако для того, чтобы укрепить образовавшийся тромб, он должен быть насыщен фибриновыми нитями.

Процесс образования фибриновых нитей запускается при местном раздражении сосудов и является составной частью процесса коагуляции. Наряду с этим стимулируется выработка тромбина, способствующего выделению АДФ из тромбоцитов, а также усиливается синтез простагландинов из арахидоновой кислоты, содержащейся в мембранах тромбоцитов.

Тромбоксан А2 синтезируется внутри тромбоцитов и индуцирует тромбогенез. Простациклин синтезируется внутри сосудистой стенки и угнетает тромбогенез.

Коагуляцией крови называется превращение растворимого фибриногена в нерастворимый фибрин. Известно более 15 белков, присутствующих в кровотоке, которые участвуют в сложном каскаде протеолитических реакций.

Коагуляция крови и формирование тромба должно быть ограничено минимальной возможной областью для достижения локального гемостаза в ответ на кровотечение из травматического повреждения или зоны хирургического вмешательства. Эти процессы регулируются и ограничиваются двумя основными системами: угнетение фибрина и фибринолиз.

Плазма содержит ряд ингибиторов протеаз, которые быстро инактивируют белки коагуляции, когда они покидают район поврежденного сосуда. Наиболее важные белки этой системы альфа1-трипсин, альфа2-макроглобулин, альфа2-антиплазмин и антитромбин III. Когда эта система подавлена, может начаться общее внутрисосудистое свертывание крови. Этот процесс называют диссеминированной внутри-сосудистой коагуляцией, и он может начаться после массивного повреждения тканей, лизиса клеток злокачественных опухолей, некоторых акушерско-гинекологических манипуляций или бактериального сепсиса.

В фибринолизе центральное место занимает превращение неактивного плазминогена в протеолитический фермент плазмин. Этот процесс активируется в самом начале свертывания крови фактором Поврежденные клетки высвобождают активаторы плазминогена. Плазмин изменяет форму тромбов и ограничивает распространение тромбоза протеолитическим растворением фибрина. Возможность регуляции фибринолитической системы очень важна при проведении лечения (табл. 1).

Большинство антитромбоцитарных средств оказывает влияние одновременно на различные проявления функциональной активности тромбоцитов (адгезия, агрегация, реакция освобождения, торможение ферментных систем тромбоцитов).

В задачу фитотерапевта входит определенная задача: восстановить кровообращение при склонности к тромбообразованию и снизить вероятность образования тромба, а также, при возможности, повысить растворимость уже образовавшегося тромба в любом отделе сосудистой системы человека.

Несмотря на огромную роль статинов (ингибиторы ГМГ-коэнзим А-редуктазы), фибратов, препаратов ненасыщенных жирных кислот, гепарина, никотиновой кислоты и других лекарственных средств в лечении заболеваний, связанных с тромбообразованием и варикозом, фитотерапия не потеряла своего значения, тем более что многие препараты, помогающие при этих состояниях, получают из растительного лекарственного сырья. Кроме того, в лекарственных и пищевых растениях заложен огромный профилактический потенциал.


Таблица 1

Свертывающие и противосвертывающие растения




Большинство лекарственных растений действуют комплексно и помогают реализовывать те или иные направления при создании алгоритма лечебного и профилактического воздействия при сосудистой патологии (табл. 2).


Таблица 2

Основные патогенетические воздействия лекарственных растений при сосудистой патологии




История использования лекарственных растений при тромбозах

Благодаря широкому распространению, доступности и ценным свойствам лекарственные растения используются с древнейших времен. Уже три тысячи лет назад в Китае и Египте были известны многие из них. Опыт применения их накапливался веками и привел к созданию народной традиционной медицины. Знания о свойствах лекарственных растений и их применении хранились в народной памяти, забывались, восстанавливались, пополнялись новыми сведениями и передавались из поколения в поколение.

Археологические исследования донесли до нас сведения о тысячелетней истории использования лекарственных растений в разных странах. В Китае уже в 492–536 гг. была составлена первая в мире фармакология «Бэнь-цао-у-зин-цзо-чжу». Сведения о 500 видах лекарственных растений, применяемых в Индии, содержит книга Яджурведа (I в. н. э.). До нас дошли травники народов восточных стран, в которых описано свыше 12 тысяч различных лекарственных растений. И лишь по мере накопления опыта и изучения число растений, употребляемых в лечебных целях, сильно сокращается, используются только наиболее полезные из них.

Трактат Ибн Сины «О сердечных лекарствах» веками служил практическим пособием для врачей Средней Азии, Ближнего и Среднего Востока, Индии. К сердечнососудистым лекарственным средствам Авиценна относил такие растения, как камфора, шафран, миробаланы, мята, ладан, кориандр, гвоздика, фисташки, пион, одуванчик, дикая морковь, касатик, корица, имбирь, лаванда, базилик, барбарис, ферула и др.

Один из этапов возникновения фитотерапии связан с медициной скифов. Путешествуя по побережью Черного моря, Гиппократ в своей книге «О воздухе, видах и местностях» описал болезни, встречающиеся у скифских народов, и некоторые приемы лечения.

Еще в Древнем Египте (более чем за 1500 лет до н. э.) использовали растения, содержащие салицилаты. В древних рукописях есть указание на применение смеси из листьев мирта (растения, богатого салицилатами) для снятия боли и разжижения крови. Гиппократ применял против боли и жара кору ивы, в которой также содержатся салицилаты. В 1897 г. немецкий химик Феликс Хоффман синтезировал химически устойчивую формулу ацетилсалициловой кислоты – с этого момента началась история современного аспирина.

Аспирин часто называют антиагрегантом. Каким эффектом обладает эта группа препаратов? Антиагрегант – это препарат, препятствующий склеиванию тромбоцитов, которое приводит к образованию тромба. Давно известно, что ведущую роль в развитии инфаркта миокарда и ишемического инсульта играет образование тромба на изъязвленной атеросклеротической бляшке. Но оказывается, что есть растения, действующие подобно аспирину.

Во второй половине XVII столетия в России стали появляться книги, в которых имелись данные о лекарственных растениях и способах их применения. Одной из самых известных книг является «Прохладный вертоград» (1661). В ней приводятся сведения о применении тех или иных растений в лечении сосудистых заболеваний. Так, «бораг [огуречная трава] или цвет ее, варена в вине и прията, растение доброй крови творит и сердце укрепляет. Цвет тоя же травы зелен прият, или в питии пито – трясение сердечное уймет и весельство всему телу наводит». На страницах этой книги можно встретить такие слова, как «заключение» – закупорка сосудов, «залегание» – непроходимость; «жиление прохода с истомлением» – запоры с проявлением геморроя; «надмет жил» – тромбофлебит, набухание, вздутие вен; «перешибление жил» – разрывы сосудов; «емородиево» – геморрой; «языковое отпадение» – невозможность говорить вследствие паралича и др.

В книге даны не только лечебные, но и профилактические средства. «От приятия финик родится густая кровь, а тем людям не пристоит фиников приятии, кои горячи естеством, и у кого часто голова побаливает и селезень горяч, и те дани како их приемлет».

«Масло розмариновое помогает жилам, кои отерпнуть, или в которых жилах кровь замрет – и тем помазуем, и тако уздравит. Тем же маслом помазуем виски, память укрепляет и острость разума подает».

Крупный знаток русских рукописных лечебников Н.А. Богоявленский, оценивая общее значение так называемых вертоградов, близких по содержанию к средневековым восточным фармакогнозиям, писал: «Лекарственная флора «вертоградов», насчитывающая более тысячи ботанических видов, представляет интерес не только для врачей и фармацевтов, но является драгоценным источником для изучения ботаники, агрономии… особенностей истории культуры Древней Руси».

Возможность точно определить, что такое геморрой, появилась в XVIII в., когда были обнаружены кавернозные сосудистые сплетения, окружающие анальный канал. Было доказано, что помимо вен и артерий эти сосудистые образования содержат эластичную соединительную ткань и гладкомышечные клетки. Регулируя кровенаполнение в зоне анального канала, геморроидальные сплетения обеспечивают основные функции прямой кишки: удержание каловых масс и дефекацию, обеспечение эффективного иммунного барьера между внутренней средой организма и окружающим миром.

Большим событием для лечения тромбозов и варикозной болезни является открытие кумаринов – природных соединений, в основе которых лежит 9,10-бензо-альфа-пиран (Куркин В.А., 2009). Название этого класса биологически активных веществ происходит от гвианского священного дерева диптерикса душистого (Coumarouna) семейства бобовых (Wagner H., 1975), из семян которого впервые выделен кумарин в кристаллическом виде.

Первую классификацию кумаринов предложил немецкий ученый Э. Шпет в 1937 г. Она была дополнена отечественным крупнейшим ученым в этой области, профессором Г.А. Кузнецовой (1967).

Известны лекарственные растения, обладающие антитромботической (противосвертывающей) активностью, такие как каштан, левзея, патриния, чеснок и др. (Колхир В.К. и др., 1996). В качестве антитромботических и венотонических средств используют препараты, содержащие действующие вещества плодов каштана конского, – эскузан, эсфлазид (Соколов С.Я., Замотаев И.П., 1984). Известно несколько сборов для данной патологии, выпускаемых американской фирмой ENRICH, один из которых наиболее близко подходит к решаемой проблеме. Сбор содержит боярышник, плод папайи, корень одуванчика, фенхель, фукус пузырчатый, шандр, солодку, эхинацею и др.

Однако индивидуальные лекарственные растения и вытяжки из них влияют лишь на отдельные этиологические и патогенетические звенья тромбоза, в то время как при этой патологии необходимо комплексное воздействие, включающее как влияние на собственно систему гемостаза, так и на сердечно-сосудистую систему в целом, нервную систему, липидный и углеводный обмен.

Специфическое действие сбора обеспечивается в первую очередь наличием в его составе тритерпеновых гликозидов, флавоноидов и витаминов. Компоненты сбора подобраны так, чтобы потенцировалось и дополнялось специфическое антитромботическое действие каштана, антиагрегационная и гиполипидемическая активность солодки. При выборе соотношения компонентов сбора учитывались также вкусовые качества настоя сбора и технологичность его изготовления.

Проведены экспериментальные исследования настоя сбора предложенного состава. Влияние сбора на гемокоагуляцию изучали в условиях опытов in vitro (0,1–5 мг/мл крови) и при однократных внутривенном (100 мг/кг) и пероральном (500 мг/кг) введениях кроликам (массой 2,5–4,0 кг). В экспериментах in vitro исследовали также влияние сбора на АДФ-индуцированную агрегацию тромбоцитов кроликов (Born, 1962).

Оценку состояния системы гемостаза проводили по общепринятым тестам (Балуда В.П. и др., 1980). Результаты экспериментов обрабатывали разносным методом вариационной статистики с использованием критерия Стьюдента (Беленький М.Л., 1963). Эксперименты в условиях in vitro позволили обнаружить прямое антикоагулянтное и антиагрегационное действие сбора, что выражалось в соответствующем изменении (на 25–50 %) параметров гемокоагуляции и агрегации.

Эксперименты на животных подтвердили наличие антикоагулянтного эффекта у сбора. Этот эффект наблюдался в течение 60 мин. после внутривенного и в течение 120 мин. после внутрижелудочного введений настоя сбора.

Биологически активные вещества лекарственных растений

Терапевтическая эффективность лекарственных препаратов из растений обусловлена наличием в них большого и довольно сложного комплекса биологически активных веществ – химических соединений, которые оказывают на организм человека и животных те или иные воздействия. В лекарственных растениях идентифицированы и исследованы алкалоиды, гликозиды, полисахариды, эфирные масла, органические кислоты, антибиотики, кумарины, хиноны, аминокислоты, растительные гормоны, минеральные соли, дубильные вещества, смолы и др. Химический состав многих растений изучен еще недостаточно, сведения по их составу постоянно пополняются. Многие лекарственные формы, особенно галеновые препараты, содержат одно или несколько веществ одновременно.

Количество биологически активных веществ в растении зависит от его вида, условий произрастания, времени сбора, способа сушки и т. д. При использовании лекарственных растений в лечении тех или иных заболеваний важно знать растворимость биологически активных веществ в таких растворителях, как холодная и горячая вода, разведенные спирты, которые широко используются при изготовлении настоев, отваров, настоек, соков и др. Знание растворимости помогает врачу правильно выбирать лекарственную форму того или иного растения.

Помимо биологически активных веществ, образующихся в процессе ассимиляции и роста, в растениях всегда содержатся сопутствующие химические соединения, способные оказывать определенное влияние на проявление главного лечебного эффекта: повышать всасывание, ускорять или сокращать сроки вредного воздействия. В растении имеются и так называемые балластные вещества: клетчатка, пектины, некоторые слизи и др. Остановимся более подробно на некоторых биологически активных веществах растений.

Алкалоиды – сложные органические основания преимущественно гетероциклической структуры, которые в растениях связаны с органическими кислотами (яблочной, янтарной, лимонной и др.). Накапливаются в семенах, листьях и корнях растений. В различных видах растительного сырья количество алкалоидов неодинаково и колеблется в зависимости от времени года и места произрастания растения. Главная особенность алкалоидов – щелочная реакция. Они плохо растворимы в воде, хорошо – в спирте, эфире и хлороформе. С различными кислотами образуют соли, которые растворяются в воде и легко всасываются тканями организма. На вкус алкалоиды горькие, в большинстве случаев ядовиты. В растениях содержатся в виде солей органических кислот. Алкалоиды оказывают различное лечебное действие, что зависит от их химического строения (табл. 3).

В лечебной практике используют соли алкалоидов. Многие из них – ценные лекарственные препараты, например лютенурин, сернокислый атропин и др. Заслуживают внимания дерматологов, хирургов алкалоиды из чистотела большого – сангвинарин, хелеритрин. Сангвиритрин – смесь сернокислых солей сангвинарина и хелеритрина – получен из ряда растений рода хохлаток и маклейи (бокконии). Он ингибирует рост грамположительных и грамотрицательных микробов, простейших, патогенных мицелиальных и дрожжеподобных грибов, а также некоторых актиномицетов и грибов, вызывающих явления воспаления кожи и слизистых. Для лечения больных сосудистыми заболеваниями важен экстракт, получаемый из травы пассифлоры, который является сосудорасширяющим, седативным средством.


Таблица 3

Растения и лекарственное сырье, содержащие алкалоиды




Алкалоиды группы пурина – кофеин, теобромин, теофиллин – в значительной дозе содержатся в листьях чая и плодах кофе, которые широко рекомендуются в качестве психостимулирующего средства в виде чая, кофе или ряда препаратов. Следует отметить, что пуриновые алкалоиды по своей структуре сходны с органическими основаниями ДНК и РНК.

Стероидные алкалоиды обладают противовоспалительными действиями, близкими по действию к кортизону. Они используются для получения гормональных препаратов. В бывшем СССР определенное время единственным промышленным сырьем для получения стероидных препаратов служил соласодин, получаемый из паслена дольчатого. Заслуживают внимания и такие стероидосодержащие растения, как наперстянка, якорцы стелющиеся, лук, морозник, паслен и юкка. Не менее богата стероидами солодка голая. Трава и особенно ее корень являются сырьем для получения препаратов противовоспалительного, противомикробного, стимулирующего, гормоноподобного, противоаллергического действия.

Эфирные масла – летучие органические вещества со своеобразным ароматическим запахом. Синтезируются растениями и представляют собой чаще всего терпены или их производные. Они жирные на ощупь, но, в отличие от жиров, не оставляют на бумаге или ткани жирных пятен, так как полностью улетучиваются, подобно эфиру. Эфирные масла встречаются в приблизительно 3 тысячах эфирномасличных растениях. Свойства, состав и запах эфирных масел в процессе роста и развития растения, а также при хранении содержащего их сырья постепенно изменяются. Самое большое количество эфирных масел в цветках, листьях и плодах. Масла плохо растворяются в воде, но значительно лучше в эфире, спирте. Эфирные масла нестойкие, очень чувствительные к повышению температуры. Поэтому особое внимание следует уделять правилам сбора, сушки и обработки эфиромасличных лекарственных растений.

Эфирные масла отличаются по кислотному и эфирному числу, данным газохроматографического анализа, позволяющим определить их состав. В лечении больных тромбозами и варикозами (геморрой, трофические язвы голеней и др.) эфирные масла используют в качестве антисептических, бактерицидных, противовоспалительных, спазмолитических, успокаивающих средств. Эфирные масла, содержащие фенилпропаноиды (масло плодов петрушки, укропа, фенхеля, аниса, сельдерея, пастернака и др.), повышают выработку пищеварительных соков и косвенно воздействуют на гипоталамо-гипофизарно-яичниковую систему (Иванченко В.А. и соавт., 1989), определенным образом взаимодействуя с развитием нарушений гемостаза. Многие из масел обладают желчегонными свойствами, снимают спазмы гладкой мускулатуры, в том числе и сосудов, и нормализуют обмен веществ.

В лечении сосудистых заболеваний большой интерес представляют противомикробные, спазмолитические свойства эфирных масел. Растительное сырье и эфирные масла многих растений (эвкалипт, багульник, ромашка, тысячелистник, можжевельник, сосна, пихта, мята и др.) обладают довольно выраженными антибактериальными, седативными, антитромботическими (шалфей, лаванда, анис) свойствами. Эфирные масла применяют для изготовления растворов, аэрозолей, мазей («Гевкамен», «Эфкамон»), таблеток «Аллантон», ароматных вод, настоек, экстрактов (из укропа, петрушки, ромашки) и др.

Органические кислоты – группы органических соединений со свойствами кислот, образующихся в результате биохимических процессов в клеточном соке большинства растений. Они входят в состав клеточного сока большинства растительных клеток, находясь в растворенном состоянии в виде солей в тех или иных пропорциях в различных частях растений (корни, стебли, листья, цветки, особенно плоды и др.). Чаще всего встречаются яблочная, щавелевая, лимонная, муравьиная, янтарная, бензойная кислоты.

Особенно богаты органическими кислотами овощи и фрукты. Установлено фармакологическое действие органических кислот (табл. 4). В лекарственных растениях они находятся в сочетании с витаминами, микроэлементами, аминокислотами, пектиновыми веществами, флавоноидами и др.


Таблица 4

Растения, содержащие органические кислоты






Антибиотики – особые вещества микробного, растительного и животного происхождения, способные подавлять рост и размножение болезнетворных микроорганизмов. Известно несколько сотен тысяч антибиотиков, большая часть которых – продукт жизнедеятельности различных грибов. Антибиотики растений называют фитонцидами. Точный химический состав фитонцидов до сих пор не установлен. Отмечено, что это не одно вещество, а биологический комплекс органических соединений. Фитонциды обладают бактерицидными, бактериостатическими свойствами, проявление которых зависит от погоды, почвы, времени года и т. д. Активные растительные антибиотики имеются в чесноке, луке, крапиве, березе, дубе, сосне, клюкве, бруснике и черемухе. В случае местного применения растительные антибиотики стимулируют регенеративные процессы поврежденных тканей при трофических язвах и ожогах. Одним из препаратов, обладающих антибиотическими свойствами, являются новоиманин из зверобоя продырявленного. К нему чувствительны грамположительные и грамотрицательные бактерии. Препарат применяется в том числе и наружно при лечении трофических язв. Новоиманин малотоксичен, термостабилен, при нагревании до 100 °C в течение нескольких часов антибактериальная активность его не снижается. В клинических условиях новоиманин в организм больного вводят путем электрофореза и в виде аэрозоля.

Гликозиды – органические соединения сахаров с несахаросодержащими агликонами, продуктами обмена веществ в растении. В качестве агликонов могут служить спирты, терпеноиды, фенолы, гетероциклические соединения. Сахарный компонент гликозидов может быть глюкозой, фруктозой, галактозой, ксилозой, биозами и др. Они легко растворимы в воде, осаждаются танином и солями свинца, под действием кислот или ферментов расщепляются на их составляющие сахара и несахарные компоненты (агликоны, генины). Терапевтический эффект гликозидов обусловлен преимущественно агликонами.

В зависимости от химической природы агликона гликозиды делятся на сердечные и потогонные гликозиды, сапонины, фенольные гликозиды, антрагликозиды, горькие гликозиды (иридоиды), цианогенные гликозиды и тиогликозиды (глюкозинолаты). В лечении сердечных, аллергических больных важны сапонины, флавоноиды, антрагликозиды и горечи (горькие гликозиды). Сапонины – гликозиды тритерпеновой и стероидной структур, не содержащие в своем составе азот. С водой они образуют пену.

Сапонины обладают гемолитическими свойствами, токсичностью для холоднокровных животных и способностью при взбалтывании образовывать стойкую, долго не исчезающую пену. Сапонины хорошо растворяются в воде и содержатся в растениях семейств лилейных, диоскорейных, бобовых, лютиковых, норичниковых, аралиевых и др. Это относится к таким известным растениям, как аралия, диоскорея, каштан, левзея, лимонник, липа, одуванчик, первоцвет, подорожник, синюха, стальник, элеутерококк, хвощ и др. Даже этот небольшой перечень растений указывает на гипотензивные, адаптогенные, гипохолестеринемические свойства сапонинов, что находит широкое применение в фитотерапии. Некоторые сапонины, в частности содержащиеся в солодке голой, обладают гормоноподобным действием, что может быть также полезным при гормональных дисфункциях, нередко развивающихся в сосудистой патологии. Сапонинсодержащие растения используют для приготовления общеукрепляющих, стимулирующих и тонизирующих препаратов, что особенно важно в проведении медикаментозной реабилитации сосудистых больных. Сапонины женьшеня, элеутерококка, аралии и других растений семейства аралиевых повышают работоспособность, улучшают показатели клеточного и гуморального иммунитета. Адаптогенные свойства выявлены в растениях других семейств (табл. 5).

Оксиметилантрахиноны марены красильной и подмаренника оказывают спазмолитическое и мочегонное действие, способствуют разложению конкрементов мочи, содержащих фосфаты кальция и магния. Среди хиноидных соединений, в частности производных хризофановой кислоты, выявлены вещества с противоопухолевой активностью.

Фенолгликозиды – производные фенола, гидрохинона, флюроглюцина и их производных (арбутин листьев толокнянки и брусники; производные аспидинола, альбаспиди-на и феликсовой кислоты корневищ мужского папоротника и др.). Фенолкислоты и фенолспирты из растений, в частности из корневищ родиолы розовой (золотого корня), оказывают тонизирующее, адаптогенное, иммуномодулирующее действие, снимают умственную и физическую усталость, оказывают антистрессовое действие.


Таблица 5

Растения, содержащие сапонины




Горькие гликозиды (горечи) являются производными циклопентаноидных монотерпенов (иридоидов). Характерным признаком наличия иридоидов является очень горький вкус и их почернение при сушке. При этом происходит ферментативное расщепление иридоидов (например, аукубина и др.). Среди них можно найти растения с гормональной, спазмолитической, антибиотической, седативной, противоопухолевой, коронорасширяющей, дерматонической, гормонорегулирующей (через гипоталамо-гипофизарно-яичниковую систему), противомикотической активностью.

Катехины повышают резистентность организма, усиливают сопротивляемость организма при воздействии промышленных (антропогенных) факторов внешней среды, что важно при лечении васкулитов.

Флавоноиды; син.: биофлавоноиды (БФ) – фенольные химические соединения с выраженными Р-витаминными свойствами, относящиеся к производным хромона с различной степенью окисленности хромонового цикла. В зависимости от этого различают флавоны, флаваноны, катехины, флаваны, халконы, гиперозиды и др. В свободном состоянии встречаются только отдельные группы флавоноидов (катехины, лейкоантоцианидины). Биофлавоноиды принимают участие в процессах дыхания и оплодотворения растений, оказывают антиоксидантное, антитромботическое, радиопротекторное действие, положительно влияют на функцию сердечно-сосудистой и пищеварительной систем, печени, почек, на мочеотделение, кроветворение и т. п. Флавоноидные соединения обладают низкой токсичностью и используются в медицине как Р-витамины (рутин, кверцетин, диквертин, витамин Р байкальский, катехины чая и др.), противоязвенные (ликвиритон, флакарбин и др.), желчегонные (фламин, экстракт шиповника, холосас и др.), гипоазотемические (фларонин, леспенефрил, леспефлан и др.) препараты.

Флавоноиды широко распространены в растительном мире. Особенно богаты ими листья гречихи, цветочные бутоны софоры японской, листья и плоды черной смородины, аронии (черноплодной рябины), черной бузины, рябины обыкновенной, трава зверобоя, плоды облепихи, семена конского каштана, листья крапивы, трава фиалки трехцветной и др.

В настоящее время наука насчитывает более 4 тысяч различных биофлавоноидов (БФ). Хорошо изучены в науке БФ: рутин, кверцетин, пикногенол, гинкго билоба, гесперидин, комиферол, зверобой, бессмертник, душица, чабрец, родиола розовая, женьшень, и, пожалуй, на этом перечисление стоит остановить. Остальные биофлавоноиды еще только на стадии изучения. Есть и такие, о которых науке пока еще ничего не известно.

БФ содержатся практически в любом растении, однако в одних их очень много, и они довольно разнообразны по своему химическому составу, в других растениях их ничтожно малое количество. Различные БФ обладают совершенно различными свойствами по их воздействию на организм. Например, биофлавоноиды черники улучшают ночное зрение, биофлавоноиды гинкго билоба способствуют доставке энергии и кислорода в клетки мозга, а биофлавоноиды боярышника улучшают показатели сердечной деятельности.

По своему физиологическому действию БФ очень близки к действию витамина С. Они обладают неплохим синергизмом, но не могут заменить друг друга. Более того, эффективность действия витамина С в организме во многом зависит от присутствия в достаточном количестве в организме БФ.

Так что же такое биофлавоноиды? По своей принадлежности, как ни странно, их можно было бы отнести к растительным пигментам, которые определяют цвет многих растений, фруктов, плодов и цветов.

История флавоноидов берет свое начало в далеком 1937 г. За открытие одного из флавоноидов, позже его назвали «витамин Р», биохимик Георгий Зент был удостоен Нобелевской премии. Это было действительно открытие века.

Прошло уже более полувека, однако наш дорогой читатель может задать довольно резонный вопрос: почему мы до сих пор так мало знаем об этих замечательных веществах, а если ученые уже что-то знают, почему же до сих пор на полках наших аптек так мало препаратов, содержащих биофлавоноиды?

Кверцетин – «король флавоноидов» – так образно назвал его знаменитый американский исследователь и основатель школы комплементарной медицины Р. Аткинс. Это, пожалуй, самый активный флавоноид. В соответствии с последними исследованиями кверцетин показан фактически при всех видах воспалительных и аллергических заболеваний, включая астму, ревматоидный артрит, системную красную волчанку (и другие многочисленные коллагенозы), диабет и онкологические заболевания. Пожалуй, трудно найти антигистаминное средство лучше, чем кверцетин.

Попробуйте использовать его для лечения различных видов аллергий. Эффект противоаллергического действия кверцетина во многом обусловлен способностью выработки эндогенного гормона надпочечников – кортизона.

Именно кверцетин является наиболее активным антиоксидантом в отношении фермента альдозоредуктазы – фермента, преобразующего глюкозу в крови в сорбит, что особенно важно при повышенном уровне сахара в крови. Надо отметить очень важный факт, что кверцетин препятствует образованию катаракты у больных сахарным диабетом. Помутнение хрусталика у больных диабетом напрямую связано с недостатком полиолдегидрогеназы. Именно из-за недостатка этого фермента образуются большие концентрации сорбита. Нежные белковые волокна хрусталика доступны для глюкозы, но недоступны для сорбита. Так происходит нарушение питания хрусталика и, как следствие, его помутнение. Кверцетин позволяет добиться и замечательных успехов в борьбе с раковыми заболеваниями.

Согласно проведенным исследованиям R. Singhal (1995) и M. Fisher (1982), кверцетин эффективно сдерживает рост и распространение злокачественных клеток и может быть уже сегодня использован в лечении рака органов грудной клетки, лейкемии, рака яичников, эндометрии и толстого кишечника.

Не последнее место занимает кверцетин и в лечении заболеваний сердечно-сосудистой системы. Если сравнивать его по эффективности с одним из самых значимых в кардиологии витаминов, речь идет о знаменитом витамине Е, который реально уменьшает число приступов стенокардии, оказывает антитромботическое, дезагрегантное и антиатеросклеротическое действие, то чашу весов нарушает с большим перевесом кверцетин, который намного эффективнее самого эффективного витамина – антиоксиданта. Пищевые источники кверцетина: красное вино, зеленый чай, яблоки, лук, зелень, зеленый перец, помидоры и брокколи. Однако больше всего, как ни странно на первый взгляд, кверцетина содержится в самых обычных огурцах (Holiman P.C., Katan M.B., 1999. Bel Med Net.).

Почему же перечисленным биологически активным веществам не уделяется достойное место в лечении серьезных недугов? Почему нам до сих пор предлагают только синтетические лекарственные препараты?

Одна из причин этого явления – невнимание государственных органов здравоохранения к натуральным средствам и чрезмерное увлечение ученых синтезом химических соединений. В 1960—1970-х гг. о фитотерапии попросту забыли. Чрезмерное увлечение химией относится не только к отечественной науке и фармакологии. В целом мире эта тенденция и своеобразная мода на синтетические препараты удерживались довольно долго. Однако в отличие от западной медицины, которая спохватилась уже к концу 1990-х гг. и забила тревогу по поводу повального увлечения синтетическими препаратами, отечественная медицина делает еще только первые робкие шаги, очень и очень медленно возвращаясь к натуральным растительным средствам.

Другая причина, которая сдерживала производство флавоноидных препаратов, – сложнейшая технология. На первый взгляд неспециалисту кажется, что все очень просто: экстрагировал травы – и получил готовый препарат в виде, например, настойки, а вот синтезировать какой-либо химический препарат – это действительно сложно. Однако получить флавоноиды, выделить их из растений, а потом сохранить их активность на деле оказывается очень и очень сложно. В отварах трав почти все флавоноиды улетучиваются и инактивируются. Известно, что уже при нагревании настоя трав свыше 70 °C у флавоноидов исчезает активность и они перестают оказывать действие на организм.

Другая проблема, которая до сих пор волнует ученых, – сохранение биодоступности и активности флавоноидов. Проблема в том, что флавоноиды, являясь антиоксидантами, очень быстро окисляются при контакте с воздухом. На рубеже 1950-х гг. знаменитый советский биохимик В.В. Караваев решил проблему экстрагирования флавоноидов из трав. Это блестяще удалось знаменитому академику, однако уровень технологии в области фармакологии тех лет не позволил решить еще целый ряд сложнейших задач, например, как создать препарат, который не разрушится в кислой среде желудка.

Знаменитому академику не удалось решить этот вопрос, но он обогнал время и все-таки создал экстракты биофлавоноидов, до сих пор удивляющие и пациентов, и ученых. Знаменитые бальзамы Караваева «Витаон», «Соматон» и «Аурон» оказывают прекрасное действие на организм через слизистые оболочки и кожные покровы. Их прекрасный эффект обусловлен антиоксидантной активностью. Решив проблему экстрагирования флавоноидов и сумев найти натуральные стабилизаторы, он обошел проблему инактивации экстрактов биофлавоноидов в кислой среде желудка путем создания препарата для наружного применения. По сути, это были первые антиоксиданты наружного применения, которые, как ни странно для нас, эффективно влияют на различные органы и ткани (например, аурон, влияя на метаболизм клеток мозга, снижает их кислородную задолженность).

На сегодня доказано, что флавоноиды обладают антиатеросклеротическим действием, тормозят адгезию (прилипание) и агрегацию тромбоцитов, оказывают непрямое противоаритмическое действие, им присущ и эффект снижения и стабилизации артериального давления.

Только в середине второй половины 1990-х гг. в России появляются первые попытки создания препаратов на основе растительных антиоксидантов. Однако, несмотря на все многообразие фармакологических эффектов, ключевое свойство флавоноидов – их антиоксидантное действие. Именно свойством флавоноидов подавлять развитие синдрома пероксидации липидов, белков и нуклеиновых кислот обусловлена универсальность действия флавоноидов на факторы патогенеза практически всех заболеваний.

Итак, какие же универсальные особенности присущи всем флавоноидам (естественно, что каждый ингредиент обусловливает и свой специфический механизм фармакологического действия)?

• Подавление перекисных процессов и образования токсических продуктов, которые возникают за счет образования супероксид-радикалов и перекисей водорода.

• Флавоноиды защищают аскорбиновую кислоту как «хелаторы», связывающие ионы переходных металлов.

• Флавоноиды ингибируют ферментативные реакции с продукцией супероксид-радикалов и перекисей водорода, в частности, они блокируют фермент супреоксид-дисмутазу и другие пероксидазы.


Таким образом, антиоксидантный эффект флавоноидов реализуется, как правило, по комбинированному механизму действия и зависит от структуры этих веществ (Да-дали В.А., 2003).

В лечении и профилактике тромбозов используются препараты: рутин, кверцетин, дигидрокверцетин, капилар, флакарбин, фламин, холосас. Они являются синергистами аскорбиновой кислоты, укрепляют стенки капилляров (особенно катехины, лейкоантоцианы, антоцианы), усиливают в несколько раз и удлиняют действие микроэлементов, оказывают антитоксическое, антитромботическое действие (табл. 6).


Таблица 6

Растения, содержащие флавоноиды




В медицинской практике применяют таблетированные препараты, содержащие биофлавоноиды (калефлон, диквертин, сбор «Касмин», ангионорм, конвафлавин, силибор, ликвиритон, Лив-52, фламин); сухие экстракты бессмертника, марены, солодки; жидкие экстракты боярышника, водяного перца, кукурузных рылец, чистеца; настойки зверобоя, боярышника, календулы, мяты, пустырника, софоры, леспефлан и др.

Растения, содержащие флавоноиды, широко используются для составления желчегонных, антитромботических, противогеморроидальных, противоаллергических и других целебных сборов «Касмин» и др.

Дубильные вещества (танины) – высокомолекулярные полифенолы с сильно выраженным дубящим действием. Выделенные из растений дубильные вещества представляют собой аморфные или кристаллические вещества, растворимые в воде и спирте. С солями тяжелых металлов они образуют осадок; осаждают слизи, белки, алкалоиды, следствием чего являются нерастворимые в воде альбуми-наты, на чем основано и антитоксическое действие танинов, что нередко используется в неотложной медицинской помощи. По химической структуре дубильные вещества делят на гидролизуемые и конденсированные танины. Источником природных конденсированных танинов являются древесина (особенно кора) дуба, каштана, кора хвойных деревьев, плоды черники и черемухи, корневища лапчатки, трава зверобоя и др.

Дубильные вещества благодаря малотоксичности и значительному содержанию таниновых соединений широко используются как вяжущие, бактерицидные, противовоспалительные, кровоостанавливающие и антиоксидантные средства, особенно в практике при лечении энтероколита, дисбактериоза, трофических язв.

Их противовоспалительный эффект основан на образовании защитной пленки белка и полифенола. Фитопрепараты (отвары, настои, экстракты) из таких растений, как бадан, ольха, лапчатка, чистотел, подорожник, полезны для устранения явлений дисбактериоза, который нередко сопутствует аллергическим и гематологическим заболеваниям (табл. 7).


Таблица 7

Растения, содержащие дубильные вещества




Полисахариды – сложные углеводы, соединенные гликозидными связями в линейные или разветвленные цепи. Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Установлена антибиотическая, противовирусная активность некоторых полисахаридов растительного происхождения. К ним относятся камеди, слизи, инулин (встречающийся в топинамбуре), клетчатка и крахмал.

Камеди – сложные комплексы нейтральных и кислых гетерополисахаридов, частично или полностью растворимых в воде с образованием вязких и клейких коллоидных растворов. Они выделяются из естественных трещин и надрезов стволов деревьев (вишня, черешня, абрикос и др.) в виде густой массы, постепенно высыхающей на воздухе. Благодаря высокой эмульгирующей и обволакивающей способности камеди широко используются в медико-фармацевтической практике при приготовлении масляных эмульсий, обволакивающих растворов, а также кровезаменителей.

Пектины – углеводные полимеры, состоящие из остатков уроновых кислот и моносахаридов, входящие в состав межклеточного вещества растений. С органическими кислотами и сахарами пектиновые вещества желируют, превращаясь в студевидную массу. Они набухают в воде, образуют гели и слизистые растворы.

Со многими металлами (кальцием, стронцием, свинцом и др.) и избыточным количеством холестерина пектины образуют нерастворимые комплексные химические соединения, которые выводятся из организма. Кроме того, пектиновые вещества в качестве лекарственных форм угнетают гнилостную микрофлору кишечника, снижают содержание холестерина в крови (тормозя его всасывание) и способствуют выведению его из организма.

Пектинами богаты плоды клюквы, черной смородины, яблони, боярышника, аронии (черноплодной рябины), барбариса, сливы, крыжовника и др. (табл. 8).

К растениям, содержащим значительное количество пектиновых веществ, относятся алтей, абрикосы, девясил, женьшень, картофель, морская капуста, лен, липа, лопух, малина, одуванчик, подорожник, слива, смородина, черника, яблоки и др.


Таблица 8

Пектиносодержащие растения и их препараты




Слизи – безазотистые вещества, сложные полисахариды, близкие к пектинам и целлюлозе. Они, в отличие от камедей, хорошо растворимы в воде. Слизи можно найти в подорожнике, льне, любке и др. Их используют как обволакивающее лечебное средство при гастрите (алтей, подорожник) внутрь или в виде фитоаппликаций при ожоге, трофических язвах (семена льна, листья подорожника и др.).

Клетчатка (пищевые волокна) – главная составная часть растительных клеток, относящаяся к группе несахароподобных полисахаридов. По химическому составу пищевые волокна делятся на целлюлозы, гемицеллюлозы, лигнины, пектины и др. Конечным продуктом расщепления клетчатки, в частности под воздействием фермента целлюлазы, является глюкоза. Пищевые волокна используются кишечной микрофлорой, способствуют перистальтике кишечника и выведению из организма продуктов обмена веществ, адсорбируют холестерин из-за более равномерного всасывания углеводов, влияют на секрецию гормонов пищеварительного тракта (двенадцатиперстная кишка, толстый кишечник и пр.). Клетчатка (пищевые волокна) – ценное лечебное средство при хроническом течении аллергических и сердечно-сосудистых заболеваний, с нарушением моторной, секреторной и выделительной функций пищеварительного тракта, уменьшает явления эндогенной интоксикации. В качестве источника пищевых волокон используются не только обычные овощи, фрукты (яблоки, груши, сливы, дыни, арбузы и др.), отруби зерновых культур, но и ароматические измельченные травы: мелисса лимонная, мята перечная, душица, базилик, эстрагон.

Ферменты растительного происхождения также могут использоваться в качестве средств антитромботической терапии. Нам известны такие ферменты, как папаин, целиаза (Вотяков В.И., 1988), нигедаза из чернушки посевной. Бромелайн – протеолитический фермент растительного происхождения, обладает противовоспалительной, анальгетической, противоотечной, антитромботической и фибринолитической активностью, снижает уровень брадикинина, простагландина Е2, и тромбоксана А2. Бромелайн потенцирует фармакологические эффекты антибиотиков и нестероидных противовоспалительных средств (диклофенак), одновременно предупреждая развитие побочных эффектов.

Тритерпеноиды – тетрациклины, по химическому строению и стереохимическим свойствам близкие к стероидам. Несмотря на то что выделено огромное количество тритерпеновых соединений, этот класс веществ пока еще мало применяется в медицинской практике. К примеру, ланостерол и эбурикоевая кислота путем довольно сложных реакций недавно переведены в метиллированные аналоги таких известных нативных гормонов, как тестостерон, прогестерон и дезоксикортикостерон.

Среди пентациклических тритерпеноидов долгое время не было известно ни одного химического соединения, которое явилось бы достаточно эффективным лекарственным препаратом. Одним из первых таких препаратов стала глицирретовая кислота, входящая в состав сапонина солодки голой (известная также под названием «глицирризин» или «глицирризиновая кислота»). Хотя солодка давно используется в народной медицине в качестве лекарственного средства, широкое применение глицирретовой кислоты насчитывает всего лишь несколько десятков лет.

Перечень тетрациклиновых тритерпеноидов не ограничивается производными глицирризиновой кислоты. Известный с древнейших времен женьшень в числе других биологически активных веществ содержит гликозиды панаксадиола.

Растительные гормоны – биологически активные вещества, которые выступают регуляторами обмена веществ и функций организма.

На организм человека растительные гормоны действуют подобно гормонам животного происхождения. Во многих растениях найден холин (называемый также витамином В4), участвующий в синтезе ферментов и ускоряющий биосинтез фосфолипидов. Биосинтез холина происходит из этаноламина и метионина. Природные источники холина – пшеница, овес, соя, цикорий, одуванчик, зверобой, семена пастушьей сумки. Недостаток холина приводит к жировому перерождению печени и почек, инволюции щитовидной железы. Холин стимулирует перистальтику желчевыводящих и мочевыводящих путей.

Ряд лекарственных растений обладает гормональной активностью. Дийодтирозин, являясь активной составной частью тироксина – гормона поджелудочной железы (влияющего на общий обмен веществ), усиливает тиреотропную функцию передней доли гипофиза, снижает активность щитовидной железы. Используется для лечения легкой и средней тяжести форм гипертиреоза. В небольшом количестве дийодтирозин обнаружен во мху исландском, дроке красильном, нетребе колючей и др.

Инсулин – гормон поджелудочной железы. Его недостаток приводит к развитию сахарного диабета и метаболического синдрома. Инсулиноподобные вещества, которые применяются для лечения сахарного диабета, выявлены в таких растениях, как цикорий, одуванчик, кукурузные рыльца, омела, листья грецкого ореха, золототысячник, корень лопуха, девясила, листья крапивы, козлятника, черники, шелуха фасоли и др. Во многих растениях (листья шалфея, ярутки, сурепки, любки) обнаружены вещества, которые действуют подобно гормонам половых желез.

Для лечения сосудистых больных важны фитоэстрогены, содержащиеся в цветках красного клевера, траве люцерны, живучки, смолевки и пр. Найдены практические подходы к использованию их в лечении метаболического синдрома (Дроговоз С.М. и др., 1997).

Пигменты – красящие вещества, обусловливающие окраску растений. Содержатся главным образом в клеточном соке растений и образуют желтую, красную, синюю, фиолетовую и другие окраски. Растительные пигменты обладают дезинфицирующими, антисептическими, дерматоническими и эпителизирующими свойствами. Они содержат витамины С, К, А, В2, В5 (пантотеновую кислоту). В народной и научной медицине пигменты с успехом используют при ИБС и трофических язвах (хна, клевер, грецкий и маньчжурский орех и др.).

Следует отметить стимулирующие и эпителизирующие свойства хлорофилла. Из него получен препарат, хорошо зарекомендовавший себя при лечении некоторых заболеваний сосудов. Значительное количество хлорофилла содержится в листьях крапивы, клевера и др.

Лектины – сложные белки, металлсодержащие глико-протеины. Небелковые компоненты лектинов: углеводы, ионы кальция, марганца, реже цинка, магния и других металлов. Лектины обнаружены во всех живых организмах, а их взаимодействие с клеточными рецепторами представляет собой естественную реакцию. Они обладают свойством обратимо и избирательно связывать углеводы, не вызывая их химического превращения, обеспечивают транспортировку и накопление углеводов, определяют специфичность межмолекулярных взаимодействий (процессы узнавания макромолекул и клеток), межклеточные взаимодействия (табл. 9).


Таблица 9

Растения, содержащие лектины




Лектины имитируют действие инсулина, снижая активность аденилатциклазы в лимфоцитах; стимулируют тканевой иммунитет, повышая фагоцитарную активность лейкоцитов; дифференцированно воздействуют на Т– и В-лимфоциты. Метаболические изменения в лимфоцитах при стимуляции их лектинами наступают немедленно, а отдаленный эффект проявляется через сутки и более после контакта с лектином. Отдаленные реакции включают усиление синтеза белка, РНК, синтез ДНК и деление лимфоцитов. Они являются индукторами образования интерферона лимфоцитами. Доказана терапевтическая эффективность лектинов ряда растений в терапии воспалительных и вирусных заболеваний мочеполовой сферы (Корсун В.Ф., Римша В.М., Бореко Е.И. и др., 1998).

Минеральные соли – основной источник многих микро– и макроэлементов, необходимых организму человека. Около половины препаратов, используемых современной медициной, получено либо из растительного сырья, либо из продуктов растительного происхождения. Большую группу лекарственных препаратов составляют естественные комплексы макро– и микроэлементов в виде вытяжек (отвары, настои). Преимущество данной лекарственной формы состоит в естественном комплексировании и количественном соотношении минеральных веществ, прошедших физиологический контроль. Это особенно важно вследствие многообразия синергических и антагонистических взаимоотношений между отдельными микроэлементами и различными их группировками, а также в связи с недостаточной изученностью биологического действия многих микроэлементов. В холосасе, например, выявлены такие микроэлементы, как железо, марганец, медь, в настойке женьшеня – калий, кальций, натрий, железо, алюминий, кремний, барий, стронций, марганец и титан.

В зависимости от количественного содержания неорганических веществ во внутренней среде человеческого организма В.И. Вернадский разделил их на макроэлементы (натрий, калий, кальций, магний, фосфор, хлор), микроэлементы (медь, йод, железо, алюминий, марганец, фтор, бром, цинк, стронций и др.) и ультрамикроэлементы (ртуть, золото, серебро, хром, радий, уран, торий, кремний, титан, никель и др.).

Характеристика влияния недостатка определенных минеральных веществ на организм при тромбозах и варикозах и его коррекция представлены в табл. 10.

Микроэлементы участвуют в формировании мягких и твердых тканей организма; входят в состав ферментов, гормонов, витаминов, нуклеиновых кислот, белков, а также регулируют их биологическую активность. Без участия минеральных солей невозможны обмен веществ, функционирование как отдельных клеток, так и целых органов и систем.


Таблица 10

Характеристика пониженного содержания минеральных веществ






Доказана роль йода, кобальта и брома в функции щитовидной железы. При недостатке кобальта наблюдается разрастание этой железы вследствие злокачественного новообразования, а избыток брома препятствует накоплению в ней йода. Недостаток или избыток кобальта, меди, цинка, марганца, бора, молибдена, никеля, стронция, свинца, йода, фтора, селена и других микроэлементов приводит к нарушениям обмена веществ и возникновению ряда заболеваний (например, авитаминоза В12, тиреотоксикоза, флюороза, уровской болезни).

Действие биологически активных веществ может быть активировано и ингибировано содержащимися в них микроэлементами. Последние извлекаются корнями растений из глубоких слоев почвы и накапливаются в стеблях, листьях и плодах. Поступление микроэлементов из почвы в растение – чрезвычайно сложный химический процесс, на который влияет множество факторов. Кобальт, цинк, медь, марганец, молибден и некоторые другие микроэлементы усваиваются растениями в виде органических веществ и минеральных солей. Эти вещества образуются в почвенных растворах, которые соприкасаются с тонкими корешками растений, за счет выделяемых последними органических кислот.

Естественные комплексы микроэлементов изучаются в лекарственных растениях, выявляется возможная корреляция между накоплением определенных групп биологически активных соединений в растениях и содержанием тех или иных микроэлементов, изыскиваются пути получения лекарственного растительного сырья, обогащенного микроэлементами и биологически активными веществами.

На некоторых микроэлементах остановимся более подробно.

Однако данных о соединениях, входящих в состав различных пищевых продуктов и лекарственного сырья растительного происхождения, еще недостаточно. Представляет интерес распределение микроэлементов внутри клеток и по органам растений. Так, корни бобовых концентрируют медь, молибден, свинец, хром, титан, стронций, барий, а их плоды – медь, марганец и никель (табл. 11).


Таблица 11

Содержание микроэлементов в лекарственных растениях с противоаллергическими свойствами


Знаками помечено:

– отсутствует;

+ – до 0,5 мг на 100 г сырья;

Конец ознакомительного фрагмента.