Вы здесь

Занимательная химия для детей и взрослых. Глава 1. Вещи и вещества (И. А. Леенсон, 2013)

Глава 1

Вещи и вещества

Нас окружает множество веществ – в основном это не чистые химические соединения (с таковыми мы встречаемся очень редко, примером могут служить поваренная соль и сахар), а смеси, сплавы, композиты. Еще чаще мы сталкиваемся с тысячами различных вещей – от детских игрушек до автомобилей. И при изготовлении всех этих вещей не обойтись без химии. В этой главе будет рассказано о некоторых малоизвестных применениях химических веществ, облегчающих нам жизнь или даже спасающих ее. Об этом – первый рассказ.

Азид в мешке

Известно, что скорость химической реакции пропорциональна концентрации реагентов: чем она выше, тем чаще сталкиваются молекулы и тем быстрее идет реакция. Аналогично частота дорожно-транспортных происшествий при прочих равных условиях пропорциональна концентрации автомобилей на дорогах, которая неуклонно увеличивается. Соответственно растет и число аварий. Самые опасные происходят при лобовом столкновении. Даже если скорость каждого автомобиля не превышает 60 км/ч, суммарная скорость получается такой, что почти не оставляет шансов для находящихся в автомобиле. Можно ли в таких случаях защитить водителя и пассажиров или хотя бы спасти их жизни (о судьбе автомобиля говорить в таких случаях не приходится)? Одно из самых простых и надежных изобретений – ремни безопасности, которые спасли множество жизней. Но если скорость машины при лобовом столкновении велика, не спасают и они – ремень задерживает туловище, а голова по инерции продолжает движение вперед, что приводит к повреждению, нередко смертельному, шейного отдела позвоночника. И тут на помощь автомобилистам пришла химия. В 80-х гг. ХХ века химики ведущих автомобильных корпораций разработали новый способ защиты автомобилистов – подушку безопасности.

Она изготовлена из прочного полиамидного волокна и в сложенном виде занимает так мало места, что ее можно упрятать в стойку рулевого колеса. В случае лобового столкновения мешок почти мгновенно надувается и мягко принимает на себя поступательное движение как корпуса, так и головы водителя, спасая тем самым ему жизнь. И если к концу 80-х годов лишь один из 15 выпускавшихся в США автомобилей снабжался подушкой безопасности, то к 1995 г. их доля превысила 70 %, а еще через несколько лет ими снабжались практически все автомобили, причем каждый имел по два таких устройства – для водителя и для пассажира. Появились также подушки, расположенные сбоку, причем и для пассажиров, сидящих на заднем сиденье. Как же работает такая подушка? Поскольку счет при аварии идет на тысячные доли секунды (при скорости 108 км/ч машина проходит 10 см всего за 3 миллисекунды), никакие механические компрессоры или баллоны с сжатым газом не успеют надуть мешок за нужное время. Остается лишь одна возможность – взрывное разложение химического соединения с выделением большого объема газа. Химикам нужно было найти такое соединение, а остальное было уже делом техники. Вариантов оказалось немного. Остановились на распаде азида натрия – соли очень взрывчатой и очень ядовитой азотистоводородной кислоты HN3. Хотя эта кислота слабая (как уксусная), ее водные растворы обладают настолько сильным окислительным действием, что смесь HN3 и HCl растворяет золото и даже платину. Азиды тяжелых металлов (меди, серебра, ртути, свинца и др.) – весьма неустойчивые кристаллические соединения, которые взрываются при трении, ударе, нагревании, действии света. Взрыв может произойти даже под слоем воды! Азид свинца Pb(N3)2 используется как инициирующее взрывчатое вещество, с помощью которого подрывают основную массу взрывчатки. Для этого достаточно всего двух десятков миллиграммов этого вещества. Это соединение более взрывчато, чем нитроглицерин, а скорость распространения взрывной волны (детонации) при взрыве в 10 раз больше, чем у тротила, и достигает 45 км/с! Азид натрия, к счастью, не взрывается, хотя тоже сильно ядовит (его сильно разбавленные водные растворы иногда используют в качестве консерванта биохимических препаратов). При нагревании до 300 °С он очень быстро разлагается с выделением азота и мельчайших частиц натрия: 2NaN3 → 2Na + 3N2. Из 65 г (1 моль) NaN3 получается при обычных условиях около 35 л азота. Чтобы увеличить выход газа, а также связать очень реакционноспособный и легко загорающийся натрий, в смесь добавляют нитрат калия, который реагирует со свободным натрием: 10Na + 2KNO3 → K2O + 5Na2O + N2. Кстати, реакция азида щелочного металла с его нитратом давно использовалась химиками для синтеза чистого оксида натрия или калия (которые невозможно получить окислением металлов в кислороде или на воздухе), например: 5NaN3 + NaNO3 → 3Na2O + 8N2. Оксиды натрия и калия – тоже не подарок; для их связывания в исходную смесь вводят еще один компонент – мелкораздробленный диоксид кремния. В условиях реакции он связывает оксиды натрия и калия с образованием негорючих и безопасных силикатов: Na2O + SiO2 → Na2SiO3. Работает вся система так. В случае столкновения чувствительные датчики, установленные в автомобиле, передают сигнал на микропроцессор, который мгновенно оценивает ситуацию; если скорость автомобиля при ударе превышает определенное значение (обычно 35 км/ч), микропроцессор включает электрический запал, который запускает реакцию разложения азида. В результате перед человеком примерно за 0,04 секунды надувается мешок, содержащий около 70 литров азота, который спасет ему жизнь даже в таких случаях, которые раньше считались безнадежными. В автомобилях последних моделей возможно даже регулирование скорости наполнения мешка азотом в зависимости от массы водителя и его точного расположения в автомобиле.

На этот раз подушка безопасности защитила манекен


Однако не все так просто. Подушки безопасности, хотя и доказали свою эффективность, создают новые экологические проблемы. Ведь большинство автомобилей заканчивает свой век, ни разу не испытав серьезного столкновения. Поэтому на свалках вместо сравнительно безопасных груд ржавеющего металла могут образоваться очаги отравляющих веществ. Один из способов борьбы с этим – использование в подушках безопасности вместо порошка таблеток, которые можно было бы при необходимости извлекать и утилизировать. Другой путь – поиск менее опасных химических соединений, которые могли бы заменить азид натрия. Говоря об азиде натрия, нельзя не вспомнить еще одну историю, связанную с этим веществом. Как отмечалось, его разбавленные водные растворы обладают бактерицидным действием и могут служить консервантом биохимических препаратов. И вот в начале 70-х годов ХХ в. в некоторых американских и английских клиниках наблюдались странные явления. Время от времени из сливной раковины раздавались звуки, напоминающие пистолетные выстрелы, а в одном случае неожиданно взорвалась сливная трубка. К счастью, никто при этом не пострадал. Расследование показало, что виновником всех взрывов был очень слабый (0,01 %) раствор азида натрия, который использовали в качестве консерванта физиологических растворов. Излишки раствора азида в течение многих месяцев, а то и лет сливали в раковину – иногда до двух литров в день. Оказалось, во всех упомянутых случаях сливные трубки под раковинами были изготовлены из меди или латуни (такие трубки очень прочные, легко гнутся, особенно после предварительного прокаливания, поэтому их удобно устанавливать в сливной системе). Выливаемый в раковину раствор азида натрия, протекая по таким трубкам, постепенно реагировал с их поверхностью, образуя азид меди, а это вещество уже способно взрываться. Пришлось менять медные трубки на пластмассовые. Когда в одной из клиник проводили такую замену, оказалось, что снятые медные трубки сильно забиты твердым веществом. Специалисты, которые проводили «разминирование» сливной системы, чтобы не рисковать, подорвали эти трубки на месте, поместив их в металлический бак массой 1 т. Взрыв был настолько силен, что сдвинул бак с места на несколько сантиметров! Медиков не очень интересовала сущность химических реакций, приводящих к образованию взрывчатки. Можно предположить, исходя из сильных окислительных свойств азотистоводородной кислоты, что имела место такая реакция: анион N3, окисляя медь, восстановился и образовал одну молекулу N2 и атом азота, который вошёл в состав аммиака. Остальная часть азид-анионов соединилась с катионами меди. Это соответствует уравнению реакции 3NaN3 + Cu + 3H2O → Cu(N3)2 + 3NaOH + N2 + NH3. С опасностью образования «бомбы в раковине» приходится считаться всем имеющим дело с растворимыми азидами металлов, в том числе и химикам, поскольку азиды используются для получения особо чистого азота, в органических синтезах, в качестве порообразователя – вспенивающего агента для получения газонаполненных материалов: пенопластов, пористой резины и т. п. Во всех подобных случаях надо проследить, чтобы растворы азида не соприкасались с тяжелыми металлами, а сливные трубки были пластмассовыми.

Пигменты и красители

По определению, пигменты (от лат. pigmentum – «краска») – это тонкоизмельченные порошкообразные красящие вещества, которые, в отличие от красителей, не растворяются ни в воде, ни в органических растворителях. Пигменты бывают природные (как правило, неорганические) и синтетические. Первым пигментом, который использовал человек, была сажа. Сажа в большем или меньшем количестве появляется везде, где горит огонь, поэтому неудивительно, что сажу начали использовать в декоративных целях примерно 20 тысяч лет назад, вскоре после изобретения способов добывать огонь. Сажу и теперь производят в огромных количествах и используют как наполнитель резины, пластмассы, для изготовления типографских красок. Сажа исключительно устойчива к внешним воздействиям; до сих пор сохранились рисунки человека каменного века, выполненные сажей на стенах пещер. Вероятно, самая знаменитая из них – пещера Ласко во Франции. Ее случайно обнаружили в 1940 г. мальчики под упавшим после бури деревом. На стенах пещеры с помощью сажи, а также красновато-коричневых природных пигментов изображено множество животных: быки, лошади, олени, бараны, медведи, зубры. Теперь в этой пещере – прекрасно оборудованный музей.

Рисунки древнего человека, выполненные природными пигментами


Самыми труднодоступными в течение многих тысячелетий были пигменты синего цвета. Вероятно, первое использование синей природной краски произошло примерно 5 тысяч лет назад. Во время раскопок шумерского города Ура Халдейского были найдены золотые и серебряные фигурки животных, украшенные ляпис-лазурью – полудрагоценным камнем, содержащим пигмент ультрамарин. Сравнительно недавно было показано, что синий цвет этого пигмента связан с присутствием в нем анион-радикала [·S3], в котором имеется неспаренный электрон (он изображен точкой). В Европе синие пигменты были настолько дорогими (их продавали буквально на вес золота), что порой специальные комиссии решали, какие именно участки росписи должны быть синего цвета. В античные времена использовали пигмент египетский синий, это был алюмосиликат меди (медное стекло). С VI–VII веков художники начали использовать природный ультрамарин, который готовили из ляпис-лазури, привозимой из Афганистана. По составу ляпис-лазурь – сложная смесь нескольких минералов, синий цвет которой придает гаюин – алюмосиликат, содержащий хлор и серу. Из килограмма лазури получали после длительной обработки всего 30 г синего пигмента. И лишь в 1704 г. был получен первый искусственный синий пигмент. Это была берлинская лазурь – гексацианоферрат железа-калия, содержащий атомы железа в разных степенях окисления: KFe+3[Fe+2(CN)6]. Синий кобальтовый пигмент – Тенарову синь (алюминат кобальта CoAl2O4) впервые получили во Франции в 1802 г., и был он в те времена очень дорогим. Однако известные к началу XIX века искусственные синие пигменты по своим качествам не могли заменить природную лазурь. В 1824 г. во Франции была обещана огромная премия в 6000 франков за способ получения искусственной лазури. Уже через четыре года премию получил Ж. Гиме; почти одновременно и независимо от него то же открытие сделал известный немецкий химик Л. Гмелин. Для получения искусственного ультрамарина прокаливали белую глину (каолин) с сульфатом калия и с углем. С тех пор природный камень перестали переводить на краску. Органический синий пигмент – индиго начали добывать еще несколько тысячелетий назад в Индии. Индиго добывали из листьев различных растений. Наибольший выход получался из растения рода Indigofera, которое произрастает в странах с тропическим влажным климатом. В Европе до середины XVII века, когда голландцы начали ввозить индиго из южных колоний, этот краситель добывали из листьев местного растения – так называемой красильной вайды. Листья замачивали водой, при этом в раствор переходил бесцветный гликозид (соединение с глюкозой) индикан. Затем водный экстракт сбраживался под действием микроорганизмов. В результате ферментативного процесса образуется глюкоза и 3-гидроксииндол (индоксил) – бесцветное соединение, которое при окислении кислородом воздуха (быстрее на прямом солнечном свету) превращается в индиго, оседающее на дно сосуда в виде синих хлопьев. Вся цепочка превращений показана на схеме.

В начале XIX века Наполеон обратился к французским ученым с предложением найти способ получения индиго из отечественного сырья и предложил за решение этой задачи баснословную по тем временам сумму – 1 млн франков. Но в те времена химики еще не были готовы взяться за эту проблему: органическая химия находилась в зачаточном состоянии. Химическое строение индиго было установлено в 1883 г. немецким химиком Адольфом фон Байером – через 18 лет после того, как он начал исследовать этот краситель и спустя 5000 лет после его открытия человеком. Как заявил Байер, он может доказать экспериментально место каждого атома в молекуле индиго! Байеру удалось также синтезировать индиго, исходя из фенилуксусной кислоты С6Н5СН2СООН, однако этот синтез не нашел практического применения. Промышленный синтез индиго начался спустя несколько лет на баденской анилино-содовой фабрике (БАСФ), которая использовала метод, разработанный Карлом Хейманом. К началу ХХ века индиго синтезировали уже тысячами тонн, что соответствует сотням тысяч гектаров индиговых плантаций. Производству индиго сильно способствовало правительственное распоряжение, по которому синее сукно германской армии обязательно красилось синтетическим индиго. Выпуск индиго достиг максимума к концу 70-х гг. ХХ века – около 20 000 тонн в год. В конце XIX века БАСФ на разработку промышленного экономически выгодного синтеза индиго затратила 3 млн марок. А фирма «Людвигсхафен» ассигновала на исследования сумму, намного превосходившую стоимость самой фирмы! Этот рекорд, вероятно, никогда не будет превзойден. Потраченные деньги вернулись сторицей. Достаточно вспомнить гималаи джинсов, выпущенных за прошедшие годы и окрашенных синтетическим индиго.

А какой был первый синтетический краситель, для которого не существует природных аналогов? В книгах по истории химии пишут, что это был мовеин. В 1856 г. английский химик Уильям Генри Перкин, которому было тогда всего 18 лет, окисляя дихроматом калия неочищенный анилин (он содержал толуидины – метилпроизводные анилина), получил вещество красивого фиолетового цвета, пригодное для окрашивания тканей. Он назвал его мовеином (от англ. mauve – «мальва», травянистое растение с крупными яркими цветами). Перкин работал в домашней лаборатории, и его цель была совершенно иной – он надеялся получить из каменноугольного дегтя хинин – средство от малярии. Вместо лекарства он получил краситель, в результате чего бросил учебу и на деньги своей семьи построил фабрику, работа которой сделала ее хозяина очень богатым человеком.

Мовеин (смесь красителей)


Следует, однако, сказать, что честь открытия первого синтетического красителя из продуктов перегонки каменного угля принадлежит польскому химику Якубу Натансону. Работая в Тарту (в то время – Дерпт, а после 1893 г. – Юрьев) он почти одновременно с Перкином, но все же чуть раньше, получил нагреванием смеси анилина и дихлорэтана в запаянной трубке вещество кроваво-красного цвета, способное окрашивать ткани. Это был краситель фуксин. Последующие исследования показали, что Натансон получил, вероятно, смесь парарозанилина с его моно– и диметилзамещенными. Сейчас фуксин применяют в основном для окрашивания нетекстильных материалов – бумаги, кожи, дерева; для приготовления чернил, цветных карандашей, типографских красок.

Паранитрозанилин


В заключение – сведения о красителях, которые к концу ХХ века производились в наибольшем количестве. Первые два места делят индиго (его используют для окраски тканей) и так называемый дисперсный синий 79 (им красят полиэфирные волокна) – по 15 000 тонн в год. За ними следуют сернистый черный 1 (краситель для хлопка) – 10 000 т/год, активный черный 5 (краситель для хлопка) – 8000 т/год и кислотный черный 194 (краситель для полиамидных волокон, шерсти и кожи) – 7000 т/год.

Магнитом – по опилкам

Казалось бы, все, что касается игрушек для маленьких детей, уже изобретено и ничего принципиально нового создать невозможно. Однако это не так. Возьмем, например, игры, развивающие способность писать, а также создавать простые рисунки. Техническое задание таково: рисунок должен быть четким, легко стираться, а сама игрушка должна быть безопасной, причем – что немаловажно – безопасной именно для детей. В продаже можно встретить такую конструкцию. В герметичной коробке под пластмассовым прозрачным экраном помещен тонкий алюминиевый порошок (алюминиевая пудра). При встряхивании экран электризуется, и на него налипает слой порошка. С помощью помещенного в коробку штифта и двухкоординатного механизма, управляемого двумя ручками, можно нарисовать довольно сложные фигуры, «процарапывая» слой алюминия, то есть удаляя порошок острием штифта. Встряхивание коробки приводит игрушку в исходное состояние. К ее очевидным недостаткам относится невозможность оторвать штифт от экрана, то есть прервать линию (поэтому буквы и цифры нарисовать практически нельзя), а также сложность создания кривых: каждая ручка по отдельности позволяет проводить линию либо вправо-влево, либо вверх-вниз. Правда, последнее обстоятельство в какой-то мере может служить и достоинством игрушки, которая хорошо развивает координацию движения. Другой вариант подобной «рисовалки» еще проще. твердый темный лист покрыт гибкой матовой полимерной пленкой. Если с помощью заостренной палочки – стила – провести на пленке черту, то она прилипнет к подложке, и черта станет видна – останется темный след. Так можно нарисовать на пленке все, что угодно. Если же с помощью тонкого стержня, расположенного между пленкой и подложкой, отделить их друг от друга, все изображения исчезнут, и можно начинать с начала.

Игрушка


И вот новая остроумная игрушка (см. рисунок). Под прозрачным экраном – светло-серый порошок, сбоку в специальном углублении – «карандаш». Если его тонким металлическим кончиком провести по экрану, слегка его касаясь, под ним останется черный след. Передвинув расположенную снизу рукоятку из одного крайнего положения в Игрушка другое, можно стереть написанное или нарисованное и вернуть игрушку в исходное положение. Как же она устроена? Даже не ломая изделие, легко установить, что в его основе – магнитное действие: внутри – тонкий железный порошок, а наконечник «карандаша» – магнитик. В исходном положении более тяжелый железный порошок «тонет», и его не видно под слоем чего-то белого. Когда же магнитик подносят к экрану, он вытягивает железные опилки на поверхность, и они оставляют темный след. Длительное сохранение рисунка доказывает, что железному порошку непросто снова «утонуть» в вязкой массе. Нижняя ручка прикреплена к намагниченному стержню, расположенному за экраном. Проводя этим магнитом вдоль экрана, мы перемещаем все опилки к задней стенке, так что передняя светлеет. Это же можно сделать иначе, просто сильно встряхнув коробку, когда она находится в горизонтальном положении: более тяжелые железные опилки осядут вниз. (Если при этом коробку перевернуть, то опилки осядут на лицевую сторону, так что почернеет эта рабочая сторона.) Если вскрыть герметичный экран, обнаружится вот что. Верхняя и нижняя (она тоже прозрачная) поверхности разделены очень тонкими пластмассовыми перегородками, образующими сетку с ячейками около 1 мм (ее можно заметить на фотографии). Эта сетка разделяет рабочее поле на множество мелких ячеек, и в каждой ячейке перемещается своя небольшая порция магнитного порошка. Попасть из одной ячейки в другую он не может. Порошок смешан вовсе не с мелом или чем-то подобным, как могло показаться вначале; на самом деле он плавает в густой белой жидкости. Жидкость эта негорючая и испаряется очень медленно. Следовательно, это не органический растворитель, а скорее всего, вода. После ее испарения остается немного органического вещества, которое можно сжечь, и негорючий белый порошок, похожий на мел. Но мел можно исключить, потому что белый порошок не растворяется в соляной кислоте. Возможный вариант – диоксид титана, TiO2 – белый пигмент, который широко используется для изготовления белил. Что же представляет собой эта густая жидкость? Вероятный ответ таков. Один из способов промышленного производства поливинилхлорида – эмульсионная полимеризация. По этому способу инициатор радикальной полимеризации (например, перекись водорода) растворен в водной фазе, а полимеризация органического мономера идет в мицеллах – крошечных капельках, образованных эмульгатором – каким-либо поверхностно-активным веществом наподобие мыла. В результате получается латекс с размерами частиц полимера 0,03–0,5 мкм. Латекс сушат в распыленном виде, получая мелкий порошок полимера. Добавляя к нему растворитель, изготавливают пасты, вязкие коллоидные растворы. Такие растворы, которые называются пластизолем, можно перерабатывать в самые разнообразные изделия. Методом макания из пластизоля можно получить перчатки, которыми пользуются электрики (поливинилхлорид – прекрасный изолятор), изоляционный слой на ручках инструментов, покрытия на стеклянных флаконах с аэрозольной упаковкой медикаментов (например, ингалипта). Заливкой пластизоля в формы изготовляют воздушные и масляные фильтры для автомобилей, обувь, уплотнительные прокладки для крышек банок и бутылок, используемых для пищевых продуктов. Напылением пластизоля можно получить защитное покрытие для днищ и сварных швов автомобилей. А искусственную кожу или моющиеся обои можно получить методом шпредирования. Что означает это странное слово? По-английски to spread – «распределять по поверхности», «промазывать», в том числе и резиной. Но написание термина показывает, что он пришел в русский язык из немецкого, в котором сочетание sp чаще всего читается как «шп» (кстати, по-немецки Spreadingmaschine – «машина для прорезинивания тканей»). Наконец, из пластизоля можно делать мячи, детские игрушки и т. п. В пластизоль часто вводят значительные количества (до 50 % по массе) минеральных наполнителей – мел, каолин, аэросил (мелкодисперсный диоксид кремния SiO2), бентонит, диоксид титана и др. Значит, для изготовления нашей игрушки можно было использовать производимый промышленностью, а потому сравнительно недорогой поливинилхлоридный пластизоль. Остается восхититься изобретательностью тех, кто эту игрушку придумал.

Какого цвета чернила?

Странный вопрос: самого разного! Но ведь само слово «чернила» подразумевает, что они должны быть черными! Действительно, раньше, когда не было ни шариковых ручек, ни синтетических красителей, писали в основном черными чернилами. Как их делали? На нижних сторонах дубовых листьев обычно к концу лета часто встречаются мягкие круглые орешки-галлы. Иногда их бывает так много, что листья тяжело свисают вниз. Сначала галлы зеленые, потом краснеют и выглядят как маленькие яблочки, прилипшие к листу. Самому дубу галлы ни к чему – они образуются на листьях дуба от укуса крохотной мушки – орехотворки. Самка мушки, откладывая яйца, ранит дубовый лист, вызывая образование на нем патологических наростов. Развивающиеся личинки находят внутри этих наростов надежную защиту. Когда орешки-галлы созреют, из них выводятся маленькие крылатые насекомые с четырьмя прозрачными клетчатыми крылышками. Галлы интересны тем, что содержат дубящее вещество – танин. Танин есть и в чае, и дубовой коре, но там его в несколько раз меньше. Еще в древности галлы называли чернильными орешками, потому что их использовали для получения чернил.

Орешек-галл


К соку из галлов добавляли железный купорос или другие соли железа. На воздухе полученный раствор приобретал глубокий фиолетово-черный цвет. Реакция эта очень чувствительная: окраска появляется даже с очень малым количеством железа. Если воду, в которой много железа (такая вода имеет обычно специфический запах и оставляет на белой раковине ржавые потеки), налить в стакан и выжать в него сок из нескольких галлов, вода окрасится в темный фиолетово-сиреневый цвет. Еще в XVII веке английский ученый Роберт Бойль установил, что «одна крупинка купороса, растворенная в таком количестве воды, которое в шесть тысяч раз превышает ее вес, способна дать с дубильным орешком пурпурную настойку» (по-английски purple означает и пурпурный, и багровый, и фиолетовый цвет). Поэтому с помощью чернильных орешков можно проверить, есть ли в питьевой или минеральной воде железо. Если появится окраска, значит, железо есть. И чем его больше, тем окраска темнее. Когда железа много, раствор получается черным. К полученным чернилам добавляли камедь – густой сок некоторых деревьев, например, вишни. Камедь придавала чернилам из галлов красивый блеск. Вот один из старинных рецептов приготовления черных чернил: камеди – 3 части, железного купороса – 2 части, чернильных орешков – 3 части, воды – 30 частей. Чернила эти очень устойчивы: сохранились, например, написанные ими средневековые рукописи. В XIX веке химики научились изготовлять синтетические красители, из которых можно было делать чернила всех цветов радуги – красные, зеленые, синие, фиолетовые. Но название у них осталось старинное, напоминающее о том, что первые чернила действительно были черного цвета. Чтобы чернила не стекали с пера, как чистая вода, в их состав вводили (и сейчас вводят – для тех, кто любит писать перьевыми ручками) загустители, например, глицерин или сахар, а чтобы чернила не портились при хранении, к ним добавляют дезинфицирующее средство, например фенол. В конце 40-х гг. ХХ века появилось и вскоре получило широкое распространение новое изобретение – шариковая ручка. Она очень удобна: вместо вечно пачкающихся и медленно сохнущих жидких чернил – трубочка с густой пастой; вместо клякс и неровных линий – тонкий равномерный след, который оставляет маленький стальной шарик. Сначала чернильную пасту для шариковых ручек делали на основе касторового масла. Это было не очень удобно: буквы сохли медленно и легко стиралась. Сейчас пасту делают из синтетической смолы и стойких красителей; написанное такой пастой не смазывается, быстро высыхает и не боится воды. Претерпел изменения и наконечник шариковой ручки – пишущий узел: шарик теперь часто делают из очень твердого вещества – карбида вольфрама, а наконечник изготовляют не из латуни, а из нержавеющей стали. Такой ручкой можно писать целый год.

«Ракета» из баллона

Многие газы, используемые в лаборатории, медицине, промышленности, хранят в стальных баллонах. Чтобы в баллон вошло как можно больше вещества, газы закачивают в них под очень высоким давлением. Еще лучше, если газ удается сделать жидким – тогда его в баллон войдет намного больше. Известно, что вещества в жидком состоянии занимают значительно меньший объем, чем в газообразном (при равной массе). Например, 1 кг жидкого пропана С3Н8 (при комнатной температуре он сжижается уже при небольшом давлении) занимает объем около 2 л, тогда как объем 1 кг газообразного пропана (при той же температуре и атмосферном давлении) – более 500 л. Однако некоторые газы сжижаются только при очень низких температурах, а при комнатной температуре они не превращаются в жидкость даже при самых высоких давлениях. Когда-то такие газы называли постоянными. Этих газов не так уж много; к ним относятся водород, азот, аргон, водород, гелий, кислород, неон, фтор, оксид азота, оксид углерода (угарный газ), метан и некоторые другие. Температура, выше которой газ не может быть превращен в жидкость, называется критической. Существование такой температуры теоретически открыл Д. И. Менделеев в 1860 г. и экспериментально исследовал ирландский ученый Томас Эндрюс в 1869 г. Например, для метана критическая температура равна минус 82,6 °С, а для пропана – плюс 96,6 °С. Так что пропан при комнатной температуре легко сжижается (при 22 °С – при повышении давления до 9 атм), а метан сделать при такой температуре жидким невозможно. Поэтому в качестве бытового баллонного газа используют не метан, а более дорогой пропан. Пропан – хорошее горючее, а главное – его можно хранить в сжиженном виде при невысоком давлении в сравнительно легких баллонах, и помещается его там намного больше, чем метана под давлением. Такие же газы, как метан, кислород, азот, приходится закачивать в толстостенные тяжелые стальные баллоны при очень высоких давлениях – примерно 15 МПа, или 150 атм (при низких давлениях газа в баллон поместится очень мало). Чтобы различить газы, баллоны окрашивают в определенный цвет: с кислородом – в голубой, с ацетиленом – в белый, с азотом – в черный, с гелием – в коричневый, с водородом – в темно-зеленый и т. д. Окрашенные в голубой цвет баллоны со сжатым кислородом можно увидеть в больницах, во время строительных и ремонтных работ.

Баллоны с газами под высоким давлением представляют определенную опасность, поэтому их хранят в строгом соответствии с правилами техники безопасности. Их нарушение может обернуться крупными неприятностями. Например, для смазывания вентилей баллонов с кислородом ни в коем случае нельзя использовать смазки на основе углеводородов: их реакция с кислородом, находящимся под высоким давлением, может привести к взрыву. Опасность представляет и водород, который используют во многих химических лабораториях. Ведь если вентиль плохо закрыть или он испортится, в помещение может попасть много водорода, который с воздухом образует взрывчатую смесь. Баллоны со сжатым водородом для безопасности прикрепляют с помощью специальных хомутов к стене или даже выносят во двор; в последнем случае газ поступает в лабораторию по тонкой металлической трубке.

Стальные баллоны со сжатым водородом


Что может произойти, если не выполнять строго меры безопасности? Вот какой случай произошел в одной лаборатории в США. Там по халатности баллон с водородом не закрепили, а просто оставили на некоторое время стоять у стены. Проходящий мимо сотрудник случайно задел баллон, и он упал. При падении вентиль на краю тяжелого баллона задел за край стола и отвалился. Из широкого отверстия со свистом стал с огромной скоростью вырываться сжатый газ. К счастью, рядом не было открытого пламени, иначе взрыв был бы неминуем. Но и без этого баллон наделал немало бед. Высокая скорость истечения водорода привела к тому, что лежащий баллон превратился в настоящую ракету. Как тяжелая торпеда, он пробил внутреннюю перегородку лаборатории, затем вторую, с огромной силой ударил во внешнюю кирпичную стену здания, пробил ее и приземлился во дворе в сотне метров от места своего старта!

Засыплем в баки алюминий?

Ограниченность запасов нефти на планете, неоднократно разражавшиеся «бензиновые кризисы» уже давно поставили перед учеными задачу найти замену традиционному топливу для автомобилей. Первые электромобили появились чуть ли не одновременно с бензиновыми, однако до сих пор подавляющее число водителей заливают в баки своих машин бензин или солярку, намного реже можно встретить автомобили, работающие на газе, а вот электромобилей, вся энергия для которых запасена в аккумуляторах, на улицах до сих пор не видно. Почему так? Все решает экономика: бензин с необыкновенной легкостью побеждает аккумуляторы по количеству энергии, запасенной на единицу массы. Теплота сгорания бензина – около 40 000 кДж/кг (примерно такая же, как у природных горючих газов), т. е. в 1 кг жидкого топлива «содержится» более 10 киловатт-часов энергии, тогда как в аккумуляторах – обычно не более 0,2 кВт-ч на 1 кг их массы; 50-кратное превосходство бензина преодолеть исключительно трудно. Тем не менее появляются все новые, иногда довольно неожиданные предложения. Например, заменить бензин… алюминием! Алюминий – очень активный металл. Если его лишить защитной оксидной пленки (это можно сделать, смочив его поверхность небольшим количеством ртути или галлия), алюминий начнет прямо на глазах окисляться, рассыпаясь в белый порошок: 2Al + 3O2 = = 2Al2O3. Если такой «активированный» алюминий внести в воду, он начнет энергично реагировать с ней, вытесняя водород: 2Al + 6H2O = 2Al(OH)3 + 3H2. В щелочной среде реакция идет с образованием растворимого алюмината NaAl(OH)4 и сопровождается выделением большого количества энергии. Если просто растворять алюминий в щелочи, энергия выделится в виде теплоты, и тогда ее трудно использовать. Но в так называемых топливных элементах можно заставить химическую реакцию вырабатывать электрический ток. Это свойство и решили использовать американские электрохимики Джон Купер и Эрвин Бэрин из Национальной лаборатории имени Лоуренса при Калифорнийском университете (США). Они создали прибор, в котором электрический ток вырабатывается в результате реакции алюминия с кислородом и водой в присутствии щелочи: 4Al + 6H2O + 4NaOH + 3O2 = 4NaAl(OH)4. Анод в топливном элементе, использующем эту реакцию, изготовлен из алюминиевой пластины с добавкой 0,05 % галлия, катод – из пористого графита с катализатором. Образующийся при работе топливного элемента алюминат натрия несложно регенерировать; при этом образуются NaOH и Al(OH)3. Гидроксид натрия возвращается в раствор, а осадок гидроксида алюминия отфильтровывается и через каждые 500–1000 км пробега извлекается из автомобиля и сдается на приемный пункт, откуда его направляют на завод для получения из него алюминия.

Результаты эксплуатации опытных батарей показали, что при движении электромобиля массой 1,3 тонны со скоростью 90 км/ч 1 кг алюминия будет израсходован через 20 км пробега (для сравнения: 1 кг бензина обычно хватает лишь на 15 км). Правда, батарея топливных элементов (их потребуется несколько десятков) займет значительно больше места, чем бензобак, зато в электромобиле не будет карбюратора, цилиндров, трансмиссии и прочих деталей, без которых не может обойтись автомобиль с двигателем внутреннего сгорания: их заменят небольшие электромоторы, расположенные прямо на ведущих колесах. Заменять алюминиевые пластины в батареях тоже придется намного реже, чем заливать в бак бензин. Вроде бы все хорошо, но есть в этом заманчивом предложении один недостаток, который не позволяет широко внедрить его в жизнь. Алюминий на заводах получают с помощью электричества. Процесс этот очень энергоемкий: на 1 кг алюминия расходуется примерно 15 кВт-ч электроэнергии. Число автомобилей в мире исчисляется сотнями миллионов, и простой расчет показывает, что для их исправного снабжения алюминием необходима 10-кратная мощность всех существующих электростанций! Значит, даже если бы новые автомобили работали со 100 %-ным КПД (чего не бывает) и человечество отказалось бы от всех других применений электричества (что также маловероятно), все равно лишь один из 10 «бензиновых» автомобилей удалось бы заменить на «алюминиевый». Вот почему во всем мире огромные количества нефти продолжают перерабатывать на бензин.

И все же алюминий нашел практическое применение в качестве топлива. Но не автомобильного, а ракетного. Ведь ракета, в отличие от автомобиля, должна нести в себе не только топливо, но и окислитель (жидкий кислород, жидкий тетраоксид азота N2O4 и т. п.). Для полного сжигания 1 кг алюминия требуется почти вчетверо меньше кислорода, чем для сжигания 1 кг керосина. Кроме того, алюминий может окисляться не только свободным кислородом, но и связанным, входящим в состав воды или углекислого газа. При «сжигании» алюминия в воде на 1 кг продуктов выделяется 8800 кДж; это в 1,8 раза меньше, чем при сгорании металла в чистом кислороде, но в 1,3 раза больше, чем при его сгорании на воздухе. Значит, в качестве окислителя такого топлива можно использовать вместо опасных и дорогостоящих соединений простую воду. Реакцию алюминия с водой можно осуществлять, например, в двигателях ракеты первой ступени. Расчеты показали, что при этом запас топлива, который требуется для предварительного разгона многоступенчатой ракеты, можно уменьшить в 1,5–2 раза по сравнению с традиционными видами топлива. А на Венере можно было бы вообще не брать на ракету запас окислителя. В атмосфере этой планеты 97 % углекислого газа, в котором алюминий сгорает с выделением 15 000 кДж на 1 кг металла: 2Al + 3CO2 = Al2O3 + 3CO.

Идея использования алюминия в качестве горючего – не новость. Еще в 1924 г. отечественный ученый и изобретатель Ф. А. Цандер предложил использовать алюминиевые элементы космического корабля в качестве дополнительного горючего. Этот смелый проект пока практически не осуществлен, зато большинство известных в настоящее время видов твердого ракетного топлива содержат металлический алюминий в виде тонко измельченного порошка. Добавление 15 % алюминия к топливу может на тысячу градусов повысить температуру продуктов сгорания (с 2200 до 3200 К); заметно возрастает и скорость истечения этих продуктов из сопла двигателя – главный энергетический показатель, определяющий эффективность ракетного топлива. В этом плане конкуренцию алюминию могут составить только литий, бериллий и магний, но все они значительно дороже алюминия.

«Резиновая древесина»

Дерево в основном состоит из целлюлозы; длинные полимерные цепи молекул целлюлозы (каждая содержит от 2500 до 3100 элементарных звеньев) закручены в спираль, жесткость которой обеспечивают внутримолекулярные водородные связи между гидроксильными группами –ОН. Водородные связи (их еще называют водородными мостиками) скрепляют между собой также соседние цепи целлюлозных молекул. Одна водородная связь довольно слаба по сравнению с другими химическими связями. Но так как мономерных звеньев (глюкозных остатков) в молекуле целлюлозы несколько тысяч, то и водородные связи, образуемые одной длинной молекулой, также исчисляются тысячами. Именно поэтому древесина такая жесткая и прочная. Однако водородные связи, скрепляющие целлюлозные цепи, можно разрушить, например, паром при высокой температуре. Тогда древесина становится гибкой. Именно так загибают, например, концы у деревянных лыж. Особенно легко водородные связи рвутся в жидком аммиаке, который связывает атомы водорода гидроксильных групп в ионы NH4+. В результате молекулы целлюлозы приобретают способность гнуться, а также скользить относительно друг друга. Такое свойство жидкого аммиака позволяет провести эффектный опыт по размягчению дерева. Для этого деревянную палочку, например от мороженого, нужно опустить на некоторое время в жидкий аммиак (он имеет температуру –33,4 °С и испаряется из обычного стакана довольно медленно; конечно, опыт можно проводить только в вытяжном шкафу). После того как палочка как следует пропитается жидким аммиаком, ее можно гнуть как угодно в любом направлении и даже свернуть в спираль – как будто она сделана не из дерева, а из мягкого свинца.

Эти спички и палочки от мороженого можно было согнуть не сломав, когда они были погружены в жидкий аммиак


Если теперь палочку вынуть из жидкости, то при комнатной температуре аммиак через несколько минут испарится, и водородные связи снова восстановятся – но уже в других местах. Палочка вновь станет жесткой, сохранив при этом ту форму, которую ей придали.

Экология по-американски и по-советски

Проблемы защиты окружающей среды от вредного воздействия промышленного производства волновали людей задолго до того, как появилась наука экология. Решались эти проблемы по-разному. Но то, что случилось в середине XIX века в США, видимо, не имеет аналогов. В 1859 г. профессор химии Гарвардского университета Эбен Хорсфорд и текстильный промышленник из города Провиденса (штат Род-Айленд) Джордж Уилсон организовали в Сиконке (штат Массачусетс) химическое предприятие. Среди его основных продуктов были удобрения и изобретенный Хорсфордом пекарский порошок, который взрыхлял тесто при выпечке. С самого начала у нового производства возникли проблемы с законодательством штата, регулировавшим допустимые пределы загрязнения воздуха. Местные жители предъявили владельцам судебный иск, мотивируя его значительными выбросами вредных веществ в атмосферу. В 1861 г. владельцы химического завода решили эту проблему самым необычным способом: им удалось добиться изменения границы между двумя соседними штатами – Массачусетсом и Род-Айлендом! При этом западная часть Сиконка, где располагался завод, отошла к Род-Айленду; в результате этот штат приобрел очень важное для своей экономики предприятие. В то же время законы Род-Айленда были не такими строгими, как в Массачусетсе, так что трубы завода могли теперь дымить на вполне законном основании…

Другая, не менее курьезная история произошла в США в городе Филадельфии, через который протекают реки Делавэр и Скулкилл. Последняя давала городу примерно пятую часть питьевой воды. На берегу этой реки находились различные промышленные предприятия, которые сливали в воду свои отходы. В результате запах и вкус питьевой воды, взятой из реки, даже после хлорирования были настолько отвратительными, что было решено попробовать, не поможет ли тут озонирование воды. Озон, который буквально «сжигает» большинство органических соединений, превращая их в безвредные углекислый газ и воду, сделал свое дело: вода стала пригодной для питья.

Но вот парадокс: уже после обработки озоном воду продолжали хлорировать! Делали это не по глупости и не для перестраховки, а лишь для того, чтобы не нарушать закон. По закону же питьевая вода должна была попадать к потребителю после обязательного хлорирования. Никакой замены хлору законом не предусматривалось. Ничего плохого, кстати, хлорирование не давало: озон уже разрушил органические примеси в воде, а добавленный хлор со временем бесследно улетучивался и не приводил к появлению какого-либо запаха или привкуса. Конец этой истории тоже был «антинаучным». Когда под нажимом властей владельцы различных предприятий вынуждены были прекратить сброс в Скулкилл неочищенных промышленных отходов, станция озонирования была закрыта. Хотя логичнее было бы закрыть станцию хлорирования: как показала практика, озон значительно лучше хлора очищает питьевую воду. В настоящее время озонирование водопроводной воды применяется во все более широких масштабах. Ограничивает применение озона лишь более высокая его стоимость по сравнению с хлором.

А вот какая история произошла в нашей стране. В конце ХХ века ученые забили тревогу: в земной атмосфере появились и начали расти «дыры» в озоновом слое. Причины этого явления полностью пока не известны. Предполагают, что помимо природных факторов, влияющих на озоновый слой, появились и искусственные. Хорошо известный пример – фреоны. Фреоны – это углеводороды, в которых атомы водорода (некоторые или все) замещены атомами фтора и хлора. Фреоны не ядовиты, многие из них – летучие жидкости или легко сжижающиеся газы. Потому фреоны широко использовали в холодильной технике и для заполнения аэрозольных баллончиков, которые во всем мире выпускаются в огромном количестве: в них заправляют дезодоранты, лаки для волос, освежители воздуха, средства для мытья окон, полировки мебели и т. д. и т. п. Понятно, что в конечном счете все эти фреоны попадают в воздух; так, только в 1973 г. в атмосферу было выпущено 230 тысяч тонн фреонов! Попавшие в воздух фреоны медленно, в течение многих лет и даже десятилетий, поднимаются с потоками воздуха все выше и выше, достигая наконец озонового слоя. Тут-то они и проявляют свое коварное действие: разлагаясь под действием солнечной радиации, фреоны высвобождают атомы хлора, которые начинают каталитически разлагать озон, что и приводит к снижению его концентрации. Пока не известно в точности, в какой степени именно фреоны повинны в «озоновых дырах», и тем не менее уже давно пытаются принимать меры, причем самые энергичные. Например, с 15 декабря 1978 г. в США было запрещено производство практически всех аэрозольных баллончиков, содержащих фреоны.

Казалось бы, надо делать все возможное, чтобы снизить выбросы фреонов в атмосферу. Но вот какая история произошла в конце 1980-х гг. в Особом конструкторском бюро одного московского института. Там в лаборатории использовали газообразный фреон. Его хранили в стальных баллонах под большим давлением. Регулярно, раз в два месяца, эти баллоны заменяли новыми. Как это было принято, для получения с завода шести новых, полностью заполненных баллонов с фреоном, необходимо было сдать шесть пустых. Однако случалось так, что к моменту замены (это могло случиться, например, после летних отпусков) был использован не весь фреон. Казалось бы, что за беда – сдай часть баллонов или перенеси обмен еще на два месяца. Но в условиях плановой социалистической экономики это грозило серьезными последствиями: раз весь фреон за два месяца не использовали, значит, он в таких количествах предприятию не нужен! Многим советским снабженцам эта ситуация была хорошо знакома: если к сроку не использовать выделенные фонды (деньги, реактивы, оборудование и т. п.), то в следующий раз можно их получить в сильно урезанном количестве или даже не получить вовсе! Так плановой экономике работать проще. Отсюда – огромные запасы сверхнормативного оборудования, материалов, реактивов на советских предприятиях: они появлялись по принципу «бери, когда дают» – на всякий случай, про запас, и чем больше, тем лучше.

Руководитель лаборатории, чтобы выйти из положения, отдал распоряжение рабочим выкатить баллоны во двор и открыть вентили. И целый день сотрудники слышали легкое шипение улетающего в атмосферу фреона. Что поделать – производственная необходимость! Успокаивали себя тем, что шесть баллонов сжатого фреона – не так много по сравнению с целой атмосферой. Как тут было не вспомнить чеховский рассказ «Злоумышленник», герой которого откручивал гайки с железнодорожного полотна.

Случались и значительно более печальные (и опасные) примеры вопиющей экологической безграмотности. Рабочий одного электролампового завода вынес с территории довольно много ртути; сделал он это в несколько приемов, так как ведро, заполненное до краев ртутью, весит около 150 кг! Причин для кражи было две. Во-первых, больше с завода вынести было нечего. Во-вторых, ртуть стоит дорого (в десятки раз дороже меди), так что была надежда выгодно ее продать. Однако охотников купить несколько десятков килограммов отравы не нашлось. И тогда какой-то «знаток» посоветовал рабочему использовать тяжелую жидкость на своем приусадебном участке – в то время он как раз устанавливал столбы для ограды. Ему сказали, что если выкопать в земле небольшую ямку, а потом залить в нее ртуть, то она своей тяжестью «продавит землю». Понятно, что земля никак не продавилась, но в результате вся округа была отравлена ртутью, вероятно на много веков вперед: ртуть в земле очень медленно превращается в растворимые соединения, а подземные воды разносят их на большие расстояния. Хуже того: металлическая ртуть может превращаться в земле в органические соединения, которые значительно более токсичны. Об этой опасности следует рассказать чуть подробнее. Чрезвычайно ядовитые производные ртути образуются в результате так называемого биологического метилирования. Этот процесс происходит под действием микроорганизмов и характерен не только для ртути, но и для мышьяка, селена, теллура. Ртуть и ее неорганические соединения, которые широко используются на многих производствах, со сточными водами могут попасть на дно водоемов. Обитающие там микроорганизмы превращают их в диметилртуть (CH3)2Hg, которая относится к числу наиболее ядовитых веществ. Диметилртуть далее легко переходит в водорастворимый катион HgCH3+. Оба вещества поглощаются водными организмами и попадают в пищевую цепочку: сначала они накапливаются в растениях и мельчайших организмах, затем – в рыбах. Метилированная ртуть очень медленно выводится из организма – месяцами у людей и годами у рыб. Поэтому концентрация ртути в биологической цепочке непрерывно увеличивается, так что в рыбах-хищниках, которые питаются другими рыбами, ртути может оказаться в тысячи раз больше, чем в воде, из которой она выловлена. Именно этим объясняется так называемая болезнь Минамата – по названию приморского города в Японии, в котором за несколько лет от отравления ртутью умерли 50 человек и многие родившиеся дети имели врожденные уродства. Опасность оказалась так велика, что в некоторых водоемах пришлось приостановить лов рыбы – настолько она оказалась «нашпигованной» ртутью. Страдают от поедания отравленной рыбы не только люди, но и рыбы, тюлени.

Химик находит выход

С еще одной, причем довольно неожиданной, экологической проблемой столкнулся сотрудник Центра научного образования Кейптаунского университета (ЮАР) П. Э. Спаро. Одна из задач Центра состоит в помощи местным школам, которым требуется избавиться от старых химикатов. Такая работа может быть связано с серьезной опасностью; например, в некоторых давно хранящихся реактивах (диэтиловом эфире и др.) могут накапливаться взрывчатые вещества. Непросто утилизовать также запасы калия и других очень активных щелочных металлов. В данном случае опасность была связана не со взрывом, а с отравлением, но Спаро нашел остроумный выход из положения. Что же произошло?

Сотрудники Центра были несколько ошеломлены, когда получили для утилизации наполовину заполненную алюминиевую канистру с жидким сернистым газом. Как следовало из этикетки, она и содержала первоначально 500 г вещества. Ее металлическая завинчивающаяся крышка сильно проржавела и «примерзла» к канистре намертво. Было такое ощущение, что им подсунули для обезвреживания настоящую бомбу! Действительно, при атмосферном давлении SO2 кипит при температуре минус 10 °С. Но в Южной Африке жарко (Кейптаун находится примерно на широте Багдада, только в Южном полушарии), поэтому давление в канистре вполне могло превысить 5 атм (такое давление над жидким SO2 достигается при 32 °С). Начали думать, что можно предпринять. Предложения были самые интересные. Например, поставить канистру посреди футбольного поля и метким выстрелом пробить в ней дыру. Но ЮАР – не американский Дикий Запад середины XIX века, да и пускать тяжелый ядовитый газ в городскую атмосферу тоже не годится. Предельно допустимая концентрация SO2 в атмосферном воздухе составляет 0,5 мг/м3, следовательно, содержимое канистры могло отравить около миллиона кубометров воздуха!

И тут Спаро вспомнил, что сернистый газ хорошо растворяется в воде (115 г в литре воды при 20 °С), образуя сернистую кислоту. В то же время воду в бассейнах (домашние бассейны в Кейптауне – не очень большая редкость) предписано обрабатывать для дезинфекции порошком гипохлорита кальция, который содержит так называемый активный хлор (гипохлорит кальция – один из компонентов хлорной извести). Чтобы вещество медленно выделяло хлор и было активным, необходимо, чтобы вода была чуть подкислена, то есть нужно поддерживать в ней достаточно низкий уровень рН. В кислой среде гипохлорит разлагается: Ca(OCl)2+ 2H+ = Ca2+ + Cl2O + H2O. Оксид Cl2O, подобно хлору, обладает бактерицидным действием.

Итак, автор принес канистру домой, надел купальный костюм и маску и, держа в одной руке канистру, а в другой – тяжелый гаечный ключ, прыгнул в свой бассейн. Находясь под водой, он безуспешно пытался отвернуть пробку. При этом, как он вспоминает, за ним наблюдали двое: жена – очень волнуясь, а собака – с искренним интересом.

Отвернуть пробку так и не удалось. Но оказалось, что пустого места в канистре достаточно, чтобы она плавала на воде, и тут же возникла новая идея. Сернистый газ замерзает при температуре ниже –75,5 °С. Почему бы не заморозить канистру (для этого можно использовать жидкий азот, температура которого равна –196 °С), продырявить ее и бросить в воду – тогда жидкий сернистый газ, нагреваясь и испаряясь, будет постепенно растворяться в воде бассейна. Чтобы снизить расход жидкого азота, Спаро поставил канистру в домашний морозильник, температура в котором была около –20 °С. (При этом опасения жены несколько изменили свою направленность – она стала волноваться уже за сохранность холодильника и продуктов в нем.)

На следующий день автор принес из университета сосуд Дьюара с двумя литрами жидкого азота. Этого количества оказалось достаточно, чтобы за 5 минут канистра охладилась значительно ниже, чем в морозильнике, а ее содержимое затвердело. Попросив жену отойти подальше (собака на эту просьбу не отреагировала) и сделав глубокий вдох, отважный химик, вооружившись большой отверткой, погрузил канистру в воду и пробил в ней дыру. Его мысли при этом вертелись вокруг вопроса, насколько обоснованны законы физической химии; оказывается, даже профессиональные ученые в определенных ситуациях могут в этом сомневаться… К счастью, законы сработали отменно: из отверстия не вышло ни миллиграмма замороженного ядовитого газа. Действительно, уже при температуре плавления (–75,5 °С) давление паров SO2 снижается в 80 раз по сравнению с атмосферным, а при –100 °С – в тысячу раз и составляет менее 1 мм рт. ст. Так что с понижением давления не ядовитый газ должен был выходить наружу, а наоборот – в пробитое отверстие должен был сразу зайти воздух (а в условиях «эксперимента» – вода). Удивительно другое: как канистра выдержала такое снижение давления в ней и не сплющилась в процессе охлаждения! Возможно, в ней, кроме жидкого SO2 и его паров, был также воздух.

Некоторое время холодная канистра не представляла опасности. Так что можно было спокойно привязать к ней кирпич и бросить в бассейн. Кирпич лег на дно, а канистра висела между дном и поверхностью воды. Вскоре ее содержимое достаточно разогрелось, давление паров SO2 превысило атмосферное (плюс небольшое давление столба воды), и из отверстия начали выделяться пузырьки газа. В чистой воде было видно, что, поднимаясь, они успевали растворяться, пройдя всего четверть метра, и потому не достигали поверхности. Через 10 минут весь сернистый газ оказался растворенным в воде; никаких следов его запаха в воздухе не чувствовалось, а на опущенном в воду рН-индикаторе надпись «Добавить кислоту» сменилась на «Нормально». Так химику удалось справиться с задачей, и при этом получить моральное удовлетворение от применения на практике своих знаний. Все это он описал в заметке «Грандиозный эксперимент с канистрой, или Как обезвредить бомбу и перестать беспокоиться» – очевидная ассоциация с книгой Дейла Карнеги. Статья была опубликована в «Журнале химического образования», издающемся Американским химическим обществом – в назидание другим химикам.

Интересно подсчитать концентрацию сернистой кислоты в воде. Домашние бассейны обычно невелики. Пусть его площадь составляет 25 м2, а глубина 2 м, тогда объем воды равен 50 м3. Если в канистре было 320 г SO2 (5 моль), то концентрация его в воде составила бы всего 10–4 моль/л (6,4 мг/л). Сернистая кислота относится к кислотам средней силы. При таком разбавлении ее диссоциация по первой ступени H2SO3 = H+ + HSO3 проходит практически полностью. Поэтому концентрация ионов водорода в растворе также будет составлять 10–4 моль/л, что дает слабокислую среду с рН = 4.

«Консервированные кристаллы»

В 1989 г. химик из Ленинграда (ныне Петербург) Н. А. Петрова, открыв консервы с дальневосточной треской, обнаружила на рыбьих костях странные комочки. Под сильной лупой эти комочки оказались твердыми прозрачными кристалликами. Испытания показали, что это минерал струвит – двойной фосфат магния и аммония, содержащий кристаллизационную воду: NH4MgPO4 · 6H2O. Минерал был назван в честь русского дипломата Генриха Струве (1772–1851).

В природе струвит встречается редко, но вещество этого состава хорошо известно химикам-аналитикам. Осаждение двойного фосфата аммония – магния используют как качественную реакцию на фосфат-анионы или на катионы магния. Реакцию проводят в слабощелочной среде, при которой фосфаты находятся в растворе в виде гидрофосфата: MgCl2 + Na2HPO4 + NH4OH + 5H2O = = NH4MgPO4 · 6H2O + 2NaCl. Получается белый мелкокристаллический осадок, который практически нерастворим в воде, но растворяется в разбавленных кислотах. Образование осадка может происходить не сразу; чтобы ускорить кристаллизацию, стенку пробирки надо потереть стеклянной палочкой. Этот старинный прием создает на стенках центры кристаллизации, и дальше выпадение осадка идет легко. При сильном увеличении в осадке видны кристаллы характерной формы. С помощью этой простой реакции можно обнаружить фосфат-анионы в удобрениях и даже в напитках типа «Пепси» или «Фанта» (в небольших концентрациях в них добавляют свободную фосфорную кислоту). Фосфат магния – аммония имеет довольно редкую особенность: его растворимость в воде уменьшается при повышении температуры – от 0,52 г/л при 20 °С до 0,19 г/л при 80 °С. Как же появился струвит в консервах? То, что в рыбьих костях много фосфора, общеизвестно. Богатую фосфором рыбную муку используют как пищевую добавку к корму сельскохозяйственных животных и птиц. Ну а магний в небольших количествах мог попасть в консервы с морской водой. Вот при длительном хранении и выросли в банке мелкие кристаллики. Кстати, для человека они совершенно безвредны.

Кристаллы струвита под микроскопом


Не исключено, однако, что кристаллы фосфата выросли на костях еще при жизни рыбы. Ведь кристаллы струвита встречаются при мочекаменной болезни у собак и кошек, а также у людей – в почках и в мочевом пузыре. У рыб мочевого пузыря нет, так что если отложение струвита на костях произошло еще в живой рыбе, то это можно рассматривать как некий аналог подагры – болезни, которую в народе называют отложением солей.

В чем растворяется золото?

Самородное золото, вероятно, было первым металлом, с которым познакомился человек. С древнейших времен блеск золота сопоставлялся с блеском солнца, на латыни – sol; отсюда и русское название этого металла. Английское gold, немецкое Gold, голландское goud, шведское и датское guld (отсюда, кстати, гульдены) в европейских языках связаны с индоевропейским корнем ghel и даже с греческим богом солнца Гелиосом. Латинское название золота aurum означает «желтое» и родственно с Авророй (Aurora) – утренней зарей. Яркий желтый цвет ассоциируется с золотом и в поэтических произведениях: «В багрец и золото одетые леса…» (А. С. Пушкин). У алхимиков золото считалось царем металлов, его символом было лучезарное солнце, а символом серебра – луна (в этой связи интересно, что отношение цены золота и серебра в Древнем Египте соответствовало отношению солнечного года к лунному месяцу). Когда алхимики открыли царскую водку – смесь соляной и азотной кислот, они с удивлением обнаружили, что она растворяет золото! Так появился символический средневековый рисунок: лев (царская водка), пожирающий солнце (золото). В современных обозначениях процесс растворения золота в царской водке выглядит несколько иначе: Au + 4HCl + HNO3 = HAuCl4 + NO +2H2O. После осторожного выпаривания такого раствора выделяются желтые кристаллы комплексной золотохлористоводородной кислоты HAuCl4 · 3H2O.

Но только ли царская водка способна воздействовать на золото? Оказывается, золото не может сопротивляться действию многих веществ и смесей. Из простых веществ на золото действует озон (образуется коричневый оксид Au2O3), а при нагревании оно реагирует с газообразными фтором, хлором, бромом и йодом с образованием тригалогенидов: оранжевого фторида AuF3, красного хлорида AuCl3, коричневого бромида AuBr3 и темно-зеленого йодида AuI3 (поэтому золотые кольца боятся йодной настойки; как показал эксперимент, йодная настойка довольно быстро растворяет золотое покрытие с позолоченных электрических контактов). Йодид AuI3 при повышенной температуре отщепляет иод с образованием светло-желтых кристаллов AuI. С хлорной водой золото реагирует уже при комнатной температуре с образованием HАuCl4. Растворяется золото и в жидком броме.

Помимо царской водки золото растворяется также в горячей концентрированной селеновой кислоте H2SeO4, которая при этом восстанавливается до селенистой: 2Au + 6H2SeO4 = Au2(SeO4)3 +3H2SeO3 + 3H2O. Если к горячей серной кислоте добавить окислитель (нитрат, перманганат, хромовую кислоту, диоксид марганца и др.), такой раствор тоже будет действовать на золото. Намного легче золото растворяется уже при комнатной температуре (при доступе воздуха) в водных растворах цианидов щелочных и щелочноземельных металлов. Реакции способствует образование очень прочных комплексных цианидов: 4Au + 8КCN + 2H2O + O2 = 4К[Au(CN)2] + 4КOH. Этот процесс (цианирование), открытый в 1843 г. русским инженером П. Р. Багратионом, лежит в основе важного промышленного способа извлечения золота из руд. А при анодном растворении золота в растворе щелочи (КОН) образуется аурат калия K[AuO2] и анодный осадок Au2O3. Как видим, золото далеко не так благородно, как это принято считать.

Алхимическая аллегория растворения золота в царской водке


Оно реагирует со многими химическими веществами. Правда, в быту с этим явлением, как правило, можно не считаться. Ведь трудно представить, чтобы кто-то опустил палец с золотым кольцом в горячий концентрированный раствор селеновой кислоты. Хотя лучше избегать контакта золотых изделий с йодной настойкой – водно-спиртовым раствором йода и йодида калия, который действует на золото: 2Au + I2 + 2KI = 2K[AuI2] (и тем более на медь или серебро, с которыми золото сплавлено). А вот работникам цианидных и других производств необходимо считаться с возможностью коррозии золотых изделий!

Загадочный элемент – полоний

Открытие полония

Мало кому известно, что существование этого элемента предсказал в 1870 г. Д. И. Менделеев, а в 1889 г. он уточнил свойства не известного тогда элемента с порядковым номером 84. Менделеев назвал его двителлуром (на санскрите – «второй теллур») и предположил, что атомная масса нового элемента будет близка к 212. Конечно, Менделеев не мог предвидеть, что этот элемент окажется неустойчивым: в те времена вера в возможность превращения элементов считалась алхимическим пережитком.

Полоний – первый радиоактивный элемент, открытый в 1898 г. супругами Кюри. Когда Мария Склодовская-Кюри обнаружила сильную радиоактивность некоторых минералов, она начала поиски элемента, ответственного за это свойство. Мария тестировала на радиацию одно вещество за другим – все, которые она только могла достать, одолжить в химических лабораториях, выпросить в минералогических музеях (она не только аккуратно возвратила образцы владельцам, но и выразила им благодарность в своей публикации). Из веществ, не содержащих уран, активность проявили только соединения тория. Когда оказалось, что сильную активность проявляет урановая смоляная руда (в основном это оксид U3O8), Мария Кюри, которая была прекрасным химиком, решила выделить из этого соединения источник радиации.

Начала она с традиционного качественного химического анализа минерала по стандартной схеме, которая была предложена немецким химиком-аналитиком Карлом Ремигиусом Фрезениусом еще в 1841 г. и по которой многие поколения студентов в течение почти полутора веков определяли катионы металлов так называемым сероводородным методом. Вначале у нее было около 100 г минерала; затем американские геологи подарили ее мужу Пьеру Кюри еще 500 г. Проводя систематический анализ, Мария каждый раз проверяла отдельные фракции (осадки и растворы) на радиоактивность с помощью чувствительного прибора – электрометра, изобретенного ее мужем. В ходе химического анализа неактивные фракции отбрасывались, активные анализировались дальше. Марии помогал один из руководителей химического практикума в Школе физики и промышленной химии в Париже Густав Бемон. Мария растворила минерал в азотной кислоте, выпарила раствор досуха, остаток вновь растворила в воде и пропустила через раствор ток сероводорода. Выпал черный осадок, который мог содержать нерастворимые сульфиды свинца, висмута, меди, мышьяка, сурьмы и ряда других металлов. Осадок был радиоактивным, хотя уран и торий остались в растворе. Это бы первый признак существования нового радиоактивного элемента. Мария обработала осадок сульфидом аммония, чтобы отделить мышьяк и сурьму – они в этих условиях образуют растворимые тиосоли, например (NH4)3AsS4 и (NH4)3SbS3. Раствор не обнаружил радиоактивности и был отброшен. В осадке остались сульфиды свинца, висмута и меди. Этот осадок Мария снова растворили в азотной кислоте, добавила к раствору серную кислоту и выпарила на пламени горелки до появления густых белых паров SO3. В этих условиях летучая азотная кислота полностью удаляется, а нитраты металлов превращаются в сульфаты. После охлаждения смеси и добавления холодной воды в осадке оказался нерастворимый сульфат свинца PbSO4 – активности в нем не было, и он был отброшен. К отфильтрованному раствору добавили крепкий раствор аммиака. При этом снова выпал осадок, на этот раз – белого цвета; он содержал смесь основного сульфата висмута (BiO)2SO4 и гидроксида висмута Bi(OH)3. В растворе же остался комплексный аммиакат меди [Cu(NH3)4]SO4 ярко-синего цвета. Белый осадок, в отличие от раствора, оказался сильно радиоактивным. Поскольку свинец и медь были уже отделены, в белом осадке был висмут и примесь нового элемента.

Мария снова перевела белый осадок в темно-коричневый сульфид Bi2S3, высушила его и нагрела в вакуумированной ампуле. Сульфид висмута при этом не изменился (он устойчив к нагреву и лишь при 685 °С плавится), однако из осадка выделились какие-то пары, которые осели в виде черной пленки на холодной части ампулы. Пленка была сильно радиоактивной и, очевидно, содержала новый химический элемент – аналог висмута в периодической таблице. Это был полоний – в то время третий после урана и тория радиоактивный элемент (в том же 1898 г. был открыт также радий). Как потом выяснилось, сульфид полония при нагревании в вакууме легко разлагается и возгоняется – его летучесть примерно такая же, как у цинка. Этим свойством до сих пор пользуются для получения металлического полония.

Супруги Кюри не спешили дать имя новому элементу. Ведь черного налета на стекле было так мало, что его невозможно было даже взвесить, а одной радиоактивности для признания вещества новым элементом было недостаточно. Коллега и друг супругов Кюри французский химик Эжен Анатоль Демарсе, специалист в области спектрального анализа (в 1901 г. он открыл этим методом европий), исследовал спектр испускания черного налета и не обнаружил в нем новых линий, которые могли бы свидетельствовать о присутствии нового элемента. Спектральный анализ – один из самых чувствительных методов, значит, в налете это вещество содержалось в исключительно малых количествах. Поэтому в статье, опубликованной 18 июля 1898 г., супруги Кюри написали осторожно: «Мы думаем, что вещество, выделенное нами из урановой смолки, содержит не известный пока металл, являющийся по аналитическим свойствам аналогом висмута. Если существование нового металла будет подтверждено, мы предлагаем назвать его полонием, по родине одного из нас» (Polonia на латыни – Польша). Это единственный случай, когда еще не идентифицированный новый химический элемент уже имел название. Получить весомые количества полония долго не удавалось – его в урановой руде было слишком мало. Лишь в 1910 г. путем переработки больших количеств руды удалось получить образец, содержащий 0,1 мг полония. Но прославило супругов Кюри открытие не полония, а радия.

Изотопы полония и их излучение

Для полония известно 35 изотопов, включая 8 ядерных изомеров (эти изомеры отличаются строением ядра и имеют разные периоды полураспада) с массовыми числами от 192 до 218. Все они радиоактивны с периодами полураспада (t1/2) от 3×10–7 секунды для 212Ро до 102 лет для 209Ро. Семь изотопов полония с массовыми числами от 210 до 218 встречаются в природе в очень малых количествах как члены радиоактивных рядов тория, урана – радия, и урана – актиния. Эти изотопы имеют свои исторические названия, принятые еще в начале ХХ века, когда их получали в результате цепочки распадов из «родительского» элемента – радия, тория или актиния: RaA (современное обозначение 218Ро), RaC' (214Po), RaF (210Po), ThA (216Po), ThC' (212Po), AcA (215Po) и AcC' (211Po). Все остальные изотопы полония получены только искусственно. Наиболее долгоживущие из них – 209Ро, 208Ро и 210Ро с периодами полураспада соответственно 102 года, 2,9 года и 138,4 суток. Это значит, что полония-210 (главного нашего «героя») через 4,5 месяца останется лишь половина, через 14 месяцев – около 10 %, через 2 года – менее 3 %, через 3 года – 0,4 %, через 4 года – всего 0,1 %. Легкие изотопы полония – чистые альфа-излучатели: при их распаде из ядра вылетают с огромной скоростью α-частицы (ядра гелия) с энергией от 6 до 7 МэВ (мегаэлектрон-вольт; для сравнения: энергия самой прочной химической связи в миллион раз меньше). При α-распаде масса ядра уменьшается на 4 единицы, а заряд ядра – на 2 (смещение на две клетки периодической таблицы влево). Начиная с 198Ро к α-распаду добавляется электронный захват (иначе – К-захват), при котором электрон с самой внутренней электронной оболочки атома (К-оболочки) захватывается ядром. При этом один протон превращается в нейтрон, масса ядра не меняется, а заряд уменьшается на единицу (смещение на одну клетку в таблице влево). Распад более тяжелых изотопов начиная с 199Ро сопровождается гамма-излучением, энергия которого может составлять от 0,17 до 2,6 МэВ. Два самых тяжелых изотопа, 215Ро и 218Ро, в небольшой степени обладают также бета-активностью. При β-распаде нейтрон в ядре превращается в протон и электрон, последний и вылетает из ядра. При этом массовое число атома остается неизменным, а заряд увеличивается на единицу (смещение на одну клетку вправо). Так, распад самого тяжелого изотопа полония более чем на 99 % происходит путем α-распада и на 0,018 % – путем β-распада: 218Ро → 218At + е. Поражающее действие проникающей радиации сильно зависит от ее интенсивности и типа (так, альфа-частицы намного опаснее бета-частиц при той же дозе). У 210Ро почти 100 % излучения приходится на α-частицы с энергией 5,3 МэВ. Такие частицы проходят в воздухе 3,8 см, но полностью задерживаются алюминиевой фольгой толщиной 0,03 мм и даже листком бумаги! В биологических тканях они проходят менее 0,05 мм, разрушая при этом соседние клетки. При распаде 210Ро возникает и γ-излучение с энергией 0,8 МэВ и большой проникающей способностью. Чтобы ослабить его в 10 раз, требуется уже 3 см слоя свинца, а для стократного ослабления понадобится свинцовая плита толщиной 5,5 см или полуметровый слой бетона. Однако γ-излучение 210Ро очень слабое, его интенсивность составляет всего лишь 0,0011 % от общей радиации, поэтому зарегистрировать его трудно. Малый пробег α-частиц в веществе и очень слабое γ-излучение делают обнаружение микроколичеств полония-210 сложной задачей. Даже если этот нуклид находится на поверхности какого-либо предмета, его сможет обнаружить не всякий счетчик Гейгера, потому что α-частицы задерживаются даже очень тонкой фольгой. Для обнаружения 210Ро можно провести анализ с помощью сцинтилляционного счетчика. Сцинтилляция (от лат. scintillatio – «сверкание») – слабая вспышка света, возникающая в некоторых веществах под действием частиц высокой энергии. Другой чувствительный метод обнаружения – масс-спектрометрия. Мы живем в мире радиации, однако важен ее уровень. Вот пример. Природный калий состоит из трех изотопов – двух стабильных (39К, его в природном калии 93,26 % – и 41К, его 6,73 %) и одного радиоактивного, 40К (0,012 %, период полураспада 1,3 млрд лет). Человек, весящий 70 кг, содержит 140 г калия, из которых около 17 мг приходится на калий-40. Каждую секунду в теле этого человека происходит 4000 актов распада 40К (и еще столько же – из-за распада содержащегося в теле «радиоуглерода» 14С) с выделением частиц высокой энергии. Жизнь на Земле всегда сопровождалась такой «внутренней» радиацией (а также внешней, в том числе от космических лучей), и нельзя исключить, что она играла важную роль в эволюции, вызывая мутации. Но если бы период полураспада 40К был не 1,3 млрд лет, а 1,3 года, то те же 17 мг в теле человека убили бы его в считаные часы.

Полоний в природе

Кларк полония (среднее содержание в земной коре) составляет ничтожную величину: 2 · 10–14 %. Образуется полоний в результате радиоактивного распада долгоживущих радиоактивных элементов – тория и урана, являясь промежуточным членом длинных цепочек распада (они называются также радиоактивными рядами).

В ряду, родоначальником которого является 232Th (t1/2 = 14 млрд. лет), а конечным продуктом – стабильный изотоп свинца 208Рb, появляются в качестве 6-го и 9-го звеньев изотопы полония: 216Ро (t1/2 = 0,15 с) и 212Ро (t1/2 = 3 · 10–7 с). Очень малое время жизни этих изотопов означает, что в природе они практически отсутствуют. В ряду урана – актиния родоначальником является 235U (t1/2 = 700 млн. лет), а конечным стабильным продуктом – 207Pb. В этом ряду изотопов полония тоже два, и они оба тоже короткоживущие: 215Ро (t1/2 = 1,8 · 10–3 с) и 211Ро (t1/2 = 0,5 с). Урана-235 в природном уране всего 0,72 %, время жизни 211Ро и 215Ро малы, так что и этих изотопов полония в природе тоже практически нет. Ощутимые количества полония могут накопиться только в ряду урана – радия, родоначальником которого является 238U, а конечным продуктом – 206Pb. Поэтому природный полоний представлен практически только нуклидом 210Ро. В этом ряду присутствуют также радий и радон. Приведем этот ряд (в несколько упрощенном виде) полностью; над стрелками показан период полураспада и его тип.

Если исключить наиболее короткоживущие члены, получим упрощенный ряд:

Прежде чем перейти к герою повествования – полонию-210, необходимо сказать об одном из его предшественников – радоне. Это благородный (раньше говорили – инертный) газ, поэтому он постепенно, не вступая в химические реакции, просачивается из глубин земного шара к поверхности (в разных географических районах – в разных количествах) и попадает в воздух. На него приходится значительная часть дозы облучения, которую получает средний человек (в некоторых регионах – до 50 %). Основная часть радона, попавшая при вдохе в трахею, бронхи и легкие, при выдохе выделяется обратно. Однако полоний-210, успевший образоваться при распаде радона, оседает в дыхательных путях, откуда разносится по организму. Радон хорошо растворяется в воде (в 22 раза лучше, чем азот), поэтому часть радона, попавшая в легкие при вдохе, может проникнуть через стенки легочных альвеол, раствориться в крови и затем распасться уже внутри организма с образованием полония.

Много ли полония может образоваться из радона (а в конечном счете из урана)? Уран-238 распадается очень медленно – в течение многих миллиардов лет, что сопоставимо с возрастом Земли. Если атомы урана будут находиться в земной коре в составе того или иного минерала достаточно долго – миллионы лет и газообразный радон не будет из минерала улетучиваться, то наступит стационарное состояние (радиохимики называют его равновесием). Это означает, что каждый член ряда образуется из своих предшественников с точно такой же скоростью, с которой распадается сам. При этом его количество в минерале в течение обозримого времени не меняется и зависит от периода полураспада этого нуклида. Очевидно, что чем меньше период полураспада члена ряда, тем меньше его будет в смеси. Нетрудно показать, что отношение числа атомов N материнского элемента (урана-238) и его дочерних атомов равно отношению их периодов полураспада, т. е., например N(238U) : N(226Ra) : N(210Po) = t1/2(U) : t1/2(Ra) : t1/2(Po) = 4,5 · 109 : 1,6 · 103 : 0,38. Сделав небольшую поправку на различие атомных масс этих нуклидов (238, 226 и 210), легко подсчитать, что при равновесии на 1 тонну чистого урана в его рудах приходится примерно 0,34 г радия и лишь около 0,07 мг 210Ро. И если весь полоний из тонны урана выделить (при условии, что радон не улетучивается), то получится шарик радиусом 0,1 мм. Но эта ничтожная крупинка ежесекундно излучает 12 млрд α-частиц! Неудивительно, что Мария Кюри не смогла получить ощутимые количества полония, но смогла его обнаружить по радиоактивности. С радием ей повезло больше: его в урановых рудах по массе почти в 5000 раз больше. Можно отметить в связи с этим, что дочь Марии Кюри Ирэн в 1925 г. защитила докторскую диссертацию, посвящённую α-излучению полония. Она и ее муж Фредерик (в будущем оба – лауреаты Нобелевской премии по химии) располагали мощным для того времени полониевым источником α-частиц. Зная период полураспада полония-210, нетрудно подсчитать, что каждые сутки распадается примерно 0,5 % имеющегося в наличии полония и образуется столько же свинца. Если с образцом полония не проводили никаких манипуляций, то, проанализировав его на содержание полония и свинца, можно определить, как давно этот образец был получен. Например, через 4,5 месяца количество атомов полония и свинца в образце сравняются, через 9 месяцев свинца будет уже втрое больше и т. д.

Полоний и человек

Полоний при попадании в организм считается одним из самых ядовитых веществ: для 210Ро предельно допустимая концентрация (ПДК) в воздухе составляет количество, при котором в 1 м3 распадается не более одного его атома в секунду. Это соответствует содержанию полония 6 · 10–14 г на 1 м3 воздуха. Полоний при вдыхании почти в 170 млн раз токсичнее синильной кислоты! То есть при гипотетическом распылении в воздухе 1 г полония ПДК будет превышена в 10 000 км3 воздуха – в слое атмосферы высотой 100 м и площадью 100 тыс. км2, что намного больше площади Московской области!

Но может ли природный полоний попасть в организм человека? Попробуем оценить возможность такого события. Причем речь идет о людях, не занятых на урановых рудниках и не работающих с радионуклидами. Среднее содержание урана в земной коре – 3 · 10–4 % по массе. В некоторых минералах уран встречается вместе с кальцием, а иногда частично замещает его в кристаллической решетке, так как их ионные радиусы близки. Таким образом, и в известняке, и в доломите, и в апатите могут в принципе содержаться весьма незначительные примеси урана. Все упомянутые минералы прямо или опосредованно применяются в сельском хозяйстве. Известняк и доломит – для раскисления почв, апатит – для получения минеральных удобрений (суперфосфатов). Таким образом, какие-то количества урана могут попасть на поля, а оттуда – в сельскохозяйственные растения. На 1 тонну урана в минералах приходится менее 0,1 мг полония или 1 атом полония на 12 млрд атомов урана. Это уже не иголка в стоге сена, а иголка в целом поле, заваленном сеном! Значит, в растение, выросшее на почве, куда с удобрениями попало немного урана, могут попасть лишь ничтожные количества полония, и пока они дойдут до потребителя, от них ничего не останется.

Можно сделать и такую оценку. В книге Дж. Эмсли «Элементы» сказано, что в организме среднего человека содержится 0,1 мг урана. Значит, даже если бы между ним и 210Ро сохранялось радиоактивное равновесие, в человеке полония было бы в 1010 раз меньше, т. е. 10–11 мг. Но достижению равновесия препятствует, как следует из приведенного ряда, уран-234 (t1/2 = 2,45 · 105 лет). Кроме того, продукты превращения 238U и других членов ряда постоянно выводятся из организма. Так что неудивительно, что в справочнике Эмсли о полонии сказано: «Содержание в человеческом организме: нулевое».

Существует ли другой путь попадания полония в организм? Считается, например, что это возможно при курении. Как такое может случиться? Вот что говорит об этом преподаватель химии профессор Рэймонд Чанг из Уильямс-колледжа, штат Массачусетс. Как известно, при выращивании табака в почву вносят много фосфатных удобрений. Если в них попадет один из продуктов распада урана – радий, то он в почве будет медленно превращаться в радон, как видно из схемы превращений урана. Газообразный радон концентрируется в почве и в приповерхностном слое воздуха под воздушным «куполом», который образован табачными листьями (см. фото).

Табачная плантация


Дочерние твердые продукты распадающегося радона прочно приклеиваются к поверхности листьев и проникают внутрь них. Радон живёт недолго, продукт его распада, 218Ро, – считанные минуты, поэтому довольно быстро образуется радиоактивный свинец-210. Постепенно его количество в листьях растущего табака увеличивается. При курении человек вдыхает с дымом мельчайшие твердые частицы, содержащие 210Pb, которые оседают в дыхательных путях, а затем переносятся в печень, селезенку и в костный мозг. Медленно распадаясь, 210Pb превращается в 210Ро, и это происходит в течение всего периода, когда человек курит. Постоянное облучение упомянутых органов и костного мозга увеличивает вероятность возникновения рака у курильщика. Конечно, чтобы такой механизм сработал, в удобрение должен попасть не сам уран, а радий. Возможность такого события сильно зависит от того, какие именно ископаемые были использованы для получения фосфатных удобрений и какова была технология их переработки.

Получение полония

Полоний (речь идет только о его изотопе 210Ро) можно получить из природных источников или синтезировать. Первый способ малопродуктивен, но когда-то он был единственным. При переработке урановых руд 90 % полония остается в отвалах, из которых его очень трудно извлечь. Поэтому используют другой метод: выделяют из руды предыдущие члены радиоактивного ряда и ждут, пока в них в результате распада накопится достаточно полония. Так, если выделить 210Pb, то из него периодически можно «выдаивать» 210Ро путем отгонки (в англоязычной литературе в этом контексте используется глагол to milk, буквально – «доить»). Когда-то применяли такой способ: выделяющийся из радия газообразный радон запаивали в стеклянные ампулы, и после полного его распада (на это требовалось чуть больше месяца) в них появлялся тот же 210Pb. Сейчас 210Ро синтезируют путем облучения нейтронами природного висмута в ядерных реакторах (промежуточно образуется βактивный изотоп висмута-210): . Чтобы получить полоний, нейтронный поток должен быть очень мощным. Так, если на 1 см2 каждую секунду будут попадать даже 500 млрд нейтронов, то через месяц облучения в 100 г висмута образуется лишь 2 мкг (две миллионные доли грамма) полония. Увеличение плотности нейтронного потока до 100 трлн в секунду даст в 100 г висмута за месяц 0,4 мг 210Ро; такое количество почти не видно невооруженным глазом. Далее полоний нужно отделить от большой массы висмута; это можно сделать отгонкой в ваку уме при нагревании – как это делала Мария Кюри. Чистый полоний получают гальваническим методом, осаждая его из раствора в азотной кислоте на катоде. Можно представить, насколько трудно получить граммовые и даже миллиграммовые количества полония! Первый образец чистого полония-210 был получен только в марте 1944 г. в США. В СССР под научным руководством З. В. Ершовой было создано экологически чистое производство полония, который использовали в качестве источника энергии для луноходов. Для получения более долгоживущих изотопов 208Ро и 209Ро можно использовать ядерные реакции 207Pb + α → 208Po + 3n, 209Bi + + p208Po + 2n, 209Bi + d208Po + 3n, 209Bi + p209Po + n, 209Bi + d209Po + 2n, где d – ускоренные дейтроны (ядра дейтерия), облучение проводят в циклотроне. Все эти методы позволяют получить лишь ничтожные количества 208Ро и 209Ро, достаточные только для изучения их радиоактивных свойств.

Свойства полония

Полоний – один из самых опасных радиоэлементов. Эксперименты с ним требуют соблюдения строжайших мер безопасности. Исследователь должен быть надежно защищен от попадания даже малейших следов этого элемента в дыхательные пути, в пищеварительный тракт. Недопустим также контакт полония или его химических соединений с кожей. Несмотря на все эти трудности, были изучены как физические, так и химические свойства полония и его соединений. Полоний – мягкий серебристо-серый металл, похожий на свинец, с температурой плавления 254 °С. Это тяжелый металл, его плотность близка к 9,5 г/см3 – почти как у серебра. Плотность полония подсчитана не непосредственным измерением, а путем рентгенографического определения параметров кристаллической решетки. Это – следствие высокой радиоактивности, которая не позволяет получать значительные количества компактного металла. Известно, что препараты радия (t1/2 = 1600 лет) у Марии Кюри светились в темноте. Что уж говорить о полонии-210! Он не только светится, но и очень сильно нагревается за счет поглощения собственных α-частиц, несущих огромную энергию. Ведь при равных массах полоний в тысячи раз активнее радия. Кусочек полония размером с наперсток выделяет около 2 кВт тепловой энергии.

Если получить весомые количества полония, от них необходимо непрерывно отводить теплоту. Если этого не делать, металлический полоний почти сразу расплавится, а затем испарится. Но даже если от образца эффективно отводить теплоту, с его поверхности будут выделяться микрочастицы металла. Поэтому металлический полоний способен легко образовывать в воздухе мельчайшие частицы аэрозоля, что резко увеличивает опасность работы с ним. Этот эффект типичен для сильно радиоактивных металлов и объясняется быстрым накоплением на них отрицательных зарядов при вылете в воздух положительно заряженных α-частиц. Кроме того, когда атомы полония оседают на мельчайших частицах пыли, то в результате механической отдачи при вылете α-частиц такие пылинки совершают «прыжки» и потому способны отрываться от поверхностей, на которые они осели.

Полоний кипит при сравнительно невысокой температуре – 949 °С, что определяет его летучесть (для сравнения: температура кипения свинца – 1710 °С, олова – 2360 °С). В парах полоний находится в виде молекул Ро2. Летучесть полония облегчает его очистку, а также перемещение микроколичеств металла из одной части аппаратуры в другую путем их нагрева и охлаждения. В то же время летучесть затрудняет работу с ощутимыми количествами полония. По химическим свойствам полоний несколько похож на висмут, а также на свой ближайший аналог – неметалл теллур и проявляет типичные для элемента VI группы степени окисления: –2, +2, +4, +6. На воздухе полоний медленно окисляется (быстро при нагревании) с образованием красного диоксида РоО2. Сероводород из растворов солей полония осаждает черный сульфид PoS – тот самый, который был в осадке у Марии Кюри.

В разбавленной соляной кислоте полоний медленно растворяется с образованием розовых растворов (цвет ионов Ро2+): Po + 2HCl = = PoCl2 + H2. Разбавленная азотная кислота пассивирует полоний, а концентрированная быстро его растворяет. С неметаллами VI группы полоний роднит реакция с водородом с образованием летучего гидрида РоН2 (он кипит при +35 °С и легко разлагается) и реакция с металлами (при нагревании) с образованием твердых полонидов черного цвета, например Na2Po. С галогенами полоний реагирует с образованием тетрагалогенидов. В растворах полоний существует в виде катионов Ро2+, Ро4+, анионов РоО32–, РоО42–, а также разнообразных комплексных ионов, например PoCl62.

Сильная радиоактивность полония отражается на свойствах его соединений, которые почти все очень быстро разлагаются. Так, практически невозможно получить полониевые соли органических кислот: они обугливаются уже в момент синтеза. Из водных растворов соединений полония медленно выделяются пузырьки газа, а в растворе образуется перекись водорода. И даже в стеклянной посуде с сухим соединением полония из-за α-облучения уже через несколько дней появляются заметные трещины – в тех местах, где вещество соприкасалось со стеклом. Такие стеклянные сосуды становятся очень хрупкими. Если соединение полония содержало воду, она разлагается на кислород и водород, которые в герметичной ампуле повышают давление. Оно повышается также из-за непрерывно образующегося гелия. В результате маленькая ампулка с полонием уже через неделю может взорваться.

Применение полония

Применение находит только 210Ро, его более долгоживущие изотопы практически недоступны. Удобное время жизни 210Ро позволяет использовать его в качестве источника энергии в атомных батареях космических кораблей. В этом отношении он превосходит другие компактные атомные источники энергии. Такой источник энергии работал, например, на «Луноходе-2», обогревая аппаратуру во время долгой лунной ночи, когда за бортом было минус 130 °С. Полоний может давать не только тепло, но и электроэнергию. Для этого в контейнер с полонием (как правило, используют не чистый металл, а его сплав со свинцом) помещают горячие спаи термопар, тогда как холодные спаи находятся снаружи. Мощность полониевых источников энергии со временем убывает – вдвое каждые 4,5 месяца.

Полоний применяют для исследования воздействия α-излучения на различные вещества. Сплав полония с бериллием используют как удобный источник нейтронов: 9Be + α→ 12C + n. Такие компактные источники нейтронов используют для определения состава различных материалов методом нейтронно-активационного анализа (нейтроны наводят в веществе радиоактивность, по которой можно судить о составе вещества).

Неожиданное применение нашел полоний-210 в криминалистике для обнаружения мастерски сделанных подделок картин старинных мастеров. Такая датировка основана на измерении радиоактивности свинцовых белил. Для художников свинцовые белила в течение многих столетий были одним из наиболее важных пигментов (в настоящее время из-за ядовитости соединений свинца используют цинковые и титановые белила). Белила получали из свинцовых руд, которые всегда содержат радиоактивный уран. Один из промежуточных продуктов распада – 210Pb.

Идея метода проста. Пока свинец входит в состав руды, происходит как распад 210Pb, так и его непрерывное образование. Поэтому в течение многих тысячелетий его содержание в руде остается практически постоянным. Но при переработке руды происходит отделение свинца от других элементов. С этого момента образование 210Pb уже не поддерживается предшествующими радиоактивными элементами, поэтому его содержание, а следовательно и радиоактивность, с годами снижаются. Это позволяет датировать время изготовления белил, вернее, время выделения свинца из руды. В этом смысле анализ по свинцу напоминает известный метод радиоуглеродной датировки древних объектов по углероду-14. Дело, однако, осложняется тем, что неизвестно, сколько было 210Pb в конкретной руде в момент ее переработки. Поэтому простое определение остаточного количества 210Pb в белилах мало что дает, и используется другая методика. Суть ее в следующем. В ходе химической переработки руды с целью извлечения из нее свинца значительная часть других элементов удаляется. Значительная – но не вся; например, радий очень трудно отделить от свинца полностью (с этим сталкивалась и Мария Кюри), и в свинце всегда остаются очень малые его количества. В любом случае после извлечения свинца из руды радиоактивное равновесие нарушается: радия в образце остается очень мало, поэтому скорость распада 210Pb значительно превышает скорость распада радия. Но по прошествии многих десятилетий баланс радий/свинец постепенно восстанавливается, так что лет через 150–200 скорость их распада снова будет одинаковой (хотя и значительно меньшей, чем в исходной руде). Этим фактом и можно воспользоваться, чтобы определить, давно ли был добыт свинец. Сделать это можно только с помощью очень чувствительных детекторов излучения, регистрирующих не только интенсивность, но и энергию частиц и, следовательно, позволяющих отличить одни радионуклиды от других. Однако по чисто техническим причинам вместо измерения активности 210Pb измеряют равную ему активность 210Po. Поэтому на практике измеряют соотношение активностей 226Ra и 210Po.

Этот метод был применен в 1967 г. американским исследователем Бернардом Кейшем с сотрудниками. Измерения подтвердили, что в художественных свинцовых белилах, изготовленных в разных странах в ХХ веке, активность 210Ро (а следовательно, и 210Pb) была намного больше, чем радия. Когда удалось достать образцы белил, изготовленных в Англии, Франции и США в XIX веке, оказалось, что активность полония в них также превышает активность радия, хотя уже не так сильно. Наконец, для образцов из XVIII века активности обоих радионуклидов были примерно одинаковыми. Таким способом было доказано, что некоторые картины «старых мастеров», которые до этого считались подлинными, на самом деле – подделка.

Как их сосчитать?

В школьном учебнике по органической химии есть тема «Предельные (насыщенные) углеводороды», которые называются также алканами. В учебнике говорится, что начиная с бутана С4Н10 для каждого алкана существуют структурные изомеры с разветвленной цепью. Они имеют одинаковый состав, но разное строение. Примером могут служить бутан и изобутан (два изомера С4Н10), пентан, 2-метилбутан и 2,2-диметилпропан (три изомера С5Н12) и т. д. Написав структурные формулы всех изомеров, нетрудно выяснить, что у гексана С6Н14 пять изомеров, а у гептана С7Н16– девять. Дальше дело пойдет труднее: с увеличением числа атомов углерода число изомеров растет очень быстро, достигая астрономических величин. Например, у октана С8Н18 изомеров уже 18, у нонана С9Н20– 35, у декана С10Н22 – 75, у эйкозана С20Н42 – 366 319, у триаконтана С30Н62 – 4 111 846 763, у тетраконтана С40Н82 – 62 481 801 147 341… Эти числа значительно возрастут, если рассматривать также зеркально-симметричные молекулы – стереоизомеры: с 9 до 11 для гептана, с 75 до 136 для декана, с 366 319 до 3 396 844 для эйкозана, с 5,921 · 1039 до 1,373 · 1046 для гектана С100 и т. д.

Понятно, что никто эти формулы на бумаге не выписывал и их число вручную не подсчитывал. Как же узнали, что у эйкозана 366 319 структурных изомеров, у триаконтана – 4 111 846 763 и т. д.? Интересно также, больше или меньше изомеров у алкенов – углеводородов с одной двойной связью?

Для начала рассмотрим названия алканов. Корни этих названий взяты из греческого языка. Разобраться со многими из них не очень сложно даже тем, кто не учил греческий язык в классической гимназии. Ведь в русском языке немало слов, ведущих происхождение от греческих числительных: Пентагон, пентаграмма (средневековый магический знак); гекзаметр (стихотворный размер – шестистопный дактиль), гектар (100 ар или 100 соток); гептахорд (звукоряд из 7 ступеней, а также семиструнная кифара у древних греков); октаэдр (многогранник с 8 вершинами), октант (старинный астрономический инструмент для измерения углов между небесными светилами), октаподы (отряд головоногих моллюсков с 8 щупальцами); декада (десятидневный промежуток времени), декан (в Древнем Риме – начальник 10 солдат, сейчас – руководитель факультета в вузе), декаподы (дословно «десятиногие») – моллюски с 10 щупальцами, к которым относятся каракатица, кальмары и др.; от латинского decem – десять происходят многие единицы измерения: дециметр, децибел, декалитр и др.); гектограф (печатный аппарат, позволявший получать до 100 копий с листа), гекатомба (жертвоприношение из 100 быков), гекатонхейры (мифические 100-рукие великаны), а также пентод, гексод и гептод (радиолампы с 5, 6 и 7 электродами)… Множество таких терминов в музыке: пентатоника (звуковая система из 5 нот в октаве, распространенная в Китае и ряде других стран), додекафония (метод музыкальной композиции, основанный на 12 тонах); октава, нона, децима и ундецима (музыкальные интервалы в 8, 9, 10 и 11 тонов), октет и нонет (ансамбли из 8 и 9 музыкантов) и др.

Мало кто задумывается о том, что похожие корни имеют и названия последних четырех месяцев года: сентябрь (в древнерусском «септябрь»), октябрь, ноябрь, декабрь (в соответствии с их латинскими и греческими корнями – седьмой, восьмой, девятый и десятый месяцы). Но ведь декабрь – не 10-й, а 12-й месяц года! А дело в том, что в Древнем Риме новый год начинался 1 марта, поэтому месяцы с сентября по декабрь имели номера с седьмого по десятый соответственно. На Руси так называемый церковный год тоже начинался когда-то 1 марта – в соответствии с указаниями Библии: у древних евреев первый месяц года (ниссан) был заповедан Моисею и первосвященнику Аарону: «Месяц сей да будет у вас началом месяцев; первым да будет он у вас между месяцами года» (Исх. 12 : 2). Гражданский год на Руси до XV века соответствовал церковному. Однако в 1492 г. Иван III своим указом перенес встречу Нового года на 1 сентября, что совпадало со сбором урожая. Петр I в 1699 г. в последний раз праздновал Новый год по древнему обычаю 1 сентября, а уже через 3,5 месяца, 20 декабря того же года, повелел перенести начало года на 1 января 1700 г. (7208 г. «от сотворения мира»).

Но вернемся к нашим алканам. Сложнее с названиями первых членов ряда: в них использованы не числительные, а другие греческие слова, причем иногда довольно хитро зашифрованные. Так, название метана происходит от метилового спирта, который раньше называли древесным: его получали сухой перегонкой древесины. Слово «метил» и происходит от греческих methy – «вино» и hile – «лес» (так сказать, «древесное вино»). Название этана, как это ни покажется на первый взгляд странным, этимологически родственно слову «эфир». Оба происходят от греческого aither – так древние греки называли некую небесную субстанцию, которая пронизывает космос. Когда алхимики в XIII веке из винного спирта и серной кислоты получили легко испаряющуюся («улетающую к небесам») жидкость, ее назвали сначала духом эфира, а потом просто эфиром. В XIX веке выяснили, что эфир (по-английски ether) содержит группировку из двух атомов углерода – такую же, как и этиловый спирт (этанол); ее назвали этилом (ethyl). Таким образом, «диэтиловый эфир» – по сути дела, тавтология, масло масляное… От «этила» произошло и название этана, а также этилового спирта – этанола. Кстати, другое название этанола – алкоголь – того же происхождения, что и слово «алкан». По-арабски «аль-кохль» – «порошок», «пудра», «пыль». От малейшего дуновения они поднимаются в воздух – как и винные пары при нагревании. Со временем термин «винные пары» («алкоголь вина») превратился просто в «алкоголь».

Одна из простейших жирных кислот была названа пропионовой – от греческих слово protos – «первый» и pion – «жир». Отсюда недалеко и до углеводорода пропана. Названия другой жирной кислоты – бутановой и соответствующего ей углеводорода бутана происходят от греческого butyron – «масло».

Перейдем, наконец, к числу изомеров алканов. Эта задача была решена математиками в XIX веке. Оказалось, что формулы, по которой можно сразу определить число изомеров для углеводорода С n H2n+2, не существует. Подсчет возможен лишь с помощью формул, позволяющих найти число изомеров углеводорода с n атомами углерода, если уже известно число изомеров всех его гомологов – углеводородов с числом атомов углерода от 1 до n – 1. Поэтому расчеты для алканов с большими значениями n были получены сравнительно недавно с помощью компьютеров. Они доведены до тетрактана С400Н802, для которого, с учетом стереоизомеров, получено значение, трудно поддающееся воображению: 4,776 · 10199! Подсчитано, что начиная с С167Н336 число изомеров уже превышает число элементарных частиц в видимой части Вселенной, которое оценивается как 1080; так, для С200Н402 оно равно примерно 9,430 · 1083.

Для химиков подобные расчеты мало интересны, и вот почему. Даже для сравнительно простого алкана, содержащего всего полтора десятка атомов углерода, подавляющее число изомеров не получено и вряд ли будет когда-либо синтезировано. Так, в случае декана С10Н22 последние из 75 его изомеров были синтезированы лишь сравнительно недавно. И сделано это было лишь для того, чтобы иметь более полный набор стандартных соединений, по которым можно идентифицировать различные углеводороды, например те, что встречаются в нефти. Кстати, в нефти были обнаружены все 18 возможных изомеров октана.

Но самое интересное, что начиная с гептадекана С17Н36 сперва лишь некоторые изомеры, затем – многие из них, а потом практически все являются ярким примером «бумажной химии», т. е. не могут существовать в действительности! Дело в том, что по мере роста числа атомов углерода в молекулах разветвленных изомеров возникают серьезные проблемы пространственной упаковки при замене атомов водорода на метильные группы СН3 в ряду симметричных сферических молекул СН4 → C(CH3)4 → C[C(CH3)3]4 → C{C[C(CH3)3]3}4 и т. д., а также близких по структуре изомеров. Причина в том, что математики рассматривали атомы углерода и водорода как точки, тогда как на самом деле они имеют конечный радиус. Так, метановый «шарик» имеет на «поверхности» 4 атома водорода, которые свободно на ней размещаются. Следующий пентановый «шарик» C(CH3)4 имеет на «поверхности» уже 12 атомов водорода, расположенных значительно ближе друг к другу. Таким образом, при заполнении каждого следующего слоя число метильных групп СН3 на «поверхности» молекул углеводородов увеличивается втрое. Поэтому уже у следующего, после пентанового, гептадеканового «шарика» С17Н36 на «поверхности» становится мало места для размещения всех 36 атомов водорода в 12 метильных группах (это легко проверить, попробовав нарисовать плоское изображение подобных изомеров, соблюдая постоянство длин связей С–С и С–Н и всех углов между ними). С ростом n проблемы возникают и для атомов углерода: для них тоже становится все меньше места. В результате, несмотря на то что число возможных изомеров с ростом n увеличивается очень быстро, число «бумажных» изомеров растет значительно быстрее. Проведенная с помощью компьютеров оценка показала, что с ростом n отношение числа возможных изомеров к числу «бумажных» быстро стремится к нулю. Именно поэтому расчет точного числа изомеров предельных углеводородов для больших n, которое когда-то вызывало значительный интерес, в настоящее время не имеет для химиков никакого практического значения.

То же можно сказать и о числе изомеров непредельных соединений с одной двойной связью – алкенов C n H2n. Для них можно конструировать изомеры не только изменяя углеродный скелет молекулы, но и путем перемещения двойной связи, а также различного расположения заместителей относительно двойной связи (так называемые цис-транс-изомеры); поэтому число изомеров алкенов N с увеличением числа атомов углерода n растет еще стремительнее, чем у алканов:

Понятно, что, как и в случае предельных углеводородов, такие расчеты представляют лишь теоретический интерес. Тем более что при больших n почти все эти изомеры окажутся «бумажными».

В заключение рассмотрим еще одну комбинаторную задачу, имеющую уже практическое значение. Сколько разных соединений получится, если в простейшем алкане – метане замещать атомы водорода на атомы галогенов? При этом получаются соединения, которые называются галогенметанами. Если начать считать методом перебора всех вариантов, легко сбиться. Как решить такую задачу? И все ли возможные метаны были синтезированы?

Будем рассматривать только четыре галогена – фтор, хлор, бром и йод (астат не учитываем: в природе этот элемент не встречается, а из искусственно полученных его изотопов самый долгоживущий, 211At, имеет период полураспада всего 7,2 часа).

В зависимости от того один, два, три или все четыре атома водорода замещены, различают моно-, ди-, три– и тетразамещенные метаны. Они могут быть газообразными (например, CH3Cl), жидкими (CCl4) или твердыми CBr4). Многие из этих производных хорошо известны. Например, дихлорметан (метиленхлорид, хлористый метилен) – растворитель, используемый для производства изделий из ацетата целлюлозы; дийодметан – жидкость с высокой плотностью (3,33 г/см3), ее применяют при исследовании горных пород для разделения минералов по их плотности; трихлорметан (хлороформ) раньше широко использовался для наркоза (а сейчас – только для наружного применения в растираниях); трийодметан (йодоформ) – сильный антисептик, хотя и с неприятным навязчивым запахом, который раньше использовали в хирургии при перевязке ран; тетрахлорметан (четыреххлористый углерод) – прекрасный растворитель жиров, смол, каучука, многих других органических соединений, но из-за ядовитости сейчас для этих целей почти не применяется; многие фторпроизводные (фреоны, они же хладоны) – низкокипящие жидкости или легко сжижающиеся газы, которые широко используются в качестве хладагентов в холодильных машинах.

Оказывается, различных галогензамещенных метанов теоретически существует намного больше, чем может показаться на первый взгляд, даже если не учитывать стереоизомеров – зеркально-симметричных форм (впрочем, стереоизомеры есть всего у пяти соединений, так как они возможны лишь в случае четырех разных заместителей у атома углерода; в этом легко убедиться, сделав модели молекул замещенных метанов из спичек и цветного пластилина). Попробуем подсчитать число различных замещенных метанов. Тетрагалогенметанов СХ4 с четырьмя одинаковыми заместителями может быть 5 (считая и сам метан). Соединений типа CX3Y (где X, Y – любой атом галогена или водород) может быть 20; соединений типа CX2Y2 существует 10; соединений CX2YZ – 30, и еще 5 соединений типа CXYZW, когда все заместители разные. Всего получаем 70 соединений. Это же значение можно получить методами комбинаторики; оно равно числу сочетаний из n = 5 заместителей (H, F, Cl, Br, I), взятых по k = 4 с повторениями, а именно (n + k – 1)!/k!(n – 1)! = 8!/4!4! = 70.

Число различных галогенметанов намного увеличится, если учитывать также изотопные разновидности элементов – хотя бы те, что встречаются в природе. Это стабильные 12С, 13С, 1H, 2Н (D, дейтерий), 19F, 35Cl, 37Cl, 79Br, 81Br, 127I и радиоактивные 3Н (T, тритий, период полураспада 12,3 года) и 14С (период полураспада 5730 лет). Подставляя в приведенную формулу n = 9, k = 4 и умно-жая полученное значение на 3 (три изотопа углерода), получим 3 · 12!/4!8! = 1350. И еще к ним надо добавить 126 · 3 = 378 оптических изомеров (126 – это число сочетаний из 9 элементов по 4 без повторений, которое дается формулой n!/k!(nk)!). Если же не брать в расчет радиоактивные соединения, то разных галогенметанов будет поменьше: при n = 7 и k = 4 получим 2 · 11!/4!7! = = 660 и еще 2 · 7!/4!3! = 70 стереоизомеров.

Сколько же из них уже синтезировано? В справочнике «Свойства органических соединений» (Л.: Химия, 1984), содержащем основные сведения о нескольких тысячах веществ, приводятся данные только о 47 соединениях. Это сам метан, а также CH3Br, CHBrI2, CHBrF2, CHBrCl2, CH2BrI, CBrF3, CBrCl3, CH2BrF, CHBrClF, CH2BrCl, CH2Br2, CBr2F2, CBr2Cl2, CHBr2I, CHBr2F, CHBr2Cl, CH2I2, CHFI2, CHClI2, CH2F2, CCl2F2, CHClF2, CH2Cl2, CH3I, CHF2I, CHCl2I, CCl3I, CH2FI, CH2ClI, CBr4, CI4, CF4, CCl4, CHBr3, CBr3F, CBr3Cl, CHI3, CHF3, CClF3, CHCl3, CDCl3, CH3F, CHCl2F, CCl3F, CH2ClF, CH3Cl.

Отметим, что в этом справочнике, в соответствии с правилами номенклатуры, все вещества приведены в алфавитном порядке названий на русском языке, тогда как сами формулы расположены в алфавитном порядке латинских букв (кроме водорода); дейтерохлороформ CDCl3 помещен в справочнике, так как это распространенный растворитель в спектроскопии протонного магнитного резонанса. Кстати, в англоязычном справочнике порядок расположения названий, в соответствии с теми же правилами, может быть несколько иным. Например, в русском языке буква «ф» в алфавите стоит перед «х», поэтому вещество CH2ClF называется фторхлорметаном. В латинском же алфавите буква «с» предшествует букве «f», поэтому то же вещество, фторхлорметан, по-английски называется chloroflouromethane.

Итак, из основного списка 70 галогенпроизводных (включая и сам метан) в указанном справочнике есть данные лишь о 46. Интересно, что синтезированный в 1893 г. бельгийским химиком Фредериком Свартсом бромфторхлорметан CHBrClF попал также в книгу «Мировые рекорды в химии» как самая маленькая хиральная молекула, в которой у атома углерода находятся четыре разных заместителя. Правда, полученное Свартсом соединение было оптически неактивным, так как представляло собой рацемическую смесь «правых» и «левых» молекул. Эту смесь сумели разделить методом газовой хроматографии только в 1996 г.

В справочнике Бейльштейна (4-е дополнение к 1-му тому, в котором рассмотрена литература по химии за 1950–1959 гг.) можно найти сведения еще о 12 производных: это CHBrClI, CHBrFI, CHClFI, CBrClF2, CBrCl2F, CBrI3, CBr2ClF, CBr3I, CClF2I, CCl2FI, CCl2I2 и CF3I.

Наконец, в справочнике Гмелина (том 14, раздел D, часть 2, издан в 1974 г.) приведены сведения о CF2I2 и CBrF2I. Первое соединение получено в 1963 г. при фотолизе смеси йода с дифтордиазирином – трехчленным циклом с двумя атомами азота. При облучении отщепляется молекула азота и образуется карбен CF2, который реагирует с йодом. О втором веществе сказано лишь, что оно, вероятно, могло образоваться при гамма-радиолизе смеси CF3Br и йода, и дана соответствующая ссылка на статью 1972 г. Как видим, многие галогенпроизводные метана синтезировать не так-то просто!

Для дальнейшего поиска были просмотрены формульные указатели издающегося в США реферативного журнала Chemical Abstracts. И хотя в этих указателях имеется несколько ссылок на все «недостающие» изомеры, знакомство с самими рефератами показало, что это, увы, – лишь теоретические расчеты физических, термодинамических и спектральных свойств соответствующих молекул. Дело в том, что спектральные характеристики галогенметанов (частоты колебаний и вращений в их молекулах) весьма интересны для теоретиков. Интересны и возможные применения подобных соединений в качестве хладагентов, что также отмечают авторы расчётов. Кстати, многие из подобных расчетов были выполнены отечественными химиками. В зарубежных же расчетных работах обращает на себя внимание звучная фамилия одного из авторов: С. К. Нг (химический факультет Национального университета Сингапура).

Из других казусов поиска можно отметить соединение CBrCl2I, упомянутое в указателе за вторую половину 1999 г. Ссылка дана на работу, написанную семью исследователями из Лаверна (Калифорния, США), специалистами по… технологии водоочистки. В своей статье они уверяют, что появляющийся иногда «медицинский» запах водопроводной воды обусловлен «бромдихлориодметанами». Это весьма странное заявление: во-первых, бромдихлориодметан – один-единственный, а во-вторых, его до сих пор никто не синтезировал… Еще одна странность: поисковая система Google неожиданно выдала для CFI3 более 3 тысяч ссылок. Оказалось, что большинство их – вовсе не на трийодфторметан, а на… аббревиатуру Chipped Finish Inspector, то есть на автоматическую систему отбраковки поврежденных контейнеров, из которых возможна утечка содержимого или его загрязнение. Некоторые другие формулы также оказались схожи сокращениями, не имеющими никакого отношения к галогензамещенным метанам…

И все же некоторые из «недостающих» веществ были с помощью Chemical Abstracts обнаружены. Уже упомянутый CBrF2I был синтезирован в университете штата Айова (США) в 1977 г. Там же в 1982 г. были получены еще два бромйодфторметана: CBrFI2 и CBr2FI. И это пока все. Из 70 галогенметанов до сих пор не описаны CBrClFI – единственный содержащий одновременно все четыре галогена, а также CBrClI2, CBrCl2I, CBr2ClI, CBr2I2, CClFI2, CClI3 и CFI3. Примечательно, что все они содержат атомы йода, и это не случайно. Связь C–I довольно слабая, в 2,5 раза слабее связи C–F; может быть, это одна из причин трудности синтеза таких соединений, поскольку органические йодиды легко разлагаются. Но кроме 70 «классических» галогенметанов, оказывается, были получены десятки изотопных производных, содержащих как стабильные, так и радиоактивные нуклиды. Из последних можно отметить такие экзотические соединения, как CDT3, CD2T2, CD3T, 11CH3I (а ведь период полураспада углерода-11 лишь немногим превышает 20 минут) и многие другие. Эти синтезы наглядно демонстрируют возможности, которыми обладают современные химики.