Вы здесь

Живая математика. Занимательные задачи для любознательных умов. Глава вторая. Математика в играх (Я. И. Перельман)

Глава вторая

Математика в играх

Домино

16. Цепь из 28 костей

Почему 28 костей домино можно выложить с соблюдением правил игры в одну непрерывную цепь?

17. Начало и конец цепи

Когда 28 костей домино выложены в цепь, на одном её конце оказалось 5 очков.

Сколько очков на другом конце?

18. Фокус с домино

Ваш товарищ берёт одну из костей домино и предлагает вам из остальных 27 составить непрерывную цепь, утверждая, что это всегда возможно, какая бы кость ни была взята. Сам же он удаляется в соседнюю комнату, чтобы не видеть вашей цепи.

Вы приступаете к работе и убеждаетесь, что товарищ ваш прав: 27 костей выложились в одну цепь. Ещё удивительнее то, что товарищ, оставаясь в соседней комнате и не видя вашей цепи, объявляет оттуда, какие числа очков на её концах.

Как может он это знать? И почему он уверен, что из всяких 27 костей домино составится непрерывная цепь?

19. Рамка

Рис. 9 изображает квадратную рамку, выложенную из костей домино с соблюдением правил игры. Стороны рамки равны по длине, но не одинаковы по сумме очков: верхний и левый ряды заключают по 44 очка, остальные же два ряда – 59 и 32.


Рис. 9. Рамка из домино


Можете ли вы выложить такую квадратную рамку, все стороны которой заключали бы одинаковую сумму очков – именно 44?

20. Семь квадратов

Четыре кости домино можно выбрать так, чтобы из них составился квадратик с равной суммой очков на каждой стороне. Образчик вы видите на рис. 10: сложив очки на каждой стороне квадратика, во всех случаях получите 11.


Рис. 10. Квадрат из домино


Можете ли вы из полного набора домино составить одновременно семь таких квадратов? Не требуется, чтобы сумма очков на одной стороне получалась у всех квадратов одна и та же; надо лишь, чтобы каждый квадрат имел на своих четырёх сторонах одинаковую сумму очков.

21. Магические квадраты из домино

На рис. 11 показан квадрат из 18 косточек домино, замечательный тем, что сумма очков любого его ряда – продольного, поперечного или диагонального – одна и та же: 13. Подобные квадраты издавна называются «магическими».

Вам предлагается составить несколько таких же 18-косточковых магических квадратов, но с другой суммой очков в ряду. 13 – наименьшая сумма в рядах магического квадрата, составленного из 18 костей. Наибольшая сумма – 23.

22. Прогрессия из домино

Вы видите на рис. 12 6 косточек домино, выложенных по правилам игры и отличающихся тем, что число очков на косточках (на двух половинах каждой косточки) возрастает на 1: начинаясь с 4, ряд состоит из следующих чисел очков:


4; 5; 6; 7; 8; 9.


Такой ряд чисел, которые возрастают (или убывают) на одну и ту же величину, называется «арифметической прогрессией». В нашем ряду каждое число больше предыдущего на 1; но в прогрессии может быть и любая другая «разность».

Задача состоит в том, чтобы составить ещё несколько шестикосточковых прогрессий.


Рис. 11. Магический квадрат из домино


Рис. 12. Прогрессия из домино


Игра в 15, или такен

Общеизвестная коробочка с 15 нумерованными квадратными шашками имеет любопытную историю, о которой мало кто из игроков подозревает. Расскажем о ней словами немецкого исследователя игр, математика В. Аренса.


Рис. 13. Игра в 15


«Около полувека назад – в конце 70-х годов – вынырнула в Соединённых Штатах «игра в 15»; она быстро распространилась и благодаря несчётному числу усердных игроков, которых она заполонила, превратилась в настоящее общественное бедствие.

То же наблюдалось по эту сторону океана, в Европе. Здесь можно было даже в конках видеть в руках пассажиров коробочки с 15 шашками. В конторах и магазинах хозяева приходили в отчаяние от увлечения своих служащих и вынуждены были воспретить им игру в часы занятий и торговли. Содержатели увеселительных заведений ловко использовали эту манию и устраивали большие игорные турниры. Игра проникла даже в торжественные залы германского Рейхстага. «Как сейчас вижу в Рейхстаге седовласых людей, сосредоточенно рассматривающих в своих руках квадратную коробочку», – вспоминает известный географ и математик Зигмунд Гюнтер, бывший депутатом в годы игорной эпидемии.


Рис. 14. Самуэль Лойд, изобретатель игры в 15


В Париже игра эта нашла себе приют под открытым небом, на бульварах, и быстро распространилась из столицы по всей провинции. «Не было такого уединённого сельского домика, где не гнездился бы этот паук, подстерегая жертву, готовую запутаться в его сетях», – писал один французский автор.

В 1880 году игорная лихорадка достигла, по-видимому, своей высшей точки. Но вскоре после этого тиран был повержен и побеждён оружием математики. Математическая теория игры обнаружила, что из многочисленных задач, которые могут быть предложены, разрешима только половина; другая не разрешима никакими ухищрениями.


Рис. 15. Нормальное расположение шашек (положение I)


Рис. 16. Неразрешимый случай (положение II)


Стало ясно, почему иные задачи не поддавались самым упорным усилиям и почему устроители турниров отваживались назначать огромные премии за разрешения задач. В этом отношении всех превзошёл изобретатель игры, предложивший издателю нью-йоркской газеты для воскресного прибавления неразрешимую задачу с премией в 1000 долларов за её разрешение; так как издатель колебался, то изобретатель выразил полную готовность внести названную сумму из собственного кармана. Имя изобретателя Самуэль (Сам) Лойд. Он приобрёл широкую известность как составитель остроумных задач и множества головоломок. Любопытно, что получить в Америке патент на придуманную игру ему не удалось. Согласно инструкции, он должен был представить «рабочую модель» для исполнения пробной партии; он предложил чиновнику патентного бюро задачу, и, когда последний осведомился, разрешима ли она, изобретатель должен был ответить: «Нет, это математически невозможно». – «В таком случае, – последовало возражение, – не может быть и рабочей модели, а без модели нет и патента». Лойд удовлетворился этой резолюцией, – но, вероятно, был бы более настойчив, если бы предвидел неслыханный успех своего изобретения»[1].

Приведём собственный рассказ изобретателя игры о некоторых фактах из её истории:

«Давнишние обитатели царства смекалки, – пишет Лойд, – помнят, как в начале 70-х годов я заставил весь мир ломать голову над коробкой с подвижными шашками, получившей известность под именем «игры в 15» (рис. 15). Пятнадцать шашек были размещены в квадратной коробочке в правильном порядке, и только шашки 14 и 15 были переставлены, как показано на прилагаемой иллюстрации (рис. 16). Задача состояла в том, чтобы, последовательно передвигая шашки, привести их в нормальное положение, причём, однако, порядок шашек 14 и 15 должен быть исправлен.


Рис. 17. «Фермеры забрасывали свои плуги…»


Премия в 1000 долларов, предложенная за первое правильное решение этой задачи, никем не была заслужена, хотя все без устали решали эту задачу. Рассказывали забавные истории о торговцах, забывавших из-за этого открывать свои магазины, о почтенных чиновниках, целые ночи напролёт простаивавших под уличным фонарём, отыскивая путь к решению. Никто не желал отказаться от поисков решения, так как все чувствовали уверенность в ожидающем их успехе. Штурманы, говорят, из-за игры сажали на мель свои суда, машинисты проводили поезда мимо станций; фермеры забрасывали свои плуги».

* * *

Познакомим читателя с начатками теории этой игры. В полном виде она очень сложна и тесно примыкает к одному из отделов высшей алгебры («теория определителей»). Мы ограничимся лишь некоторыми соображениями, изложенными В. Аренсом.

«Задача игры состоит обыкновенно в том, чтобы посредством последовательных передвижений, допускаемых наличием свободного поля, перевести любое начальное расположение 15 шашек в нормальное, то есть в такое, при котором шашки идут в порядке своих чисел: в верхнем левом углу 1, направо – 2, затем 3, потом в верхнем правом углу 4; в следующем ряду слева направо: 5, 6, 7, 8 и т. д. Такое нормальное конечное расположение мы даём здесь на рис. 15.

Вообразите теперь расположение, при котором 15 шашек размещены в пёстром беспорядке. Рядом передвижений всегда можно привести шашку 1 на место, занимаемое ею на рисунке.

Точно так же возможно, не трогая шашки 1, привести шашку 2 на соседнее место вправо. Затем, не трогая шашек 1 и 2, можно поместить шашки 3 и 4 на их нормальные места: если они случайно не находятся в двух последних вертикальных рядах, то легко привести их в эту область и затем рядом передвижений достичь желаемого результата. Теперь верхняя строка 1, 2, 3, 4 приведена в порядок, и при дальнейших манипуляциях с шашками мы трогать этого ряда не будем. Таким же путём стараемся мы привести в порядок и вторую строку: 5, 6, 7, 8; легко убедиться, что это всегда достижимо. Далее, на пространстве двух последних рядов необходимо привести в нормальное положение шашки 9 и 13; это тоже всегда возможно. Из всех приведённых в порядок шашек 1,2, 3, 4, 5, 6, 7, 8, 9 и 13 в дальнейшем ни одной не перемещают; остаётся небольшой участок в шесть полей, в котором одно свободно, а пять остальных заняты шашками 10, 11, 12, 14, 15в произвольном порядке. В пределах этого шестиместного участка всегда можно привести на нормальные места шашки 10, 11, 12. Когда это достигнуто, то в последнем ряду шашки 14 и 15 окажутся размещёнными либо в нормальном порядке, либо в обратном (рис. 16). Таким путём, который читатели легко могут проверить на деле, мы приходим к следующему результату.

Любое начальное положение может быть приведено к расположению либо рис. 15 (положение I), либо рис. 16 (положение II).

Если некоторое расположение, которое для краткости обозначим буквой может быть преобразовано в положение I, то, очевидно, возможно и обратное – перевести положение I в положение 5. Ведь все ходы шашек обратимы: если, например, в схеме I мы можем шашку 12 поместить на свободное поле, то можно ход этот тотчас взять обратно противоположными движениями.

Итак, мы имеем две серии расположений таких, что положения одной серии могут быть переведены в нормальное I, а другой серии – в положение II. И наоборот, из нормального расположения можно получить любое положение первой серии, а из расположения II – любое положение второй серии. Наконец, два любых расположения, принадлежащих к одной и той же серии, могут быть переводимы друг в друга.

Нельзя ли идти дальше и объединить эти два расположения – I и II? Можно строго доказать (не станем входить в подробности), что положения эти не превращаются одно в другое никаким числом ходов. Поэтому всё огромное число размещений шашек распадается на две разобщённые серии: 1) на те, которые могут быть переведены в нормальное I: это – положения разрешимые, 2) на те, которые могут быть переведены в положение II и, следовательно, ни при каких обстоятельствах не переводятся в нормальное расположение: это – положения, за разрешение которых назначались огромные премии.

Как узнать, принадлежит ли заданное расположение к первой или ко второй серии? Пример разъяснит это.

Рассмотрим расположение, представленное на рис. 18.

Первый ряд шашек в порядке, как и второй, за исключением последней шашки (9). Эта шашка занимает место, которое в нормальном расположении принадлежит 8. Шашка 9 стоит, значит, ранее шашки 8; такое упреждение нормального порядка называют «беспорядком». О шашке 9 мы скажем: здесь имеет место 1 беспорядок. Рассматривая дальнейшие шашки, обнаруживаем «упреждение» для шашки 14; она поставлена на три места (шашек 12, 13, 11) ранее своего нормального положения; здесь у нас 3 беспорядка (14 ранее 12; 14 ранее 13; 14 ранее 11). Всего мы насчитали уже 1 + 3 = 4 беспорядка. Далее, шашка 12 помещена ранее шашки 11, и точно так же шашка 13 ранее шашки 11. Это даёт ещё 2 беспорядка. Итого имеем 6 беспорядков. Подобным образом для каждого расположения устанавливают общее число беспорядков, освободив предварительно последнее место в правом нижнем углу. Если общее число беспорядков, как в рассмотренном случае, чётное, то заданное расположение может быть приведено к нормальному конечному; другими словами, оно принадлежит к разрешимым. Если же число беспорядков нечётное, то расположение принадлежит ко второй серии, то есть к неразрешимым (нуль беспорядков принимается за чётное число их).

Благодаря ясности, внесённой в эту игру математикой, прежняя лихорадочная страстность в увлечении сейчас совершенно немыслима. Математика создала исчерпывающую теорию игры, теорию, не оставляющую ни одного сомнительного пункта. Исход игры зависит не от каких-либо случайностей, не от находчивости, как в других играх, а от чисто математических факторов, предопределяющих его с безусловной достоверностью».

Обратимся теперь к головоломкам в этой области.

Вот несколько разрешимых задач, придуманных изобретателем игры.

23. Первая задача Лойда

Исходя из расположения, показанного на рис. 18, привести шашки в правильный порядок, но со свободным полем в левом верхнем углу (рис. 19).


Рис. 18. Шашки не приведены в порядок


Рис. 19. К первой задаче Лойда


Рис. 20. Ко второй задаче Лойда


24. Вторая задача Лойда

Исходя из расположения рис. 15, поверните коробку на четверть оборота и передвигайте шашки до тех пор, пока они не примут расположения рис. 20.

25. Третья задача Лойда

Передвигая шашки согласно правилам игры, превратите коробку в «магический квадрат», а именно разместите шашки так, чтобы сумма чисел была во всех направлениях равна 30.

Крокет

Крокетным игрокам предлагаю следующие пять задач.

26. Пройти ворота или крокировать?

Крокетные ворота имеют прямоугольную форму. Ширина их вдвое больше диаметра шара. При таких условиях что легче: свободно, не задевая проволоки, пройти с наилучшей позиции ворота или с такого же расстояния крокировать шар?

27. Шар и столбик

Толщина крокетного столбика внизу – 6 см. Диаметр шара 10 см. Во сколько раз попасть в шар легче, чем с такого же расстояния заколоться?

28. Пройти ворота или заколоться?

Шар вдвое уже прямоугольных ворот и вдвое шире столбика. Что легче: свободно пройти ворота с наилучшей позиции или с такого же расстояния заколоться?

29. Пройти мышеловку или крокировать?

Ширина прямоугольных ворот втрое больше диаметра шара. Что легче: свободно пройти с наилучшей позиции мышеловку или с такого же расстояния крокировать шар?

30. Непроходимая мышеловка

При каком соотношении между шириной прямоугольных ворот и диаметром шара пройти мышеловку становится невозможным?

Решения головоломок 16-30

16. Для упрощения задачи отложим пока в сторону все 7 двойных косточек: 0–0, 1–1, 2–2 и т. д. Останется 21 косточка, на которых каждое число очков повторяется 6 раз. Например, 4 очка имеется (на одном поле) на следующих 6 косточках:


4-0; 4–1; 4–2; 4–3; 4–5; 4–6.


Итак, каждое число очков повторяется, мы видим, чётное число раз. Ясно, что косточки такого набора можно приставлять одну к другой равными числами очков до исчерпания всего набора. А когда это сделано, когда наши 21 косточка вытянуты в непрерывную цепь, тогда между стыками 0–0, 1–1, 2–2 и т. д. вдвигаем отложенные 7 двойняшек. После этого все 28 косточек домино оказываются вытянутыми, с соблюдением правил игры, в одну цепь.

17. Легко показать, что цепь из 28 костей домино должна кончаться тем же числом очков, каким она начинается. В самом деле: если бы было не так, то числа очков, оказавшиеся на концах цепи, повторялись бы нечётное число раз (внутри цепи числа очков лежат ведь парами); мы знаем, однако, что в полном наборе костей домино каждое число очков повторяется 8 раз, то есть чётное число раз. Следовательно, сделанное нами допущение о неодинаковом числе очков на концах цепи – неправильно: числа очков должны быть одинаковы. (Рассуждения такого рода, как это, в математике называются «доказательствами от противного».)

Между прочим, из сейчас доказанного свойства цепи вытекает следующее любопытное следствие: цепь из 28 косточек всегда можно сомкнуть концами и получить кольцо. Полный набор костей домино может быть, значит, выложен, с соблюдением правил игры, не только в цепь со свободными концами, но также и в замкнутое кольцо.

Читателя может заинтересовать вопрос: сколькими различными способами выполняется такая цепь или кольцо? Не входя в утомительные подробности расчёта, скажем здесь, что число различных способов составления 28-косточковой цепи (или кольца) огромно: свыше 7 триллионов. Вот точное число:


7 959 229 931 520


(оно представляет собой произведение следующих множителей: 213 · 38 · 5 · 7 · 4231).


Рис. 21


18. Решение этой головоломки вытекает из сейчас сказанного. 28 косточек домино, мы знаем, всегда выкладываются в сомкнутое кольцо; следовательно, если из этого кольца вынуть одну косточку, то

1) остальные 27 косточек составят непрерывную цепь с разомкнутыми концами;

2) концевые числа очков этой цепи будут те, которые имеются на вынутой косточке.

Спрятав одну кость домино, мы можем поэтому заранее сказать, какие числа очков будут на концах цепи, составленной из прочих костей.

19. Сумма очков всех сторон искомого квадрата должна равняться 44 × 4= 176, то есть на 8 больше, чем сумма очков на косточках полного набора домино (168). Происходит это, конечно, оттого, что числа очков, занимающих вершины квадрата, считаются дважды. Сказанным определяется, какова должна быть сумма очков на вершинах квадрата: 8. Это несколько облегчает поиски требуемого расположения, хотя нахождение его всё же довольно хлопотливо. Решение показано на рис. 21.


Рис. 22


Рис. 23


20. Приводим два решения этой задачи из числа многих возможных. В первом решении (рис. 22) имеем:


1 квадрат с суммой 3

2 квадрата с суммой 9

1 квадрат с суммой 6

1 квадрат с суммой 10

1 квадрат с суммой 8

1 квадрат с суммой 16


Рис. 24


Во втором решении (рис. 23):


2 квадрата с суммой 4

2 квадрата с суммой 10

1 квадрат с суммой 8

2 квадрата с суммой 12


21. На рис. 24 дан образчик магического квадрата с суммой очков в ряду 18.

22. Вот в виде примера две прогрессии с разностью 2:

a) 0–0; 0–2; 0–4; 0–6; 4–4 (или 3–5); 5–5 (или 4–6);

b) 0–1; 0–3 (или 1–2); 0–5 (или 2–3); 1–6 (или 3–4); 3–6 (или 4–5); 5–6.

Всех шестикосточковых прогрессий можно составить

23. Начальные косточки их следующие:


а) для прогрессий с разностью 1:




b) для прогрессий с разностью 2:


0—0; 0–2; 0–1.


23. Расположение задачи может быть получено из начального положения следующими 44 ходами:




24. Расположение задачи достигается следующими 39 ходами:




25. Магический квадрат с суммой 30 получается после ряда ходов:




Занимаясь головоломками, относящимися к домино и к игре 15, мы оставались в пределах арифметики. Переходя к головоломкам на крокетной площадке, мы вступаем отчасти в область геометрии.

26. Даже опытный игрок скажет, вероятно, что при указанных условиях пройти ворота легче, чем крокировать: ведь ворота вдвое шире шара. Однако такое представление ошибочно: ворота, конечно, шире, нежели шар, но свободный проход для шара через ворота вдвое уже, чем мишень для крокировки.

Взгляните на рис. 25, и сказанное станет вам ясно. Центр шара не должен приближаться к проволоке ворот меньше чем на величину радиуса, иначе шар заденет проволоку. Значит, для центра шара останется мишень на два радиуса меньше ширины ворот. Легко видеть, что в условиях нашей задачи ширина мишени при прохождении ворот с наилучшей позиции равна диаметру шара.


Рис. 25


Рис. 26


Рис. 27


Рис. 28


Посмотрим теперь, как велика ширина мишени для центра движущегося шара при крокировке. Очевидно, что, если центр крокирующего приблизится к центру крокируемого меньше чем на радиус шара, удар обеспечен. Значит, ширина мишени в этом случае, как видно из рис. 26, равна двум диаметрам шара.

Итак, вопреки мнению игроков, при данных условиях вдвое легче попасть в шар, нежели свободно пройти ворота с самой лучшей позиции.

27. После сейчас сказанного эта задача не требует долгих разъяснений. Легко видеть (рис. 27), что ширина цели при крокировке равна двум диаметрам шара, то есть 20 см; ширина же мишени при нацеливании в столбик равна сумме диаметра шара и столбика, то есть 16 см (рис. 28). Значит, крокировать легче, чем заколоться, в




всего на 25 %. Игроки же обычно сильно преувеличивают шансы крокировки по сравнению с попаданием в столбик.


Рис. 29


Рис. 30


Рис. 31


28. Иной игрок рассудит так: раз ворота вдвое шире, чем шар, а столбик вдвое у́же шара, то для свободного прохода ворот мишень вчетверо шире, чем для попадания в столбик. Наученный предыдущими задачами, читатель наш подобной ошибки не сделает. Он сообразит, что для прицела в столбик мишень в 1½ раза шире, чем для прохода ворот с наилучшей позиции. Это ясно из рассмотрения рис. 29 и 30.

(Если бы ворота были не прямоугольные, а выгнутые дугой, проход для шара был бы ещё уже – как легко сообразить из рассмотрения рис. 31.)


Рис. 32


Рис. 33


29. Из рис. 32 и 33 видно, что промежуток а, остающийся для прохода центра шара, довольно тесен при указанных в задаче условиях. Знакомые с геометрией знают, что сторона (АВ) квадрата меньше его диагонали (АС) в 1,4 раза. Если ширина ворот 3d (где d – диаметр шара), то АВ равно

Конец ознакомительного фрагмента.