Глава первая
Завтрак с головоломками
1. Белка на поляне
– Сегодня утром я с белкой в прятки играл, – рассказывал во время завтрака один из собравшихся за столом дома отдыха. – Вы знаете в нашем лесу круглую полянку с одинокой берёзой посредине? За этим деревом и пряталась от меня белка. Выйдя из чащи на полянку, я сразу заметил беличью мордочку с живыми глазками, уставившуюся на меня из-за ствола. Осторожно, не приближаясь, стал я обходить по краю полянки, чтобы взглянуть на зверька. Раза четыре обошёл я дерево – но плутовка отступала по стволу в обратную сторону, по-прежнему показывая только мордочку. Так и не удалось мне обойти кругом белки.
– Однако, – возразил кто-то, – сами же вы говорите, что четыре раза обошли вокруг дерева.
– Вокруг дерева, но не вокруг белки\
– Но белка-то на дереве?
– Что же из того?
– То, что вы кружились и около белки.
– Хорошо кружился, если ни разу не видел её спинки.
– При чём тут спинка? Белка в центре, вы ходите по кругу, значит, ходите кругом белки.
– Ничуть не значит. Вообразите, что я хожу около вас по кругу, а вы поворачиваетесь ко мне всё время лицом, пряча спину. Скажете вы разве, что я кружусь около вас?
– Конечно, скажу. Как же иначе?
– Кружусь, хотя не бываю позади вас, не вижу вашей спины?
– Далась вам спина! Вы замыкаете вокруг меня путь – вот в чём суть дела, а не в том, чтобы видеть спину.
– Позвольте: что значит кружиться около чего-нибудь? По-моему, это означает только одно: становиться последовательно в такие места, чтобы видеть предмет со всех сторон. Ведь правильно, профессор? – обратился спорящий к сидевшему за столом старику.
– Спор идёт у вас, в сущности, о словах, – ответил учёный. – А в таких случаях надо начинать всегда с того, о чём вы сейчас только завели речь: надо договориться о значении слов. Как понимать слова: «двигаться вокруг предмета»? Смысл их может быть двоякий. Можно, во-первых, разуметь под ними перемещение по замкнутой линии, внутри которой находится предмет. Это одно понимание. Другое: двигаться по отношению к предмету так, чтобы видеть его со всех сторон. Держась первого понимания, вы должны признать, что четыре раза обошли вокруг белки. Придерживаясь же второго, обязаны заключить, что не обошли вокруг неё ни разу. Поводов для спора здесь, как видите, нет, если обе стороны говорят на одном языке, понимают слова одинаково.
– Прекрасно, можно допустить двоякое понимание. Но какое всё же правильнее?
– Так ставить вопрос не приходится. Условливаться можно о чём угодно. Уместно только спросить, что более согласно с общепринятым пониманием. Я сказал бы, что лучше вяжется с духом языка первое понимание, и вот почему. Солнце, как известно, делает полный оборот кругом своей оси в 26 суток…
– Солнце вертится?
Рис. 1. «Плутовка отступала в обратную сторону»
– Конечно, как и Земля вокруг оси. Вообразите, однако, что вращение Солнца совершается медленнее, а именно что оно делает один оборот не в 26 суток, а в 365¼ суток, то есть в год. Тогда Солнце было бы обращено к Земле всегда одной и той же своей стороной; противоположной половины, «спины» Солнца, мы никогда не видели бы. Но разве стал бы кто-нибудь утверждать из-за этого, что Земля не кружится вокруг Солнца?
– Да, теперь ясно, что я всё-таки кружился вокруг белки.
– Есть предложение, товарищи! Не расходиться, – сказал один из слушавших спор. – Так как в дождь гулять никто не пойдёт, а перестанет дождик, видно, не скоро, то давайте проведём здесь время за головоломками. Начало сделано. Пусть каждый по очереди придумает или припомнит какую-нибудь головоломку. Вы же, профессор, явитесь нашим верховным судьёй.
– Если головоломки будут с алгеброй или с геометрией, то я должна отказаться, – заявила молодая женщина.
– И я тоже, – присоединился кто-то.
– Нет, нет, участвовать должны все! А мы попросим присутствующих не привлекать ни алгебры, ни геометрии, разве только самые начатки. Возражений не имеется?
– Тогда я согласна и готова первая предложить головоломку.
– Прекрасно, просим! – донеслось с разных сторон. – Начинайте.
2. В коммунальной кухне
– Головоломка моя зародилась в обстановке коммунальной квартиры. Задача, так сказать, бытовая. Жилица – назову её для удобства Тройкиной – положила в общую плиту 3 полена своих дров, жилица Пятёркина – 5 поленьев, жилец Бестопливный, у которого, как вы догадываетесь, не было своих дров, получил от обеих гражданок разрешение сварить обед на общем огне. В возмещение расходов он уплатил соседкам 8 рублей. Как должны они поделить между собой эту плату?
– Пополам, – поспешил заявить кто-то. – Бестопливный пользовался их огнём в равной мере.
– Ну нет, – возразил другой, – надо принять в соображение, как участвовали в этом огне дровяные вложения гражданок. Кто дал 3 полена, должен получить 3 рубля; кто дал 5 поленьев, получает 5 рублей. Вот это будет справедливый делёж.
Рис. 2. «В возмещение расходов он уплатил соседкам 8 рублей»
– Товарищи, – взял слово тот, кто затеял игру и считался теперь председателем собрания. – Окончательные решения головоломок давайте пока не объявлять. Пусть каждый ещё подумает над ними. Правильные ответы судья огласит нам за ужином. Теперь следующий. Очередь за вами, товарищ пионер!
3. Работа школьных кружков
– В нашей школе, – начал пионер, – имеется 5 кружков: политкружок, военный, фотографический, шахматный и хоровой. Политкружок занимается через день, военный – через 2 дня на 3-й, фотографический – каждый 4-й день, шахматный – каждый 5-й день и хоровой – каждый 6-й день. 1 января собрались в школе все 5 кружков, а затем занятия велись в назначенные по плану дни, без отступлений от расписания. Вопрос состоит в том, сколько в первом квартале было ещё вечеров, когда собирались в школе все 5 кружков.
– А год был простой или високосный? – осведомились у пионера.
– Простой.
– Значит, первый квартал – январь, февраль, март – надо считать за 90 дней?
– Очевидно.
– Позвольте к вопросу вашей головоломки присоединить ещё один, – сказал профессор. – А именно: сколько в том же квартале года было таких вечеров, когда кружковых занятий в школе вовсе не происходило?
– Ага, понимаю! – раздался возглас. – Задача с подвохом. Ни одного дня не будет больше с 5 кружками и ни одного дня без всяких кружков. Это уж ясно!
– Почему? – спросил председатель.
– Объяснить не могу, но чувствую, что отгадчика хотят поймать впросак.
– Ну, это не довод. Вечером выяснится, правильно ли ваше предчувствие. За вами очередь, товарищ!
4. Кто больше?
– Двое считали в течение часа всех, кто проходил мимо них на тротуаре. Один стоял у ворот дома, другой прохаживался взад и вперёд по тротуару. Кто насчитал больше прохожих?
– Идя, больше насчитаешь, ясное дело, – донеслось с другого конца стола.
– Ответ узнаем за ужином, – объявил председатель. – Следующий!
5. Дед и внук
– То, о чём я скажу, происходило в 1932 году. Мне было тогда ровно столько лет, сколько выражают последние две цифры года моего рождения. Когда я об этом соотношении рассказал деду, он удивил меня заявлением, что с его возрастом выходит то же самое. Мне это показалось невозможным…
– Разумеется, невозможно, – вставил чей-то голос.
– Представьте, что вполне возможно. Дед доказал мне это. Сколько же лет было каждому из нас?
Рис. 3. «Продаю железнодорожные билеты»
6. Железнодорожные билеты
– Я – железнодорожная кассирша, продаю билеты, – начала следующая участница игры. – Многим это кажется очень простым делом. Не подозревают, с каким большим числом билетов приходится иметь дело кассиру даже маленькой станции. Ведь необходимо, чтобы пассажиры могли получить билеты от данной станции до любой другой на той же дороге, притом в обоих направлениях. Я служу на дороге с 25 станциями. Сколько же, по-вашему, различных образцов билетов заготовлено железной дорогой для всех её касс?
– Ваша очередь, товарищ лётчик, – провозгласил председатель.
7. Полёт дирижабля
– Из Ленинграда вылетел прямо на север дирижабль. Пролетев в северном направлении 500 км, он повернул на восток. Пролетев в эту сторону 500 км, дирижабль сделал новый поворот – на юг и прошёл в южном направлении 500 км. Затем он повернул на запад и, пролетев 500 км, опустился на землю. Спрашивается: где расположено место спуска дирижабля относительно Ленинграда – к западу, к востоку, к северу или к югу?
– На простака рассчитываете, – сказал кто-то. – 500 шагов вперёд, 500 вправо, 500 назад да 500 влево – куда придём? Откуда вышли, туда и придём!
– Итак, где, по-вашему, спустился дирижабль?
– На том же ленинградском аэродроме, откуда поднялся. Не так разве?
– Именно не так.
– В таком случае я ничего не понимаю!
– В самом деле, здесь что-то неладно, – вступил в разговор сосед. – Разве дирижабль спустился не в Ленинграде?.. Нельзя ли повторить задачу?
Лётчик охотно исполнил просьбу. Его внимательно выслушали и с недоумением переглянулись.
– Ладно, – объявил председатель. – До ужина успеем подумать об этой задаче, а сейчас будем продолжать.
8. Тень
– Позвольте мне, – сказал очередной загадчик, – взять сюжетом головоломки тот же дирижабль. Что длиннее: дирижабль или его полная тень?
– В этом и вся головоломка?
– Вся.
– Тень, конечно, длиннее дирижабля: ведь лучи солнца расходятся веером, – последовало сразу решение.
– Я бы сказал, – возразил кто-то, – что, напротив, лучи солнца параллельны; тень и дирижабль одной длины.
– Что вы? Разве не случалось вам видеть расходящиеся лучи от спрятанного за облаком солнца? Тогда можно воочию убедиться, как сильно расходятся солнечные лучи. Тень дирижабля должна быть значительно больше дирижабля, как тень облака больше самого облака.
Рис. 4. Расходящиеся лучи от спрятанного за облаком солнца
– Почему же обычно принимают, что лучи солнца параллельны? Моряки, астрономы – все так считают…
Председатель не дал спору разгореться и предоставил слово следующему загадчику.
9. Задача со спичками
Очередной оратор высыпал на стол все спички из коробка и стал распределять их в три кучки.
– Костёр собираетесь раскладывать? – шутили слушатели.
– Головоломка, – объяснил загадчик, – будет со спичками. Вот их три неравные кучки. Во всех вместе 48 штук. Сколько в каждой, я вам не сообщаю. Зато отметьте следующее: если из первой кучи я переложу во вторую столько спичек, сколько в этой второй куче имелось, затем из второй в третью переложу столько, сколько в этой третьей перед тем будет находиться, и, наконец, из третьей переложу в первую столько спичек, сколько в этой первой куче будет тогда иметься, – если, говорю, всё это проделать, то число спичек во всех кучках станет одинаково. Сколько же было в каждой кучке первоначально?
10. Коварный пень
– Головоломка эта, – начал сосед последнего загадчика, – напоминает задачу, которую давно как-то задал мне деревенский математик. Это был целый рассказ, довольно забавный. Повстречал крестьянин в лесу незнакомого старика. Разговорились. Старик внимательно оглядел крестьянина и сказал:
– Известен мне в леску этом пенёчек один удивительный. Очень в нужде помогает.
– Как помогает? Вылечивает?
– Лечить не лечит, а деньги удваивает. Положишь под него кошель с деньгами, досчитаешь до ста – и готово: деньги, какие были в кошельке, удвоились. Такое свойство имеет. Замечательный пень!
– Вот бы мне испробовать, – мечтательно сказал крестьянин.
– Это можно. Отчего же? Заплатить только надо.
– Кому платить? И много ли?
– Тому платить, кто дорогу укажет. Мне, значит. А много ли, о том особый разговор.
Стали торговаться. Узнав, что у крестьянина в кошельке денег мало, старик согласился получать после каждого удвоения по 1 руб. 20 коп. На том и порешили.
Старик повёл крестьянина в глубь леса, долго бродил с ним и наконец разыскал в кустах старый, покрытый мохом еловый пень. Взяв из рук крестьянина кошелёк, он засунул его между корнями пня. Досчитали до ста. Старик снова стал шарить и возиться у основания пня, наконец извлёк оттуда кошелёк и подал крестьянину.
Заглянул крестьянин в кошелёк, и что же? – деньги в самом деле удвоились! Отсчитал из них старику обещанные 1 руб. 20 коп. и попросил засунуть кошелёк вторично под чудодейственный пень.
Рис. 5. Старик повёл крестьянина в глубь леса
Снова досчитали до ста, снова старик стал возиться в кустах у пня, и снова совершилось диво: деньги в кошельке удвоились. Старик вторично получил из кошелька обусловленные 1 руб. 20 коп.
В третий раз спрятали кошель под пень. Деньги удвоились и на этот раз. Но когда крестьянин уплатил старику обещанное вознаграждение, в кошельке не осталось больше ни одной копейки. Бедняга потерял на этой комбинации все свои деньги. Удваивать дальше было уже нечего, и крестьянин уныло побрёл из лесу.
Секрет волшебного удвоения денег вам, конечно, ясен: старик недаром, отыскивая кошелёк, мешкал в зарослях у пня. Но можете ли вы ответить на другой вопрос: сколько было у крестьянина денег до злополучных опытов с коварным пнём?
11. Задача о декабре
– Я, товарищи, языковед, от всякой математики далёк, – начал пожилой человек, которому пришёл черёд задавать головоломку. – Не ждите от меня поэтому математической задачи. Могу только предложить вопрос из знакомой мне области. Разрешите задать календарную головоломку?
– Просим!
– Двенадцатый месяц называется у нас «декабрь». А вы знаете, что, собственно, значит «декабрь»? Слово это происходит от греческого слова «дека» – десять, отсюда также слова «декалитр» – 10 литров, «декада» – 10 дней и др. Выходит, что месяц декабрь носит название «десятый». Чем объяснить такое несоответствие?
– Ну, теперь осталась только одна головоломка, – произнёс председатель.
12. Арифметический фокус
– Мне приходится выступать последним, двенадцатым. Для разнообразия покажу вам арифметический фокус и попрошу раскрыть его секрет. Пусть кто-нибудь из вас, хотя бы вы, товарищ председатель, напишет на бумажке, тайно от меня, любое трёхзначное число.
– Могут быть и нули в этом числе?
– Не ставлю никаких ограничений. Любое трёхзначное число, какое пожелаете.
– Написал. Что теперь?
– Припишите к нему это же число ещё раз. У вас получится, конечно, шестизначное число.
– Есть. Шестизначное число.
– Передайте бумажку соседу, что сидит подальше от меня. А он пусть разделит это шестизначное число на 7.
– Легко сказать: разделить на 7! Может, и не разделится.
– Не беспокойтесь, поделится без остатка.
– Числа не знаете, а уверены, что поделится.
– Сначала разделите, потом будем говорить.
– На ваше счастье, разделилось.
– Результат вручите своему соседу, не сообщая мне. Он разделит его на 11.
– Думаете, опять повезёт – разделится?
– Делите, остатка не получится.
– В самом деле без остатка! Теперь что?
– Передайте результат дальше. Разделим его… ну, скажем, на 13.
– Нехорошо выбрали. Без остатка на 13 мало чисел делится… Ан нет, разделилось нацело. Везёт же вам!
– Дайте мне бумажку с результатом; только сложите её, чтобы я не видел числа.
Не развёртывая листа бумаги, «фокусник» вручил его председателю.
– Извольте получить задуманное вами число. Правильно?
– Совершенно верно! – с удивлением ответил тот, взглянув на бумажку. – Именно это я и задумал… теперь, так как список ораторов исчерпан, позвольте закрыть наше собрание, благо и дождь успел пройти. Разгадки всех головоломок будут оглашены сегодня же, после ужина. Записки с решениями можете подавать мне.
Решения головоломок 1-12
1. Головоломка с белкой на поляне рассмотрена была полностью раньше. Переходим к следующей.
2. Нельзя считать, как многие делают, что 8 руб. уплачено за 8 поленьев, по 1 руб. за полено. Деньги эти уплачены только за третью часть от 8 поленьев, потому что огнём пользовались трое в одинаковой мере. Отсюда следует, что все 8 поленьев оценены были в 8 × 3, то есть в 24 руб., и цена одного полена – 3 руб.
Теперь легко сообразить, сколько причитается каждому. Пятёркиной за её 5 поленьев следует 15 руб.; но она сама воспользовалась плитой на 8 руб.; значит, ей остаётся дополучить ещё 15 – 8, то есть 7 руб. Тройкина за три своих полена должна получить 9 руб., а если вычесть 8 руб., причитающиеся с неё за пользование плитой, то следовать ей будет всего только 9–8, то есть 1 руб.
Итак, при правильном дележе Пятёркина должна получить 7 руб., Тройкина – 1 руб.
3. На первый вопрос – через сколько дней в школе соберутся одновременно все 5 кружков – мы легко ответим, если сумеем разыскать наименьшее из всех чисел, которое делится без остатка на 2, на 3, на 4, на 5 и на 6. Нетрудно сообразить, что число это 60. Значит, на 61-й день соберутся снова 5 кружков: политический – через 30 двухдневных промежутков, военный – через 20 трёхдневных, фотокружок – через 15 четырёхдневных, шахматный – через 12 пятидневок и хоровой – через 10 шестидневок. Раньше чем через 60 дней такого вечера не будет. Следующий подобный же вечер будет ещё через 60 дней, то есть уже во втором квартале.
Итак, в течение первого квартала окажется только один вечер, когда в клубе снова соберутся для занятий все 5 кружков.
Хлопотливее найти ответ на второй вопрос задачи: сколько будет вечеров, свободных от кружковых занятий? Чтобы разыскать такие дни, надо выписать по порядку все числа от 1 до 90 и зачеркнуть в этом ряду дни работы политкружка, то есть числа 1, 3, 5, 7, 9 и т. д. Потом зачеркнуть дни работы военного кружка: 4-й, 10-й и т. д. После того как зачеркнём затем дни занятий фотокружка, шахматного и хорового, у нас останутся незачёркнутыми те дни первого квартала, когда ни один кружок не работал.
Кто проделает эту работу, тот убедится, что вечеров, свободных от занятий, в течение первого квартала будет довольно много: 24. В январе их 8, а именно: 2-го, 8-го, 12-го, 14-го, 18-го, 20-го, 24-го и 30-го. В феврале насчитывается 7 таких дней, в марте – 9.
4. Оба насчитали одинаковое число прохожих. Хотя тот, кто стоял у ворот, считал проходивших в обе стороны, зато тот, кто ходил, видел вдвое больше встречных людей.
5. С первого взгляда может действительно показаться, что задача неправильно составлена: выходит как будто, что внук и дед одного возраста. Однако требование задачи, как сейчас увидим, легко удовлетворяется.
Внук, очевидно, родился в XX столетии. Первые две цифры года его рождения, следовательно, 19: таково число сотен. Число, выражаемое остальными цифрами, будучи сложено с самим собою, должно составить 32. Значит, это число 16: год рождения внука 1916, и ему в 1932 году было 16 лет.
Дед его родился, конечно, в XIX столетии; первые две цифры года его рождения 18. Удвоенное число, выражаемое остальными цифрами, должно составить 132. Значит, само это число равно половине 132, то есть 66. Дед родился в 1866 году, и ему в 1932 году было 66 лет.
Таким образом, и внуку, и деду в 1932 году было столько лет, сколько выражают последние две цифры годов их рождения.
6. На каждой из 25 станций пассажиры могут требовать билет до любой станции, то есть на 24 пункта. Значит, разных билетов надо напечатать 25 × 24 = 600 образцов.
7. Задача эта никакого противоречия не содержит. Не следует думать, что дирижабль летел по контуру квадрата: надо принять в расчёт шарообразную форму Земли. Дело в том, что меридианы к северу сближаются (рис. 6); поэтому, пройдя 500 км по параллельному кругу, расположенному на 500 км севернее широты Ленинграда, дирижабль отошёл к востоку на большее число градусов, чем пролетел потом в обратном направлении, очутившись снова на широте Ленинграда. В результате дирижабль, закончив полёт, оказался восточнее Ленинграда.
Рис. 6
На сколько именно? Это можно рассчитать. На рис. 6 вы видите маршрут дирижабля: АВСВЕ. Точка N — Северный полюс; в этой точке сходятся меридианы АВ и ВС. Дирижабль пролетел сначала 500 км на север, то есть по меридиану АN Так как длина градуса меридиана 111 км, то дуга меридиана в 500 км содержит 500: 111 = 4°,5. Ленинград лежит на 60-й параллели; значит, точка В находится на 60° + 4°,5 = 64°,5. Затем дирижабль летел к востоку, то есть по параллели ВС, и прошёл по ней 500 км. Длину одного градуса на этой параллели можно вычислить (или узнать из таблиц); она равна 48 км. Отсюда легко определить, сколько градусов пролетел дирижабль на восток: 500: 48 = 10°,4. Далее воздушный корабль летел в южном направлении, то есть по меридиану СВ, и, пройдя 500 км, должен был очутиться снова на параллели Ленинграда. Теперь путь лежит на запад, то есть по АВ; 500 км этого пути явно короче расстояния АВ. В расстоянии АВ заключается столько же градусов, сколько и в ВС, то есть 10°,4. Но длина Г на ширине 60° равна 55,5 км. Следовательно, между А и В расстояние равно 55,5 × 10,4 = 577 км. Мы видим, что дирижабль не мог спуститься в Ленинграде; он не долетел до него 77 км, то есть спустился на Ладожском озере.
8. Беседовавшие об этой задаче допустили ряд ошибок. Неверно, что лучи Солнца, падающие на земной шар, заметно расходятся. Земля так мала по сравнению с расстоянием её от Солнца, что солнечные лучи, падающие на какую-либо часть её поверхности, расходятся на неуловимо малый угол: практически лучи эти можно считать параллельными. То, что мы видим иногда (при так называемом «иззаоблачном сиянии», см. рис. 4) лучи Солнца, расходящиеся веером, – не более, как следствие перспективы.
Рис. 7
В перспективе параллельные линии представляются сходящимися; вспомните вид уходящих вдаль рельсов (рис. 7) или вид длинной аллеи.
Однако из того, что лучи Солнца падают на землю параллельным пучком, вовсе не следует, что полная тень дирижабля равна по длине самому дирижаблю. Взглянув на рис. 8, вы поймёте, что полная тень дирижабля в пространстве суживается по направлению к земле и что, следовательно, тень, отбрасываемая им на земную поверхность, должна быть короче самого дирижабля: СВ меньше, чем АВ.
Если знать высоту дирижабля, то можно вычислить и то, как велика эта разница. Пусть дирижабль летит на высоте 1000 м над земной поверхностью. Угол, составляемый прямыми АС и BD между собою, равен тому углу, под которым усматривается Солнце с земли; угол этот известен: около ½ °, С другой стороны, известно, что всякий предмет, видимый под углом в ½°, удалён от глаза на 115 своих поперечников. Значит, отрезок MN (этот отрезок усматривается с земной поверхности под углом в ½°) должен составлять 115-ю долю от АС?. Величина АС больше отвесного расстояния от А до земной поверхности. Если угол между направлением солнечных лучей и земной поверхностью равен 45°, то АС (при высоте дирижабля 1000 м) составляет около 1400 м, и, следовательно, отрезок MN равен = 12 м.
Рис. 8
Но избыток длины дирижабля над длиною тени, то есть отрезок МВ, больше MN, а именно больше в 1,4 раза, потому что угол MBD почти точно равен 45°. Следовательно, МВ равно 12 × 1,4; это даёт почти 17 м.
Всё сказанное относится к полной тени дирижабля – чёрной и резкой и не имеет отношения к так называемой полутени, слабой и размытой.
Расчёт наш показывает, между прочим, что, будь на месте дирижабля небольшой воздушный шар, диаметром меньше 17 м, он не отбрасывал бы вовсе полной тени; видна была бы только его смутная полутень.
9. Задачу решают с конца. Будем исходить из того, что после всех перекладываний число спичек в кучках сделалось одинаковым. Так как от этих перекладываний общее число спичек не изменилось, осталось прежнее (48), то в каждой кучке к концу всех перекладываний оказалось 16 штук.
Итак, имеем в самом конце:
Непосредственно перед этим в 1-ю кучку было прибавлено столько спичек, сколько в ней имелось; иначе говоря, число спичек в ней было удвоено. Значит, до последнего перекладывания в 1-й кучке было не 16, а только 8 спичек. В кучке же 3-й, из которой 8 спичек было взято, имелось перед тем 16 + 8 = 24 спички.
Теперь у нас такое распределение спичек по кучкам:
Далее: мы знаем, что перед этим из 2-й кучки было переложено в 3-ю столько спичек, сколько имелось в 3-й кучке. Значит, 24 – это удвоенное число спичек, бывших в 3-й кучке до этого перекладывания. Отсюда узнаем распределение спичек после первого перекладывания:
Легко сообразить, что раньше первого перекладывания (то есть до того, как из 1-й кучки переложено было во 2-ю столько спичек, сколько в этой 2-й имелось) распределение спичек было таково:
Таковы первоначальные числа спичек в кучках.
10. Эту головоломку также проще решить с конца. Мы знаем, что после третьего удвоения в кошельке оказалось 1 руб. 20 коп. (деньги эти получил старик в последний раз). Сколько же было до этого удвоения? Конечно, 60 коп. Остались эти 60 коп. после уплаты старику вторых 1 руб. 20 коп., а до уплаты было в кошельке 1 руб. 20 коп. + 60 коп. = 1 руб. 80 коп.
Далее: 1 руб. 80 коп. оказались в кошельке после второго удвоения; до того было всего 90 коп., оставшихся после уплаты старику первых 1 руб. 20 коп. Отсюда узнаем, что до уплаты находилось в кошельке 90 коп. + 1 руб. 20 коп. = 2 руб. 10 коп. Столько денег имелось в кошельке после первого удвоения; раньше же было вдвое меньше – 1 руб. 05 коп. Это и есть те деньги, с которыми крестьянин приступил к своим неудачным финансовым операциям.
Проверим ответ:
Деньги в кошельке после:
11. Наш календарь ведёт своё начало от календаря древних римлян. Римляне же (до Юлия Цезаря) считали началом года не 1 января, а 1 марта. Декабрь тогда был, следовательно, десятый месяц. С перенесением начала года на 1 января названия месяцев изменены не были. Отсюда и произошло то несоответствие между названием и порядковым номером, которое существует теперь для ряда месяцев.
12. Проследим за тем, что проделано было с задуманным числом. Прежде всего к нему приписали взятое трёхзначное число ещё раз. Это то же самое, что приписать три нуля и прибавить затем первоначальное число; например:
872 872 = 872 000 + 872.
Теперь ясно, что, собственно, проделано было с числом: его увеличили в 1000 раз и, кроме того, прибавили его самого; короче сказать – умножили число на 1001.
Что же сделано было потом с этим произведением? Его разделили последовательно на 7, на 11 и на 13. В конечном итоге, значит, разделили его на 7 × 11 × 13, то есть на 1001.
Итак, задуманное число сначала умножили на 1001, потом разделили на 1001. Надо ли удивляться, что в результате получилось то же самое число?
Прежде чем закончить главу о головоломках в доме отдыха, расскажу ещё о трёх арифметических фокусах, которыми вы можете занять досуг ваших товарищей. Два состоят в отгадывании чисел, третий – в отгадывании владельцев вещей.
Это – старые, быть может, даже известные вам фокусы, но едва ли все знают, на чём они основаны. А без знания теоретической основы фокуса нельзя сознательно и уверенно его выполнять. Обоснование первых двух фокусов потребует от нас весьма скромной и ничуть не утомительной экскурсии в область начальной алгебры.
13. Зачёркнутая цифра
Пусть товарищ ваш задумает какое-нибудь многозначное число, например 847. Предложите ему найти сумму цифр этого числа (8 + 4 + 7= 19) и отнять её от задуманного числа. У загадчика окажется:
847 – 19 = 828.
В том числе, которое получится, пусть он зачеркнёт одну цифру – безразлично какую и сообщит вам все остальные. Вы немедленно называете ему зачёркнутую цифру, хотя не знаете задуманного числа и не видели, что с ним проделывалось.
Как можете вы это выполнить и в чём разгадка фокуса?
Выполняется это очень просто: подыскивается такая цифра, которая вместе с суммой вам сообщённых цифр составила бы ближайшее число, делящееся на 9 без остатка. Если, например, в числе 828 была зачёркнута первая цифра (8) и вам сообщены цифры 2 и 8, то, сложив 2 + 8, вы соображаете, что до ближайшего числа, делящегося на 9, то есть до 18, не хватает 8. Это и есть зачёркнутая цифра.
Почему так получается? Потому что если от какого-либо числа отнять сумму его цифр, то должно остаться число, делящееся на 9, – иначе говоря, такое, сумма цифр которого делится на 9. В самом деле, пусть в задуманном числе цифра сотен – а, цифра десятков – 6 и цифра единиц – с. Значит, всего в этом числе содержится единиц
100a + 10b + c.
Отнимаем от этого числа сумму его цифр a + b + с.
Получим
100a + 10b + с – (a + b + с) = 99a + 9b = 9(11a + b).
Но 9 (11а + b), конечно, делится на 9; значит, при вычитании из числа суммы его цифр всегда должно получиться число, делящееся на 9 без остатка.
При выполнении фокуса может случиться, что сумма сообщённых вам цифр сама делится на 9 (например, 4 и 5). Это показывает, что зачёркнутая цифра есть либо 0, либо 9. Так вы и должны ответить: 0 или 9.
Вот видоизменение того же фокуса: вместо того чтобы из задуманного числа вычитать сумму его цифр, можно вычесть число, полученное из данного какой-либо перестановкой его цифр. Например, из числа 8247 можно вычесть 2748 (если получается число, большее задуманного, то вычитают меньшее из большего). Дальше поступают, как раньше сказано: 8247–2748 = 5499; если зачёркнута цифра 4, то, зная цифры 5, 9, 9, вы соображаете, что ближайшее к 5 + 9 + 9, то есть 23, число, делящееся на 9, есть 27. Значит, зачёркнутая цифра 27–23 = 4.
14. Отгадать число, ничего не спрашивая
Вы предлагаете товарищу задумать любое трёхзначное число (но такое, чтобы разница между крайними цифрами была не меньше 2) и просите затем переставить цифры в обратном порядке. Сделав это, он должен вычесть меньшее число из большего и полученную разность сложить с ней же, но написанной в обратной последовательности цифр. Ничего не спрашивая у загадчика, вы сообщаете ему число, которое у него получилось в конечном итоге.
Если, например, было задумано 467, то загадчик должен выполнить следующие действия:
Этот окончательный результат – 1089 – вы и объявляете загадчику. Как вы можете его узнать?
Рассмотрим задачу в общем виде. Возьмём число с цифрами а, b, с. Оно изобразится так:
100а + 10b + с.
Число с обратным расположением цифр имеет вид:
100с + 10b + а.
Разность между первым и вторым равна:
99а – 99с.
Делаем следующие преобразования:
99а – 99с = 99 (а – с) – 100 (а – с) – (а – с) = 100 (а – с) – 100 + 100 – 10 + 10 – а + с = 100 (а – с – 1) + 90 + (10 – а + с).
Значит, разность состоит из следующих трёх цифр:
сотен: а – с – 1
десятков: 9
единиц: 10 + с – а
Число с обратным расположением цифр изображается так:
100 (10 + с – а) + 90 + (а – с – 1).
Сложив оба выражения
100 (а – с – 1) + 90 + 10 + с – а
+
100 (10 + с – а) + 90 + а – с – 1,
получаем
100 · 9 + 180 + 9 = 1089.
Каковы бы ни были цифры а, b, с, в итоге выкладок всегда получается одно и то же число: 1089. Нетрудно поэтому отгадать результат этих вычислений: вы знали его заранее.
Понятно, что показывать этот фокус одному лицу дважды нельзя – секрет будет раскрыт.
15. Кто что взял?
Для выполнения этого остроумного фокуса необходимо приготовить три какие-нибудь мелкие вещицы, удобно помещающиеся в кармане, например карандаш, ключ и перочинный ножик. Кроме того, поставьте на стол тарелку с 24 орехами; за неимением орехов годятся шашки, кости домино, спички и т. и.
Троим товарищам вы предлагаете во время вашего отсутствия из комнаты спрятать в карман карандаш, ключ или ножик, кто какую вещь хочет. Вы берётесь отгадать, в чьём кармане какая вещь.
Процедура отгадывания проводится так. Возвратившись в комнату после того, как вещи спрятаны по карманам товарищей, вы начинаете с того, что вручаете им на сохранение орехи из тарелки. Первому даёте один орех, второму – два, третьему – три. Затем снова удаляетесь из комнаты, оставив товарищам следующую инструкцию. Каждый должен взять себе из тарелки ещё орехов, а именно: обладатель карандаша берёт столько орехов, сколько ему было вручено; обладатель ключа берёт вдвое больше того числа орехов, какое ему было вручено; обладатель ножа берёт вчетверо больше того числа орехов, какое ему было вручено.
Прочие орехи остаются на тарелке.
Когда всё это проделано и вам дан сигнал возвратиться, вы, входя в комнату, бросаете взгляд на тарелку и объявляете, у кого в кармане какая вещь.
Фокус тем более озадачивает, что выполняется без участия тайного сообщника, подающего вам незаметные сигналы. В нём нет никакого обмана: он целиком основан на арифметическом расчёте. Вы разыскиваете обладателя каждой вещи единственно лишь по числу оставшихся орехов. Остаётся их на тарелке немного – от 1 до 7, и счесть их можно одним взглядом.
Как же, однако, узнать по остатку орехов, кто взял какую вещь?
Очень просто: каждому случаю распределения вещей между товарищами отвечает иное число остающихся орехов. Мы сейчас в этом убедимся.
Пусть имена ваших товарищей Владимир, Георгий, Константин; обозначим их начальными буквами: В, Г, К. Вещи также обозначим буквами: карандаш – а, ключ – b, нож – с. Как могут три вещи распределиться между тремя обладателями? На 6 ладов:
Других случаев, очевидно, быть не может; наша табличка систематически исчерпывает все комбинации.
Посмотрим теперь, какие остатки отвечают каждому из этих 6 случаев:
Вы видите, что остаток орехов всякий раз получается иной. Поэтому, зная остаток, вы легко устанавливаете, каково распределение вещей между вашими товарищами. Вы снова – в третий раз – удаляетесь из комнаты и заглядываете там в свою записную книжку, где записана сейчас воспроизведённая табличка (собственно, нужны вам только первая и последняя графы); запомнить её наизусть трудно, да и нет надобности. Табличка
скажет вам, в чьём кармане какая вещь. Если, например, на тарелке осталось 5 орехов, то это означает (случаи b, с, а), что
ключ – у Владимира;
нож – у Георгия;
карандаш – у Константина.
Чтобы фокус удался, вы должны твёрдо помнить, сколько орехов вы дали каждому товарищу (раздавайте орехи поэтому всегда по алфавиту, как и было сделано в нашем случае).