Вы здесь

Естествознание. Часть I. Физическая картина мира (А. Л. Петелин, 2010)

Часть I. Физическая картина мира

Глава 1. Методы познания мира

Рассмотрим вкратце место естествознания среди методов познания окружающего нас мира.

Вопрос первый: какие вообще существуют методы познания?

Считается, что имеется четыре основных направления, по которым движется человеческое сознание при получении любых сведений, необходимых для создания общей для общества в целом и для каждого человека в отдельности картины мира. Это религия, мистика, философия, наука.

Исследовать подробно каждый из этих путей – сложная, неоднозначная и крайне трудоемкая задача. Мы этим заниматься не станем, охарактеризуем только некоторые, существенные на наш взгляд, черты четырех методов познания для того, чтобы можно было понять отличия, свойственные научному подходу, независимо от того, о каких науках идет речь, и естествознанию как части научного знания.

Религиозные знания получают с помощью непосредственной передачи от некоторых независимых источников, в частности от пророков, которые считаются каналами связи с верховным божеством (божествами); эти знания не подвергаются сомнению и проверке, пользуются неограниченным доверием; основа принципа – вера.

Во время мистических ритуалов человек не отделяет себя от объекта изучения, другими словами, не глядит на объект со стороны, а старается привести себя в состояние, когда и объект, и изучающий его человек становятся единой сущностью. Такие специфические состояния отличаются от обычных состояний повседневной жизни, что позволяет получать доступ к наблюдению явлений как бы со всех сторон сразу.

Философия – это поиски общих принципов описания мира в целом посредством логических размышлений. Философские истины не требуют опытного подтверждения.

Путь науки иной. Он отличается от трех предыдущих тем, что направлен на исследование конкретных явлений и процессов в природе (живой и неживой) и в обществе, на установление устойчивых, повторяющихся связей между явлениями, предметами и их свойствами – законов, которые являются объективными характеристиками изучаемой реальности. Объективность научных истин достигается их идентичностью независимо от места и времени их установления, от индивидуальности (личных качеств, национальности, политических взглядов и т. д.) исследователя, от используемых методов исследования. Исследователь при этом отделен от явления, находится вне его. Процесс исследования не должен влиять на происходящие процессы и строение объектов изучения.

Всеобъемлющее определение научного метода познания дать не просто, и даже, если бы это удалось, на начальной ступени обучения это, возможно, внесло бы дополнительную сложность при освоении курса естествознания. Постараемся в процессе изложения материала вносить уточнения и дополнения, связанные с понятием наука, используя отдельные частные примеры. Надеемся, это поможет более точно охарактеризовать роль науки в современном обществе.

Человеческий разум устроен таким образом, что все, что попадает в его поле зрения, проходит этапы сортировки и систематизации. Вначале выделяется самое основное, самое важное, на что следует обратить внимание, остальное менее существенное либо откладывается в сторону до лучших времен, либо вообще исключается из рассмотрения (забывается). Затем то, что выбрано для рассмотрения, раскладывается «по полочкам» в соответствии с привычными критериями (признаками) – весом, размером, вкусом, цветом и т. д. Эти же принципы мышления лежат и в основе научного метода познания. Используем их вначале для описания общих свойств самой науки. Какая она? Или какие они? Их же, как известно, довольно много. Чем отличаются, чем похожи, т. е. как их можно классифицировать?

Рассмотрим самое известное деление наук на две основные группы: гуманитарные и естественные науки.

Выделенные группы отличаются друг от друга предметом изучения. Гуманитарные науки занимаются изучением собственно человека, его взаимоотношений с природой, с другими людьми. Исследуются группы людей, сообщества, классы, ну и целиком человеческое общество – его формации, история, культура, его современная жизнь и развитие.

Естественные науки занимаются изучением внешнего по отношению к человеку как к индивиду и внешнего по отношению к обществу мира. В этот внешний мир входит все природное, что мы видим вокруг себя: земля, вода, воздух, горы, равнины, океаны, все, что существует на нашей планете, сама планета Земля и другие известные планеты, Солнце, звезды. В него входит то, что мы не можем разглядеть невооруженным глазом, но из чего состоит все вышеперечисленное: молекулы, атомы, электроны и другие микрочастицы, фотоны. В него также входит все, что когда-либо создано человеком и находится с тех пор под воздействием природных субстанций и сил: здания, орудия труда, средства транспорта, различные машины, металлические конструкции, различные бытовые и промышленные изделия, современные электростанции и предприятия, компьютеры, космические аппараты – этот список можно продолжать до бесконечности. Кроме того, во внешний мир входит вся живая природа, которая находится на поверхности Земли, растения, животные, микроорганизмы. Если когда-нибудь обнаружится присутствие жизни на других планетах или в других планетных системах, то эта внеземная жизнь тоже войдет во внешний по отношению к человеку мир. И наконец, во внешний мир входит и сам человек, как составляющая часть биосферы Земли. Естественные науки занимаются строением человеческого тела, его жизненными функциями, его болезнями(!), физико-химическими процессами, происходящими в живых тканях и органах человека.

Учитывая такой огромный объем вопросов, которыми занимается естествознание, и понимая, какой труд необходим, чтобы охватить все перечисленные области, возникает…

Вопрос второй: какова (каковы) причина (причины) существования такой обширной области научного знания, какой является естествознание, и нельзя ли обойтись меньшим количеством знаний о внешнем мире?

Действительно, исследование всех упомянутых направлений, всей Вселенной во всех аспектах требует концентрации умственных усилий большого количества способных, склонных к научному анализу людей и, несомненно, очень значительных финансовых затрат. Вместе с тем естественно-научное знание существовало во все века и тысячелетия развития цивилизации. И в настоящее время все государства вкладывают в развитие естественных наук с каждым годом все большие средства. В чем тут дело? Ответ на этот вопрос, на наш взгляд, каждый человек может найти самостоятельно. Представим себе, что на исследования не будут выделяться деньги. Это возможно, и это действительно часто происходило, например, в неурожайные годы, во времена стихийных бедствий или затяжных войн, когда денег едва хватало для поддержания государственных институтов, для предотвращения болезней и голода. Прекращались ли в такие периоды научные изыскания? Замедление темпов развития естественных наук в тяжелые для государств времена происходило, однако полностью научная мысль не останавливалась никогда. Находились люди, для которых изучение движения небесных светил, темпов роста растений, процессов взаимодействия между собой веществ, имеющих различные свойства и природу, было интересно само по себе, независимо от получаемого вознаграждения. Значит, людей всегда волновал вопрос: как устроен мир?

С другой стороны, карта звездного неба помогала прокладывать путь морским судам, изучение факторов роста зерновых растений давало возможность повысить урожаи и увеличить объемы продуктов питания, разработка новых материалов позволяла создавать удобные жилища, средства передвижения и инструменты для работы в различных отраслях человеческой деятельности.

Таким образом, на второй вопрос ответ может быть следующим: существует как минимум две основные причины развития естественных наук. Первая из них – удовлетворение присущего людям интереса к устройству внешнего мира. Этот интерес в явном, неприкрытом виде проявляется в раннем детстве. Ребенку хочется выяснить, как устроена игрушка, почему крутится колесико детской машинки, откуда берется огонек пламени? И он разбирает игрушки на мелкие части, иногда попросту ломает их, наблюдает за машинами, тянется к спичкам. Ученые-естествоиспытатели почти как дети, им тоже интересно все вокруг: что происходит, в чем причина происходящего. Что такое свет, какой он бывает и как распространяется? Как происходят взрывы, какие силы перемещают континенты и вызывают землетрясения, каковы законы наследственности? Этот интерес, это качество всегда было присуще людям, в просторечии его называют любопытством. Если быть более точным, то правильнее говорить о любознательности, т. е. о любви к знаниям.

Вторая причина поступательного движения естествознания тоже понятна. Человеку свойственно желание улучшить свою жизнь: иметь достаточное количество вкусной и качественной пищи, получить механизмы, помогающие в работе, быстро перемещаться на большие расстояния. Хочется быть здоровым и жить подольше. И еще многое другое. Чтобы всего этого достигнуть или хотя бы двигаться к этому благополучию, одной философии недостаточно. Необходимы точные знания в различных областях, которые позволяют рассчитывать, конструировать, строить и делать прогнозы (не только погоды). Все эти возможности дает человеку естествознание.

Итак, если суммировать вышесказанное, то можно коротко подытожить: причинами развития естествознания являются человеческая любознательность и стремление к дальнейшему развитию цивилизации.

Вопрос третий: как происходит познание окружающего мира? В различных естественных науках это происходит одинаково или по-разному? Если по-разному, существуют ли общие черты?

Вопрос снова не прост. Попробуем ответить схематично, условно, но, по возможности, понятно.

Конечно, различные естественные науки в зависимости от предмета изучения используют различные конкретные приемы и методы. Но общие черты всего процесса узнавания нового, безусловно, есть. Если рассматривать этот процесс независимо от определенной задачи, то можно представить себе следующую поэтапную схему процесса естественно-научного познания:

Наблюдение → Опыт → Обобщение → Прогноз.

Наблюдение – это несколько пунктов исследовательской деятельности:

выбор объекта (явления, процесса и т. д.) во внешнем мире, который следует (есть необходимость, есть интерес) изучать, т. е. выбор направления, куда мы (т. е. какая-либо наука) смотрим;

внимательное обследование выбранного объекта в естественных условиях его существования с целью получения о нем наибольшей возможной информации;

отнесение данного объекта (явления) к определенной, уже известной категории объектов с похожими свойствами и характеристиками, т. е. расположение объекта на некоторой известной нам «полочке».

Опыт – это испытание объекта (процесса) каким-нибудь имеющимся в наличии способом, чтобы проверить, как он будет вести себя при изменяемых внешних условиях. Например, предположим, проводится исследование некоторой горной породы для изучения возможности облицовки этой породой фасада жилого дома. Наблюдение за образцами породы в природных условиях показало, что она выдерживает длительное пребывание при различных температурах и влажности и воздействии других атмосферных факторов, внешний вид породы также соответствует предъявляемым требованиям. Однако материал породы дополнительно должен обладать определенными прочностными свойствами, иметь заданный химический состав и проч. Чтобы проверить, насколько это соответствует действительности, необходимо провести определение таких свойств, как твердость, хрупкость, обрабатываемость образцов породы. Необходимо направить пробы на химический анализ и другие испытания, которые обычно проводят для строительных материалов. Все эти процедуры и есть опыт или опыты, которые призваны расширить наши знания об объектах наблюдения, обнаружить свойства, которые нам важны и нужны для решения поставленной исследовательской задачи.

Когда накоплено достаточно данных относительно объекта (процесса) исследования, нужно систематизировать эти данные, сопоставить их с имеющейся предварительной информацией (найти похожие черты), сравнить с другими аналогичными объектами, найти сходства и отличия, определить, каким известным законам подчиняется поведение объекта. В целом это то, что мы назвали обобщением, или анализом. Абстрактный (отвлеченный) анализ призван дать наиболее цельную картину изучаемого явления (объекта), пригодную для обсуждения среди коллег и специалистов. Явление должно стать предсказуемым, описываемым математическими зависимостями.

В результате становится возможным (оправданным) делать прогноз событий, связанных с данным явлением (объектом) при заданных условиях, в заданном месте, в заданное время. Слово «прогноз» у нас обычно ассоциируется со словом «погода» – прогноз погоды. Прогноз погоды как раз и является результатом деятельности различных естественных наук, которая осуществляется в соответствии с предложенной схемой. Сначала с помощью наблюдения устанавливаются основные особенности изменчивости погоды в заданном месте в зависимости от его географического положения, его широты и долготы и других географических и атмосферных условий (высоты над уровнем моря, рельефа земной поверхности, распределения поверхностных вод, преимущественного направления ветра и т. д.). Затем проводятся опыты – шары-зонды позволяют измерить распределение температуры и влажности на различных высотах, сеть метеостанций определяет обстановку в различных климатических поясах, метеоспутники передают распределение облачных масс и положения воздушных фронтов. Далее полученная информация суммируется, тщательно обрабатывается, обсчитывается на суперкомпьютерах, т. е. обобщается. В результате оказывается возможным предсказать состояние погодных условий в выбранном месте на несколько дней вперед, а значит, подготовить прогноз погоды.

Напомним еще раз, что рассматриваемая схема дает сильно упрощенное представление о процессе естественно-научного познания. Она не является всеобъемлющей, не позволяет полностью охарактеризовать любое отдельно взятое движение научной мысли. Существует очень большое количество особенностей, мелких и средних деталей, преград, тупиков и обходных путей при путешествии исследователей дорогой знания. Приведенная схема – это как бы взгляд издалека на эту дорогу, набросок общего пути. Каждый, кто готовится к путешествию, должен кроме общей схемы заранее приобрести много дополнительных сведений относительно выбранной им дороги, узнать, по территории какой науки придется двигаться, с какими препятствиями придется иметь дело.

Поэтому вернемся опять к вопросу классификации. Только теперь остановимся не на классификации науки вообще, а на классификации самих естественных наук. Как уже было сказано, и все современные люди хорошо себе это представляют, естественных наук в наше время очень (!) много. Настолько много, что их простое перечисление может занять значительное время и место. Да простое перечисление и не поможет разобраться, чем занимаются отдельные науки, как они между собой связаны, какова общая структура естественно-научного знания. Поэтому будем двигаться в соответствии с научным принципом – постараемся найти возможность разделения всех известных наук на группы по каким-нибудь явным, понятным нам признакам.

Введем один из таких признаков, который кажется нам ключевым, во всяком случае, очень удобным для начала сортировки всего множества наук о внешнем мире. Назовем этот признак «степенью охвата каждой наукой явлений природы» или «степенью общности науки». Чем больше явлений, объектов и т. д. описывает данная наука, чем больше ее применимость в различных сферах окружающего мира и мира человеческой деятельности, тем она более общая. Выделим из всех наук те, которые имеют самую большую из всех остальных степень охвата и самую большую общность в описании процессов и явлений, так называемые науки 1-го уровня. Будем считать, что законы и теории, которые разрабатываются и выдвигаются науками 1-го уровня, являются основополагающими для всех остальных наук, являются наиболее общими. Поэтому назовем науки 1-го уровня фундаментальными или базовыми, имея в виду, что они составляют основу, фундамент естествознания в целом. Перечислим науки, которые, по нашему мнению, можно назвать фундаментальными. И постараемся это сделать так, чтобы они совместно представляли все возможные области естественно-научного знания.

1.1. Фундаментальные науки

Астрономия – наука о Вселенной, изучающая движение, строение, происхождение и развитие небесных тел и их систем. Важнейшими разделами астрономии являются космология и космогония. Космология – это физическое учение о Вселенной как целом, ее устройстве и развитии. Космогония изучает вопросы происхождения и развития небесных тел (звезд, планет и т. д.).

Физика изучает законы окружающего мира, наиболее общие свойства материи и формы ее движения (механическую, тепловую, электромагнитную, атомную, ядерную) и имеет много видов и разделов (общая физика, теоретическая физика, экспериментальная физика, механика, молекулярная физика, атомная физика, ядерная физика, физика электромагнетизма и т. д.).

Химия – наука о веществах, их составе, строении, свойствах и взаимных превращениях, сопровождающихся изменением состава и структуры. Она изучает химическую форму движения материи и делится на неорганическую и органическую химию. Она включает в себя биохимию, биогеохимию, геохимию, агрохимию, медицинскую химию, физическую химию, термохимию, электрохимию, фотохимию, ядерную химию, криохимию, плазмохимию, механохимию, космохимию, химию переработки сырья и т. д.

Биология относится к наукам о живой природе и является самой разветвленной наукой (содержит зоологию, ботанику, физиологию животных и человека, экологию, физиологию растений, биологическую химию, микробиологию, гидробиологию, цитологию, физиологию клетки, биофизику, генетику, эмбриологию, молекулярную биологию, молекулярную генетику, вирусологию, космическую биологию, эволюционную теорию и т. д.).

Кибернетика – наука, с помощью математических методов изучающая управляющие системы и процессы управления, способы создания и тождественного преобразования алгоритмов, описывающих процессы управления, протекающие в действительности; наука о процессах приема, передачи, переработки и хранения информации.

Определения представленных фундаментальных наук, конечно, не могут дать о них исчерпывающего представления. Однако перечисленные науки имеют самые большие области охвата, более общих естественных наук не осталось. И все возможные стороны внешнего мира также оказались учтены: все, что над нами, – планеты, звезды, космос, Вселенная – изучает астрономия; законы движения и взаимодействия для любых материальных объектов и систем – физика; все многообразие веществ, которые нас окружают, находятся над нами и под нами (и внутри нас), их взаимопревращения – химия; весь мир живой природы – биология; все о системах управления в живых и неживых системах – кибернетика.

Далее должны следовать науки 2-го уровня, назовем их общими. Они по степени охвата уступают фундаментальным наукам, однако по-прежнему рассматривают очень большие области природы. Их условно можно считать большими разделами фундаментальных наук, иногда это могут быть промежуточные научные области, находящиеся на стыках фундаментальных наук.

1.2. Общие науки – науки второго уровня


Общие науки оказываются необходимы, так как области «владения» фундаментальных наук так велики, что на достижение высокого научного уровня даже в одном из разделов наук 1-го уровня можно потратить целую жизнь. Так, например, заниматься тонкостями биохимии часто не под силу высококлассному специалисту в области неорганической химии. Для поддержания темпов развития естественных наук и получения качественно новых знаний требуется движение широким фронтом с рассмотрением более узких, чем в фундаментальных науках, сфер научной деятельности.

Вместе с тем деление предметов исследования в естествознании до уровня общих наук также оказывается недостаточным. Сегодняшний день требует тщательного изучения все более узких вопросов, внутри которых появляются все новые стороны и грани. Поэтому приходится вводить еще один, 3-й научный уровень, который включает науки еще меньшего охвата. Их можно назвать частными науками. В качестве примера таких наук можно привести океанологию, эмбриологию или климатологию.

Понятно, что количество наук на каждом следующем уровне с меньшим охватом естественно-научных направлений намного больше, чем на предыдущем. Поэтому чем больше сужается область конкретных научных интересов, тем быстрее возрастает численность естественных наук, рассматривающих данные области.

Последний, 4-й уровень, которым следует дополнить получившуюся вертикальную структуру естественно-научных знаний, включает в себя прикладные (или технические) науки. Цель этих наук – донести фундаментальные знания до решения практических задач, возникающих постоянно в различных сферах человеческой деятельности. Решение практических задач – это то основное, что получает общество из сокровищницы естественнонаучных знаний. Можно перечислять очень большое количество названий, соответствующих наукам 4-го уровня. Ну, например, металловедение, промышленная электроника, сопротивление материалов и т. д. Каждая из этих (и других аналогичных) наук освещает свой спектр специфических вопросов, которые требуют постоянного контроля при использовании различных изделий, конструкций, механизмов и машин, сооружений, построек, средств транспорта и т. д. Науки 4-го уровня, так же как науки всех вышележащих уровней, находятся в состоянии совершенствования и постоянного развития. Иначе не происходило бы возникновение новой бытовой техники, расширение области производства продуктов питания и новых технологий, которые направлены на подъем нашего уровня жизни.

На этом мы закончим краткое вступление, задачей которого было дать представление о научном методе познания вообще, о естественно-научном секторе знаний и о структурной схеме этого сектора, о месте каждой из наук в общей системе знаний. Предложенный материал можно (и даже нужно) подвергать сомнению, обдумывать отдельные положения и просто вспоминать все, что известно о естественных науках различных рангов и названий.

Глава 2. Масштабы реального мира

Сформулируем вначале общую задачу, которую мы надеемся решить, излагая некоторые отдельные положения естественных наук. Хотелось бы, используя знания, накопленные естественными науками в течение нескольких тысячелетий, дать представление о картине мира, какой она видится ученым-естественникам сегодня. Это не философская интерпретация мира, в которой все определяется наиболее общими законами, работающими везде и всюду, и в которой не найдешь деталей. Это набросок того, что уже известно (или кажется известным), и того, что остается под вопросом или требует экспериментального подтверждения, того, что кажется совершенно ясным, и несоответствий, которые возникают при принятии нескольких совершенно ясных понятий одновременно. Это картина гармонии и противоречий. Конечно, вряд ли нам удастся увидеть всю ее целиком, это под силу очень немногим даже из среды ученых. Но изображение отдельных фрагментов, их сочетаний и общий план, возможно, проявится, если чуть-чуть постараться. Главное, чтобы проявилось ощущение интереса, тогда образы внешнего мира станут более доступными и отчетливыми.

Для того чтобы двигаться вперед, нужно знать, какое расстояние необходимо преодолеть. Поэтому начнем с размеров той части мира, которая нам знакома. А дальше будем продолжать движение настолько далеко, насколько нам позволят рамки знания, имеющегося в фундаментальных науках.

В качестве начала отсчета расстояния выберем размер, соответствующий (близкий к) размеру человеческого тела – самый привычный для нас размер. Все люди имеют разный рост (различный размер обуви, разный объем талии, различную ширину плеч). Поэтому в качестве единицы длины просто возьмем 1 м (один метр). Это совсем не значит, что средний рост человека равен 1 м, но метровой длиной (метровая линейка, портновский метр и т. д.) легко измерять любые другие размеры (размеры других объектов) и сравнивать их между собой. Поэтому 1 м мы выбираем как единицу шкалы масштабов для всех расстояний, на которые будем в дальнейшем (мысленно) перемещаться.

Нарисуем прямую горизонтальную линию (рис. 1), середину которой отметим точкой и обозначим ее цифрой 1. Это значит, что точка 1 соответствует размеру (длине) 1 м. Справа и слева, там, где прямая упирается в рамку страницы, поставим стрелки; справа – стрелку вправо, слева – стрелку влево. Таким образом, мы изобразили шкалу масштабов мира; при движении от 1 м вправо размеры увеличиваются, при движении влево – уменьшаются. Постараемся расположить на этой линии все мыслимые размеры, которые описывают строение мира и которые можно сопоставить с какими-нибудь реальными расстояниями – от самых больших до самых мизерных. Будем двигаться вначале вправо, т. е. в сторону увеличения размеров.


Рис. 1. Шкала масштабов мира


Если точка начала отсчета, первый размер, самый близкий и понятный нам – 1 м, то в качестве первого шага вправо выберем максимальное расстояние, которое человек может пройти по земной поверхности в течение всей своей жизни. Понятно, что физические силы и возможности ходить пешком у каждого человека свои. Так, спортсмены и путешественники за год или чуть больший срок могут пересечь из конца в конец целые страны, такие как США, Канада и даже Россия. Средний городской житель, конечно, на такое не способен. Но оценим, какое он может пройти расстояние в городских условиях, если его пеший путь от дома до работы (школы, института) составляет, скажем, всего 500 м, т. е. 0,5 км. За день его общий путь составит только лишь 1 км. Однако в году 365 дней. Ну, оставим человеку 65 дней на отдых (выходные), во время которых он не обязан выходить из дома (хотя может гулять по паркам, лесам, совершать туристические походы и т. д., но это мы не станем учитывать, намеренно сократив длину его пешего жизненного пути). Тогда путь в течение года составит 300 км. Если считать, что человек регулярно ходит на работу (учебу, в детский сад) в течение 50 лет (это тоже не наибольший срок), то общая длина пути человека за все это время составит не так мало: 300 × 50 = 15 000 км (диаметр Земли составляет около 12 800 км). Уменьшим это расстояние в 1,5 раза (чтобы включить в рассмотрение самых медленных пешеходов и чтобы легче дальше было сравнивать масштабы), т. е. до 10 000 км, и отметим его точкой на масштабной шкале. Для этого вначале переведем расстояние в метры, т. е. умножим на 1000 (в 1 км 1000 м), получим 10 000 000 м (десять млн метров) и представим это число с помощью степени – 107 м. На нашей шкале сопоставим это расстояние числу 7. И дальше будем делать так же, все расстояния будем представлять степенью с основанием 10 и показатель степени отмечать на шкале масштабов, т. е. будем измерять все длины в логарифмическом масштабе. Это позволяет весь мир, какой мы знаем и можем себе представить, уместить на одной странице. Для наглядности у размерной линии, обозначающей данное расстояние, будем ставить два числа: сверху будем писать его в виде степени, а ниже – показатель степени. Например, там, где на линии начало отсчета, под черточкой стоит 0, а выше – 100 (см. рис. 1).

Следующий шаг вправо. Так как на первом шаге мы взяли расстояние, близкое к размеру нашей планеты, то второй шаг можно связать с размером планетной системы, к которой Земля относится, с размером Солнечной системы. Не вдаваясь в детали строения Солнечной системы (об этом речь пойдет ниже), заглянем в справочник и отметим, что поперечник Солнечной системы, по современным астрономическим данным, составляет примерно 10 млрд км, или в краткой записи 1010 км. При переводе в метры получается 1013 м, на масштабной шкале следует поставить число 13.

Следующий шаг – как далеко от нас звезды? Опять же справочная литература подсказывает, что до ближайшей звезды от нас – 4 световых года. Или расстояние, которое свет проходит за 4 года. Сколько это составляет в километрах и в метрах? Скорость света – самая большая из всех известных скоростей и, как считается во всех естественных науках – это предельная скорость, более высоких скоростей быть не может. Почему это так и откуда это следует, отдельный вопрос, мы обсудим его в последующих разделах. Итак, скорость света составляет 300 000 км/с. Чтобы найти расстояние S, равное световому году, надо скорость света с умножить на время t, равное году:

L = ct,

только время надо выразить в секундах, так как скорость выражается в км/с. В году 365 суток, каждые сутки содержат 24 часа, в каждом часе 60 минут, а в каждой минуте 60 секунд. Поэтому

t= 365
× 24
× 60
× 60
= 31 536 000 c;

это примерно 3 × 107 с, большая точность нам для оценок не нужна. Тогда

S= 300 000
× 3
× 10
7
= 9
× 10
12 км,

а до ближайшей звезды в 4 раза больше – около 3,6 × 1013 км. Будем считать, что многие звезды, которые мы можем наблюдать ночью на небе, тоже находятся на близком от нас (по звездным меркам) расстоянии. Но это все же в 2–3 раза дальше, чем самая близкая к нам звезда. Поэтому для оценки можно смело взять расстояние 1014 км, оно будет означать среднее расстояние до всех ближайших к Солнечной системе звезд. Это 1017 м, что мы и отметим на шкале масштабов.

Сдвинемся еще вправо. Размеры каких объектов превышают средние расстояния между ближайшими звездами? На ночном небе простым глазом можно наблюдать очень большое количество звезд. Некоторые очень яркие, некоторые еле видны. Но все звезды, которые мы видим, входят в огромную звездную систему под названием наша галактика. Слово «галактика» происходит от греч. galaktikos, что означает молочный, млечный. В русском языке есть похожее красивое название – Млечный Путь. Так называют светлую туманную полосу, которая в ясные ночи хорошо видна в Северном полушарии. Млечный Путь – это и есть галактика, но не вся, а ее часть, которая видна с Земли. В Млечном Пути содержится огромное количество тесно расположенных звезд, которые настолько малы, что для невооруженного глаза выглядят как расплывчатая слабо светящаяся масса. Малы они, потому что очень далеки. Размер всей галактики, ее поперечник составляет огромное расстояние – около 120 000 световых лет, это примерно 1018 км, или 1021 м. Зафиксируем этот размер на масштабной шкале, поскольку мы решили сейчас рассматривать и сравнивать только размеры. А интересное занятие – рассмотрение строения и свойств этой звездной системы, которая является для нас почти целым миром, – отложим чуть-чуть, чтобы вернуться к этому позже.

Можно ли найти в нашем мире еще что-нибудь большее, чем галактика? Или поставим вопрос по-другому: что есть за пределами галактики и, если есть, как далеко оно продолжается? При наблюдении космических объектов с помощью современных телескопов обнаружено, что в космическом пространстве существуют сотни миллионов (!) других галактик, подобных нашей. Все галактики астрономы объединяют в одну общую систему, которую называют Метагалактикой. Метагалактика содержит все, что удается увидеть с помощью самых совершенных оптических приборов. Ее размеры составляют 10–20 млрд световых лет (1022 км = 1025 м). Проставим этот размер, он будет последним справа на нашей масштабной шкале. Потому что дальше заглянуть нельзя – не хватает остроты зрения современных приборов. А что там дальше? Мы еще вернемся к этому вопросу.

Теперь начнем движение влево в сторону уменьшения размеров. Снова будем сопоставлять размеры с человеческими возможностями. На первом этапе представим себе самый маленький объект, который можно увидеть невооруженным взглядом, – песчинку, маковое зернышко, еле заметное насекомое. Считается, что нормальное человеческое зрение дает возможность рассмотрения любых объектов больше 0,1 мм. В метрах это составит 10~4 м, так как 1 мм = 0,001 м, а объект еще в 10 раз меньше (отрицательный показатель степени показывает, сколько знаков после запятой имеется в данном числе, записанном в виде десятичной дроби). Ставим слева от центральной точки 1 м черточку со значением -4.

Дальше в сторону уменьшения масштабов нельзя двигаться без приборов, которые позволяют получать увеличенные изображения любых изучаемых образцов, – без микроскопов. Оптический микроскоп, т. е. микроскоп, который показывает освещенный специальной лампой объект с помощью системы линз, позволяет надежно изучать детали строения и структуры мелких предметов с размерами до 1 микрометра. Кстати, такие же размеры имеют очень мелкие микроорганизмы, простейшие, бактерии. Микрометр – это миллионная доля метра, т. е. 106 м, соответствующая отметка на масштабной шкале -6.

Электронные микроскопы, в которых увеличение создается электронными линзами, а изображение получается при отражении электронов от поверхности изучаемого объекта, позволяют увидеть отдельные молекулы и, в некоторых случаях, даже атомы твердых тел. Размеры молекул простых соединений и атомов составляют несколько десятых долей нанометра. Нанометр – это миллиардная доля метра, 109 м. Мы же отметим на шкале одну десятую нанометра 1010 м как предельный размер, доступный наблюдению с помощью электронной микроскопии.

Еще меньшие размеры наблюдать непосредственно, используя даже самые мощные устройства, не удается. Можно оценивать эти размеры только посредством косвенных методов, иначе говоря, делая заключения о размерах на основе, например, параметров столкновений отдельных субатомных, входящих в состав атома, частиц. Самый важный объект, играющий огромную роль в различных физических экспериментах и теориях и в современной энергетике, это атомное ядро – центральная часть атома, содержащая почти всю его массу и энергию. Косвенные, но многократно подтвержденные данные свидетельствуют, что размер ядер близок к 1015 м. Элементарные частицы, из которых состоят ядра, – протоны и нейтроны – имеют почти такие же размеры. Поэтому внесем число -15 в нашу масштабную шкалу. Оно может считаться последним слева, так как следующая ступень уменьшения размеров находится в области теоретических прогнозов.

Глава 3. Солнечная система

Для получения представления о естественно-научной картине мира начнем последовательное продвижение по шкале масштабов. Так же как и раньше, отправимся вначале в сторону больших размеров.

Солнечная система – это название каждый из нас, безусловно, слышал много раз. В эпоху космонавтики у каждого человека, даже очень далекого от любой науки, есть некоторое представление о Солнечной системе, ближайших к Земле планетах, особенно Луне, о солнечных и лунных затмениях и других космических эффектах. Большая часть сведений о ближнем космосе поступает из средств массовой информации, фантастической литературы. Приведем краткую фактическую характеристику нашей планетной системы (нашего космического дома) не столь красочную (или приукрашенную), как в этих источниках, но более достоверную и пригодную для описания реальной картины.

Солнечной системой называется планетная система, состоящая из Солнца и вращающихся вокруг него небесных тел (рис. 2).

Кроме Солнца, о котором будет отдельный разговор, в состав Солнечной системы входят планеты со своими спутниками, астероиды, кометы и продукты их распада – метеориты, метеорные тела, межпланетная твердая космическая пыль и разреженные космические газы. Пространство Солнечной системы пронизано потоками частиц и световым излучением Солнца. Также всюду имеются гравитационные поля (поля тяготения) и магнитные поля, особенно вблизи крупных массивных тел.

Солнце является динамическим и геометрическим центром всей Солнечной системы. Его масса примерно в тысячу раз превышает общую массу всех остальных вращающихся вокруг него космических тел. Основу Солнечной системы кроме самого


Рис. 2. Схема Солнечной системы


Солнца составляют девять больших планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Мы их перечислили в последовательности возрастания их расстояния от Солнца. Следует отметить, что несколько лет тому назад большинство астрономов пришло к выводу, что Плутон нельзя считать планетой, он имеет массу и размеры, которые ближе к массам и размерам спутников планет Солнечной системы. Но мы не будем обсуждать вопросы, как назвать Плутон – планетой, спутником или астероидом. Важно только, что это самое далекое от Солнца большое тело Солнечной системы.

Орбиты планет имеют почти круговую форму (очень слабо вытянутые эллипсы) и лежат все (за исключением орбиты Плутона) приблизительно в одной плоскости, которая называется плоскостью эклиптики. Кроме движения вокруг Солнца, все планеты вращаются вокруг своей оси. Это вращение для всех планет, кроме Венеры, совершается в прямом направлении, т. е. как у Земли – с запада на восток. Венера вращается в противоположную сторону – с востока на запад. Солнце также вращается вокруг своей оси, ось вращения Солнца почти перпендикулярна к плоскости эклиптики, что, возможно, связано с происхождением Солнечной системы. Оси вращения большинства планет направлены под некоторым небольшим углом к направлению перпендикуляра к плоскости эклиптики. Только Уран обладает уникальной для Солнечной системы особенностью, ось его вращения лежит почти в плоскости его орбиты.

Размеры и физические свойства планет позволяют разделить их на две группы – планеты земного типа и планеты-гиганты. В первую группу, кроме Земли, входят Меркурий, Венера и Марс. Вторую группу образуют Юпитер, Сатурн, Уран и Нептун. Плутон не может быть отнесен ни к первой, ни ко второй группе.

Самое большое число спутников, которые обнаружены до настоящего времени, имеет Сатурн – 17 спутников. У Юпитера 16 спутников. Сами эти планеты-гиганты вместе с системами своих спутников напоминают миниатюрную Солнечную систему. Уран имеет 15 спутников, по два спутника у Марса и Нептуна. По одному спутнику имеют Земля (как вы понимаете, спутником Земли является Луна) и Плутон. Венера и Меркурий, по астрономическим данным на сегодняшний день, совсем не имеют спутников.

Орбиты практически всех планетных спутников, так же как орбиты планет вокруг Солнца, мало отличаются от окружностей. Если у планеты имеется несколько спутников, то плоскости их орбит в основном совпадают. Большинство спутников обращается вокруг своей планеты в плоскости ее экватора и в прямом направлении (по часовой стрелке), т. е. с запада на восток. По массе и размерам спутники планет также разбивают на две основные группы: крупные планетоподобные спутники с поперечником (диаметром) больше 3000 км (напоминаем, поперечник или, что то же самое, диаметр Земли составляет 12 750 км). В эту группу, кроме Луны, входят четыре самых крупных спутника Юпитера – Ио, Европа, Каллисто, Ганимед, спутник Сатурна Титан и спутник Нептуна Тритон. Вторая группа – это все остальные спутники: от достаточно большого спутника Сатурна Рея (поперечник 1850 км) до самых маленьких спутников планет в Солнечной системе, спутников Марса – Фобос и Деймос, которые представляют собой каменные глыбы несферической формы с размерами 22 × 12 км для Фобоса и 12 × 8 км для Деймоса.

Для того чтобы понять, почему планеты вращаются вокруг Солнца, какие законы управляют их движением, необходимо небольшое дополнительное путешествие…

3.1. Дополнительная информация. Физика

Кинематика изучает движение. В кинематике мы имеем дело с положением тела или частицы, скоростью и ускорением, но не интересуемся ни природой движущихся тел или частиц, ни силами, вызывающими ускорение.

При движении с постоянной скоростью v

s=vt,

где s – расстояние, пройденное за время t; отсюда значение скорости определяется как




Теперь рассмотрим движение тела со скоростью, которая меняется по величине, но не по направлению (это поступательное движение). Тогда на небольших участках As, которые тело проходит за время At, значения мгновенной скорости определяются как




или более строго:




Это соотношение означает, что мгновенная скорость v есть предел отношения As/At при At, стремящемся к нулю (строгое математическое определение значения мгновенной скорости).

Если тело движется на отрезке пути s1 в течение времени t1 с одной скоростью, а на отрезке пути s2 в течение времени t2 с другой скоростью, то средняя скорость на всем пути:




Постоянное ускорение определяется как




где v – v0 – приращение скорости за время t.


Мгновенное ускорение:




Путь при равноускоренном движении:




где v0 – скорость тела в начальный момент времени.

На практике нужно знать не только значение, но и направление скорости в пространстве, например, чтобы описать движение (траекторию) автомобиля, самолета или космического корабля. Любая физическая величина, которая не будет полностью определена, если задать только ее значение и не указать, в какую сторону она направлена, является вектором.

Скорость – это вектор. Если разложить вектор скорости v при движении тела в пространстве по осям декартовой системы координат, то мы получим ее составляющие vx, v, vz. Они связаны с полной скоростью v соотношением




Следует отметить, что векторную природу имеет ускорение a, а также многие величины, которые мы будем использовать в дальнейшем изложении: сила F, импульс p и другие. Во всех случаях векторные величины отмечаются стрелкой «->», помещенной над буквенным обозначением величины. Значение самой величины (ее абсолютная величина) обозначается просто буквой, например, a – значение ускорения.

Рассмотрим равномерное движение тела по окружности со скоростью v. При этом его ускорение, оставаясь перпендикулярным скорости в любой момент времени, направлено к центру окружности. Можно показать, что значение ускорения тела ac, которое в данном случае называется центростремительным, определяется по формуле




где R – радиус окружности. Следует отметить, что центростремительное ускорение меняет только направление вектора скорости, не влияя на его величину; ускорение ac направлено по радиусу окружности к ее центру.


Пример. Определение первой космической скорости.

Любое тело, движущееся по круговой орбите вокруг Земли, должно иметь ускорение ac= v2/R, направленное к центру нашей планеты.

Поскольку на тело в этом случае действует только сила земного притяжения (т. е. сила тяжести), то можно записать




где gc – ускорение свободного падения – 9,8 м/с2.

Тогда vc= qR.

Если считать, что R≈ 6500 км (расстояние до центра Земли), то вычисление первой космической скорости дает значение vc=8 км/c. Если разделить длину орбиты на скорость спутника, то получим время одного оборота спутника вокруг Земли. Длина орбиты низколетящего спутника близка к длине экватора Земли t = 40 000 км/8 км/c = 5000 c = 83 мин


Для того чтобы вывести ракету за пределы действия земного притяжения, т. е. направить ее к другим планетам, необходимо сообщить ей начальную скорость 11,2 км/с, которая носит название второй космической скорости.

Впервые эти расчеты провел Исаак Ньютон еще примерно в 1660 г.

Динамика занимается изучением общих законов взаимодействия материальных тел. Широкий класс явлений удается описать или объяснить на основе законов движения И. Ньютона.


Первый закон Ньютона

Будучи предоставлено самому себе (при отсутствии результирующей внешней силы), тело сохраняет состояние покоя или равномерного движения с равным нулю ускорением.

В математической форме это утверждение имеет вид: a = 0, если F = 0 (F – результирующая внешняя сила).

Второй закон Ньютона

Действующая на тело результирующая сила равна произведению массы тела на его ускорение:




Третий закон Ньютона

При любом взаимодействии двух тел сила, с которой первое тело воздействует на второе, равна по величине и направлена противоположно силе, с которой второе тело воздействует на первое:




Все три закона движения справедливы только при условии, что наблюдатель находится в инерциальной системе отсчета. Определение Ньютона для инерциальной системы отсчета: это любая система, которая покоится или движется равномерно и прямолинейно по отношению к неподвижным звездам.

Определение: импульсом (количеством движения) тела p называется произведение массы тела на его скорость:




Закон сохранения импульса

В отсутствие внешних сил сумма импульсов системы частиц (тел) остается неизменной.

При столкновении двух частиц, имеющих массы mA и mB, закон сохранения импульса записывается так:




или




где vA и vB – скорости частиц до соударения, а v'A и v'B – их скорости после соударения.

Другой вариант: две частицы первоначально покоятся, т. е. vA= vB= 0. Затем между ними происходит взаимодействие (например, из одной частицы выскакивает упругая пружина и расталкивает частицы). Закон сохранения импульса показывает, что после взаимодействия мы должны получить




где знак «минус» означает, что векторы параллельны, но направлены в противоположные стороны. Отсюда следует, что




где v'A и vB – абсолютные величины векторов скорости после взаимодействия.

Тогда любую неизвестную массу mB можно найти, приведя ее во взаимодействие с известной массой mA с помощью пружины, находящейся между ними, и измеряя отношение скоростей после взаимодействия. Масса частицы (тела), определенная таким образом, называется инертной массой. Закон сохранения импульса позволяет определить инертную массу тела.

Закон всемирного тяготения

Ньютоновский закон всемирного тяготения для силы, действующей между двумя телами с массами m1 и m2, записывается следующим образом:




где r—расстояние между телами, G = 6,67 × 10-11 Н × м2/кг2 – гравитационная постоянная (1 Н = 1 ньютон – это величина силы, с которой Земля притягивает тело массой 0,1 кг, находящееся на ее поверхности).

Гравитационная постоянная является мировой константой, ее определение возможно при проведении прямых лабораторных опытов по измерению силы гравитационного притяжения двух известных масс. Впервые опыт по определению G был поставлен Г. Кавендишем в 1797 г. Зная величину G, можно определить массу Земли, массы других планет Солнечной системы, массу Солнца. Для определения массы Солнца необходимо знать расстояние от Земли до Солнца и время, за которое Земля совершает один оборот вокруг Солнца.


Следствия закона всемирного тяготения

Еще до того как Ньютон постулировал закон всемирного тяготения, И. Кеплер, анализируя движения планет Солнечной системы, предложил три простых закона, очень точно описывающих эти движения не только для всех планет, но и для их спутников.


Первый закон Кеплера

Все планеты обращаются по эллиптическим орбитам, в фокусе которых находится Солнце.

Эллипс обладает несколькими характерными геометрическими свойствами. Это замкнутая кривая линия, сумма расстояний от любой точки которой до двух фиксированных точек (фокусов) остается постоянной. Другое свойство: луч света или звуковая волна (прямые лучи), вышедшие из одного фокуса эллипса, обязательно попадают в результате отражения во второй фокус. На этом принципе основано устройство «шепчущей галереи», какую иногда можно обнаружить в музеях – у такой галереи стены имеют форму эллипса. Два человека, стоящих в различных фокусах, расположенных даже на большом расстоянии, могут свободно разговаривать друг с другом шепотом, причем остальные посетители не услышат ни одного слова.


Второй закон Кеплера

Прямая, соединяющая Солнце и какую-либо планету, при вращении планеты вокруг Солнца за равные промежутки времени описывает одинаковую площадь.

Из этого закона следует, что когда планета ближе всего проходит около Солнца (для Земли это происходит в начале января), ее скорость максимальна.


Третий закон Кеплера

Кубы расстояний двух любых планет от Солнца относятся как квадраты их периодов обращения:




где R1 и T1 – расстояние и период обращения первой планеты, а R2 и T2 – расстояние и период обращения второй планеты. Кеплер установил, что в качестве расстояния R следует брать главную полуось эллипса.

Все три закона Кеплера являются следствием закона всемирного тяготения. Ньютону удалось использовать открытый им закон, чтобы сформулировать законы Кеплера.


Закон сохранения момента количества движения

При равномерном вращении тела по окружности радиусом R скорость тела v в каждой точке окружности направлена перпендикулярно линии радиуса (или иначе – по касательной к окружности в данной точке).

Импульс тела




будет также направлен перпендикулярно линии радиуса.

Величина L = Rp± называется моментом количества движения (моментом импульса) вращающегося тела. Закон сохранения момента количества движения утверждает, что полный момент количества движения любой замкнутой системы должен всегда оставаться неизменным. Этот закон выполняется независимо от характера взаимодействия частиц системы между собой и независимо от траектории вращения тела. Тело может вращаться по круговой, эллиптической или любой другой траектории.


Пример. Фигуристка, выступая на соревнованиях, исполняет элемент вращения вокруг своей оси с широко раскинутыми руками. Не прекращая вращения, она плотно прижимает руки к телу. Это приводит к уменьшению среднего радиуса вращения, так как руки спортсменки, обладающие определенной массой, приблизились к оси вращения. Момент количества движения при этом не должен измениться, но радиус вращения уменьшился, значит, должна увеличиться скорость вращения. Это и происходит.

Центр масс

Если замкнутая система, содержащая N частиц (тел), испытывает поступательное и вращательное движение при отсутствии внешних сил, то в системе существует особая точка, не участвующая во вращении. Эта точка носит название центра масс. Координата центра масс определяется следующим образом:




где m1, m2…., mN – массы частиц (тел), входящих в состав системы; M – полная масса всех частиц; x1 – проекция на ось x расстояния R1 до первой частицы и т. д. Составляющую скорости поступательного движения (не скорости вращательного движения) центра масс по оси x можно получить, если разделить обе части этого равенства на t, тогда




где Px – проекция на ось x полного импульса системы. Согласно закону сохранения импульса, составляющие Px, Py и Pz при отсутствии внешних сил должны оставаться неизменными. Это означает, что при отсутствии внешних сил центр масс движется по прямой. При свободном движении с вращением и отсутствии внешних сил центр масс твердого тела не вращается и не ускоряется. Вот почему твердые тела и системы частиц всегда вращаются вокруг своего центра масс.

Согласно закону сохранения момента количества движения, Земля неизменно вращается вокруг своего центра масс с постоянной скоростью (если пренебречь действием внешних сил, вызывающих приливы и отливы).


Энергия

Кинетическая энергия

Определение: половина произведения массы тела на квадрат его скорости называется кинетической энергией Eкинэтого тела:




Если тело имело начальную скорость v0, то в соответствии с кинематикой и вторым законом Ньютона




или




В этом случае вся энергия Fs, сообщенная телу, идет на увеличение его кинетической энергии. Эта энергия, сообщенная телу массой т, служит мерой работы, произведенной над телом внешней силой. «Работа» – это просто другое слово для обозначения энергии, сообщенной телу внешней силой.


Потенциальная энергия

Рассмотрим случай, когда тело массой т находилось на поверхности земли, а затем под действием приложенной к нему силы, направленной против силы притяжения Земли, F= -FG, поднялось на высоту h. Произведенная работа А равна:

A = Fh или
A = mgh

Кинетическая энергия в данном случае не изменилась. На что была затрачена работа? На создание запаса энергии – потенциальной энергии, способной, в свою очередь, перейти в кинетическую. Чтобы перевести ее в кинетическую энергию, надо позволить телу падать. Когда тело пролетит вниз расстояние h, его скорость достигнет величины, определяемой соотношением

v
2
= 2gh (см. раздел
Кинематика).

Вычислим его кинетическую энергию в конце пути:




Мы видим, что затраченная ранее работа может быть снова превращена в кинетическую энергию. Таким образом, понятие потенциальной энергии имеет буквальный смысл.

Определение: энергия, запасенная телом благодаря положению его массы, называется потенциальной энергией E пот.

В рассмотренном выше случае E пот= mgh.

Согласно другому определению, потенциальная энергия – это работа, которую надо совершить над телом массой m, чтобы переместить его вдоль направления действия «консервативной» силы. Под консервативными силами понимают силы, которые зависят только от положения тела. Сила сопротивления воздуха при движении любого вида транспорта зависит от скорости, поэтому не является консервативной.

Итак, потенциальная энергия – это, буквально, потенциально возможная энергия, или запасенная энергия.


Пример. Существуют стенные часы, которые имеют механический привод, т. е. идут, показывают текущее вермя благодаря гире, поднятой на некоторую заданную высоту. Гиря на прочной подвеске, висящая без упора над поверхностью пола, имеет запасенную потенциальную энергию. Гиря стремится опуститься вниз, при этом она постепенно передает свою потенциальную энергию механизму часов, – шестерни вращаются, стрелки движутся. Потенциальная энергия гири постепенно превращается в кинетическую энергию движения часового механизма.

Можно рассмотреть механические часы, имеющие другое устройство. Скажем, наручные или настольные часы, имеющие в качестве привода сжатую упругую пружину. Возникает вопрос: откуда берется энергия, перемещающая в данном случае часовые стрелки? Ведь в механизме таких часов не используется потенциальная энергия поднятого над поверхностью пола (стола, земли) тела. Простые рассуждения указывают, что требуемая для работы часов энергия запасена в сжатой пружине. Когда пружина разожмется полностью, запасенная энергия сжатия будет исчерпана, часы остановятся. Чтобы они снова стали работать, необходимо их завести, т. е. снова сжать пружину. Значит, при упругой деформации пружины в ней запасается энергия. Эта энергия тоже является потенциальной. Можно привести и другие примеры, когда потенциальная энергия может быть запасена не только благодаря изменению положения тела. Такие примеры позволяют обобщить понятие потенциальной энергии: потенциальная энергия – это энергия любой природы, полученная телом или физической системой любым путем. Запасенная потенциальная энергия может совершать работу или переходить в другие виды энергии.


Закон сохранения энергии

Закон сохранения механической энергии

Если мы наблюдаем за частицей (телом) массой m, которая в начальный момент времени имела скорость v0 и потенциальную энергию E0пот, то закон сохранения механической энергии утверждает, что




т. е. сумма кинетической и потенциальной энергий остается постоянной, что бы ни происходило с частицей. Если в системе имеется большое количество частиц, то все равно сумма полной кинетической и полной потенциальной энергий системы, т. е. сумма кинетической и потенциальной энергии всех частиц системы остается постоянной, если нет внешних сил.

Если полную механическую энергию системы обозначать W, то закон сохранения энергии примет вид:

W
1
=W
2

для двух любых моментов времени t1 и t2 при отсутствии внешних сил.

Отступление: в 1905 г. А. Эйнштейн предложил внести изменения в эти законы; изменения существенны при очень больших скоростях, сравнимых со скоростью света (300 000 км/с). Новая теория получила название специальной теории относительности и подверглась всесторонней проверке в многочисленных опытах.

Эйнштейн положил в основу своей теории два принципа, которые он назвал двумя основными постулатами:

принцип относительности – не существует никакого способа установить, находится ли тело (система) в состоянии покоя или равномерного прямолинейного движениявсе законы природы совершенно одинаковы во всех системах, движущихся друг относительно друга без ускорений (в инерциальных системах).

Данная формулировка принципа относительности (принцип относительности Эйнштейна) отличается от принципа относительности Галилея тем, что в инерциальных системах считаются одинаковыми не только законы механики, как это постулируется принципом относительности Галилея, но и все остальные законы, например законы распространения света (или любых других электромагнитных сигналов);

принцип постоянства скорости света – независимо от движения своего источника свет всегда движется через пустое пространство с одной и той же постоянной скоростью с.

Второй постулат (принцип) первое время казался открытым вызовом здравому смыслу. Потребовалось достаточно много времени, чтобы привыкнуть к странной на первый взгляд мысли, что некоторая скорость (скорость света) имеет одну и ту же величину в разных системах отсчета, движущихся друг относительно друга.

Формулировка постулатов и содержание следствий, которые из них вытекают, показывают, что название «теория относительности» касается не относительности научных знаний, а относительной равноценности инерциальных систем.

Для наглядного представления выводов, которые можно сделать, основываясь на постулатах Эйнштейна, сам Эйнштейн обычно предлагал рассмотрение различных «мысленных опытов». Опишем один из таких, на наш взгляд, удачных мысленных опытов, приведенный в книге Ф. Ю. Зигеля «Неисчерпаемость бесконечности».

«Представим себе некий фантастический «поезд Эйнштейна», мчащийся куда-то с большой скоростью, близкой к скорости света. Заставим его, в отличие от реальных поездов, двигаться прямолинейно и равномерно. Допустим, что в середине одного из вагонов поезда укреплен источник света, по команде посылающий лучи света на заднюю и переднюю двери вагона.

Вполне возможно представить себе (и в этом нет ничего фантастического) фотоэлектрическое устройство, которое, как только луч света попадает в него, мгновенно срабатывает и открывает дверь. Будем считать, что фотоэлектрическим замком оборудованы обе двери. Наконец, для того чтобы результат рассмотрения стал, возможно, нагляднее, примем, что длина вагона поезда тоже очень велика.

Пусть теперь продолжает мчаться наш фантастический экспресс. Где-то в пути включается источник света, тот самый, что находится в середине экспериментального вагона. Напомним, что поезд движется прямолинейно и равномерно, а потому все явления в нем должны происходить совершенно так же, как если бы поезд стоял на станции. Следовательно, лучи света одновременно достигнут дверей вагона, которые одновременно откроются.

Именно это увидят пассажиры «поезда Эйнштейна». Совсем другая картина предстанет стрелочнику, которому удалось пронаблюдать эксперимент.

По отношению к стрелочнику лучи света движутся с той же скоростью ñ, что и относительно вагона (второй постулат Эйнштейна). Но задняя дверь несется навстречу лучу света, а переднюю дверь ему, наоборот, приходится догонять. Следовательно, «левый» луч света (распространяющийся назад) быстрее достигнет задней двери вагона, а потом уже «правый» луч (распространяющийся вперед) откроет с помощью фотоэлемента переднюю дверь. В итоге стрелочник увидит, что двери вагона открылись не одновременно – задняя дверь на несколько секунд раньше, чем передняя. Таким образом, одни и те же события (открывание дверей) пассажирам поезда кажутся одновременными, а стрелочнику – разделенными некоторым промежутком времени.

Бессмысленно спрашивать, кто из них прав.

Ответ может быть только один – каждый прав по-своему. Убеждение, что два события, наблюдаемые нами как одновременные, и другим наблюдателям непременно покажутся одновременными, не больше чем предрассудок. Понятие одновременности относительно. На движущихся относительно друг друга телах время течет различно.

Поскольку понятие одновременности потеряло смысл, потеряли смысл и другие понятия. Относительным стало время, так как наблюдатели расходятся в оценках времени между одними и теми же событиями. Длина также стала относительной. Длина движущегося поезда не может быть измерена, если не известно точно, где находятся его передний и задний края в один и тот же момент времени. Иными словами, способ установления точной одновременности существенен для точных измерений расстояний и длин движущихся тел. При отсутствии такого способа длины движущихся тел становятся зависимыми от выбора системы отсчета.

В дополнение к изменениям длины и времени на движущихся телах происходит также изменение их массы. Масса – это мера инертности в теле. Для того чтобы определить массу движущегося тела, нужно измерить силу, которая необходима для сообщения ему определенного ускорения (второй закон Ньютона). Масса, измеренная таким способом, называется инертной массой, в отличие от гравитационной массы. Подобные измерения не могут быть выполнены без измерений времени и расстояний, которые меняются с изменением относительной скорости тела и наблюдателя. Как следствие этого – меняются также результаты измерений инертной массы.

Все три величины – длина, время и масса для движущегося (равномерно и прямолинейно относительно внешнего наблюдателя) тела в специальной теории относительности определяются выражениями, содержащими параметр √1 –v²/c²; v – скорость движения тела, с скорость света.


Длина тела l, измеряемая вдоль направления движения тела, определяется формулой




где l0 – длина этого же тела при v = 0.

Временной интервал любого процесса t на движущемся теле можно найти по формуле




где t0 – временной интервал того же процесса на покоящемся (относительно внешнего наблюдателя) теле (при v = 0).

Согласно специальной теории относительности, масса тела (инертная масса) зависит от скорости:




где m0 – масса покоящегося тела (масса покоя); c – как и раньше, скорость света.

Для небольших скоростей, с которыми мы обычно имеем дело, эти изменения размеров, интервалов времени и массы настолько малы, что их можно не учитывать. Так, например, даже при скорости 0,01c (3000 км/c) увеличение массы, согласно теории относительности, составит лишь 1/20 000.


Эквивалентность массы и энергии

Согласно специальной теории относительности, с ростом скорости тела (частицы) возрастает и его масса. При возрастании скорости растет и кинетическая энергия. Простое соотношение между увеличением массы и увеличением энергии было получено Эйнштейном:




где Δm – увеличение массы, соответствующее увеличению энергии ΔЕкин. Эйнштейн предположил, что полная энергия Е, соответствующая массе т,

E = mc²

Это огромная энергия. Расчет по приведенной формуле показывает, что 1 кг любого вещества содержит в себе энергию (эквивалентен энергии), которая больше электроэнергии, потребляемой всеми странами, существующими на Земле, в течение недели.

Мы с вами немного отвлеклись для пополнения научного багажа, а теперь чуть подробнее о природе самих планет.

3.2. Планеты Солнечной системы

3.2.1. Меркурий

Это ближайшая к Солнцу планета, среднее расстояние от Солнца не превышает 60 млн км, период обращения вокруг Солнца (год по-«меркуриански») составляет 88 земных суток (см. рис. 3 на вкладке). Меркурий чуть больше Луны, его радиус составляет примерно 2440 км. При описании размеров других планет мы также будем приводить радиусы, как обычно принято в астрономии.

Близость к Солнцу и не очень большие размеры диска Меркурия затрудняют его изучение. Однако современные методы наблюдения позволили определить многие планетные характеристики. Так, средняя плотность вещества планеты близка к средней плотности Земли, что позволяет предположить, что внутреннее строение Меркурия может быть похожим на строение Земли. Долгое время считалось, что Меркурий обращен к Солнцу всегда одной стороной. Это возможно, если период обращения вокруг своей оси совпадает с периодом обращения вокруг Солнца (88 суток). Однако радиолокационные наблюдения поверхности Меркурия позволили установить, что это не так, его вращение осуществляется в прямом направлении, а период его составляет 58 земных суток.

Орбита Меркурия заметно вытянута, самое близкое его расстояние от Солнца – перигелий – составляет 53,7 млн км, самое далекое – афелий – 61,4 млн км. Поэтому температура на поверхности Меркурия меняется в значительных пределах – от 430 °С на дневной стороне при прохождении перигелия до -170 °С на ночной стороне при прохождении планетой афелия.

Исследования Меркурия с космических аппаратов показали, что рельеф его поверхности сходен с лунным (о котором мы поговорим чуть позже). На Меркурии есть лишь одна темная низменность, получившая название Море Зноя. Выделяются также крупные обрывы глубиной 2–3 км и протяженностью в сотни километров. Высота гор на Меркурии не превышает 4 км. Ученые высказывают предположения, что рельеф поверхности Меркурия возник под воздействием метеоритной бомбардировки, т. е. при ударах падающих на поверхность метеоритов, и в результате действия вулканических сил.

3.2.2. Венера

Ближайшая к Земле планета (не считая Луны). Иногда расстояние Венера – Земля сокращается до 40 млн км. Радиус Венеры составляет 6050 км, масса всего на 18 % меньше массы Земли. Венера хорошо видна сразу после заката, на вечернем небе она является самым ярким после Луны и самым красивым космическим объектом. Поэтому ей дали в древности имя богини красоты.

Во второй половине XVIII в. М. В. Ломоносов наблюдал прохождение Венеры по диску Солнца. Венера днем не видна, но если ее диск при движении пересекает светящийся солнечный диск, то часть излучаемого солнечного света как бы экранируется непрозрачным диском Венеры. Венера выглядит как темная точка на яркой поверхности Солнца. Наблюдения Ломоносова привели его к выводу о существовании вокруг Венеры плотной атмосферы. Более поздние астрономические исследования показали, что атмосфера Венеры обладает сплошным облачным покровом, сквозь него невозможно увидеть поверхность планеты (см. рис. 4 на вкладке).

Один полный оборот вокруг Солнца (венерианский год) совершается в течение 225 суток. Период вращения Венеры вокруг своей оси долгое время определить не удавалось. Эту задачу решили с помощью радиолокационных методов. При этом оказалось, как уже упоминалось, что вращение Венеры происходит с востока на запад, а период вращения составляет 243 суток. Таким образом, за один оборот вокруг Солнца (за один год) на Венере наблюдается два восхода и два заката Солнца.

Исследования, проведенные еще в первой половине XX в., показали присутствие в атмосфере Венеры большого количества углекислого газа, а также наличие небольших долей угарного газа, паров плавиковой и соляной кислот. На Земле эти газы попадают в атмосферу в результате извержений вулканов. Поэтому можно предположить, что на Венере до сих пор также возможна активная вулканическая деятельность.

Все параметры Венеры как планеты, казалось бы, свидетельствовали, что Венера по своей природе очень сходна с Землей – близкие размеры и масса, а значит, и такая же сила тяжести на поверхности, есть плотная атмосфера, облачный слой и т. д. Однако оказалось, что углекислого газа в атмосфере Венеры 97 %, нижняя граница облачного слоя, толщина которого оценивается примерно в 10–12 км, находится на высоте около 60 км от твердой поверхности Венеры. Верхняя часть облаков состоит из капелек серной кислоты с примесью хлорных соединений. Общее количество воды во много раз меньше, чем количество воды в гидросфере Земли. Обилие углекислого газа и густой облачный покров привели к появлению на Венере мощного парникового эффекта. Автоматические станции, побывавшие на планете, свидетельствуют, что температура на поверхности достигает 500 °С (выше, чем на дневной стороне Меркурия!), а атмосферное давление примерно в 100 раз больше нормального атмосферного давления на Земле. Освещенность на поверхности Венеры примерно такая же, как на Земле днем в особенно пасмурную погоду. Однако там так всегда, из-за постоянного облачного слоя Солнце не появляется никогда. Таким образом, условия на Венере кардинально отличаются от земных, и жизнь на этой планете невозможна.

3.2.3. Марс

Наиболее изученная планета Солнечной системы. Он находится несколько дальше от Земли, чем Венера. При максимальном сближении с Землей во времена великих противостояний, когда Солнце, Земля и Марс находятся на одной линии и в данной последовательности, расстояние до Марса составляет всего 56 млн км.

Радиус Марса почти вдвое меньше земного – 3400 км, масса в 9 раз меньше земной.

Марсианский год длится 687 земных суток, а период обращения вокруг своей оси (марсианские сутки) почти как у Земли – 24 часа 37 минут. И смена времен года на Марсе происходит почти так же, как на Земле.

В атмосфере Марса наблюдаются облака – желтые, состоящие из пыли, и белые, похожие на земные, содержащие мелкие ледяные кристаллики (см. рис. 5 на вкладке). Часто на Марсе происходят пылевые бури, когда желтые облака почти полностью заслоняют диск Марса. Атмосфера Марса также состоит на 95 % из углекислого газа, но в ней присутствует заметное количество паров воды и даже некоторое количество свободного кислорода. Сама атмосфера является сильно разреженной, ее давление на поверхности Марса такое же, как давление на Земле на высоте 35 км. Разреженная атмосфера Марса не может в той же степени, как на Земле, смягчить контрасты дневной и ночной температур на поверхности. Летом температура в полдень может подниматься до +25 °С (совсем как на Земле), но ночная близка к -100 °С.

Современные исследования с Земли и с помощью космических аппаратов установили, что Марс является гористой планетой. На Марсе обнаружен один из самых больших вулканов в Солнечной системе, который назван Олимпом. В высоту он достигает 27 км, поперечник его основания составляет больше 500 км. Основной рельеф Марса представляет собой многочисленные кратеры. Поперечники кратеров имеют размеры от 100 м до 200 км. Предполагается, что часть горных кряжей и возвышенностей представляют собой полуразрушенные остатки древних кратеров. Есть на Марсе равнинные районы, например овальной формы пустыня в южном полушарии Марса, имеющая диаметр около 1700 км.

Большое внимание уделяют ученые полярным шапкам Марса, которые представляют собой наблюдаемые в телескопы белые пятна, покрывающие полярные области планеты. Так же как и на Земле, полярные шапки Марса подвержены сезонным изменениям – они достигают самых больших размеров в середине зимы. Летом северная полярная шапка исчезает полностью, а от южной остается очень малая ее часть. Полярные шапки Марса не только по внешнему виду напоминают земные полярные шапки. Вещество, из которого они состоят, – это, как и на Земле, снег и лед.

Марсианские «каналы» – сеть почти прямых линий на поверхности Марса, чем-то похожая на меридианы и параллели на картах земной поверхности, которые обнаружил еще в конце XIX в. итальянский астроном Скиапарелли, не являются следствием работы мифической цивилизации «марсиан». Обсуждения возможности марсианской цивилизации породили в прошлом веке многочисленные гипотезы, предположения, научную и художественную литературу. В частности, можно вспомнить великолепный роман Г. Уэллса «Война миров». Однако в настоящее время доподлинно известно, что каналы – это либо иллюзии зрения, либо линии тектонических разломов в марсианской коре. Никто не сомневается, что они имеют естественное происхождение.

Остается один вопрос – может ли на Марсе существовать жизнь земного типа? Ведь Марс – это единственная планета в Солнечной системе, где условия на поверхности хотя и достаточно суровые по земным меркам, но не настолько, чтобы ученые могли бы полностью исключить возможность развития здесь жизни. На момент написания этой книги ответ на этот вопрос пока, увы, не получен.

3.2.4. Юпитер

Это самая большая планета Солнечной системы. Радиус Юпитера в 11 раз больше радиуса Земли, а масса больше земной в 320 раз. Сутки на Юпитере продолжаются всего 10 часов, так быстро вращается эта планета вокруг своей оси. Ось вращения почти перпендикулярна к плоскости эклиптики. Поэтому на Юпитере при вращении вокруг Солнца не происходит смены времен года. Сам юпитерианский год длится около 12 земных лет.

Так как сила притяжения вблизи Юпитера намного больше, чем на Земле, то и его газовая оболочка – атмосфера – является во много раз более мощной, чем земная. В атмосфере Юпитера постоянно наблюдаются облачные образования в виде сероватых полос, расположенных параллельно экватору планеты (см. рис. 6 на вкладке). Лучше всего проявляются ближайшие к экватору тропические полосы, полосы в умеренных широтах выражены слабее, а зоны вблизи полюсов имеют равномерную серую окраску. Внутри полос наблюдаются различного вида неоднородности, которые часто соединяются друг с другом перемычками. На краях полос имеются мелкие детали, углубления и выступы. Вид и структура полос постоянно меняются. Однако в тропической зоне южного полушария Юпитера наблюдается постоянно присутствующее образование, обнаруженное астрономами еще в XVII в. Оно носит название Большого Красного Пятна и имеет эллиптическую форму. Оно настолько велико, что его наибольший поперечник в четыре раза больше поперечника Земли. С момента обнаружения его размеры и форма практически не менялись, менялась только его яркость. В конце XIX в. Красное Пятно настолько поблекло, что его трудно было различить даже в самые хорошие приборы того времени. Что из себя представляет Большое Красное Пятно, до сих пор точно не известно. Предполагается, что это устойчивый огромный вращающийся вихрь, период его вращения близок к шести суткам.

Юпитер не только самая большая планета в Солнечной системе, но и первая из дальних планет, имеющих большие отличия от планет земного типа. Для нас это удивительный, непохожий на все, что мы знаем, мир. Строение Юпитера вызывает много споров. Многочисленные исследования показали, что атмосфера, состоящая в основном из водорода и гелия с небольшой примесью метана и аммиака, скрывает под собой целый океан жидкого водорода, глубиной несколько тысяч километров. Водород переходит в жидкость под давлением всего столба атмосферных газов, которое во много раз превышает обычное атмосферное давление на поверхности нашей планеты. Ниже расположена еще более странная для нас оболочка из металлического водорода. Оказывается, при сверхвысоком давлении даже самый легкий из газов – водород – может стать твердым и даже перейти в металлическое состояние. На Земле это никогда и нигде самопроизвольно не происходит, потому что сила тяжести Земли не может создать такое давление в слоях, где присутствует водород (в виде химических соединений или чистого вещества). Металлический водород можно получить только в специальных лабораториях, на специальных установках и в очень небольших количествах, это очень сложная технологическая задача. На Юпитере под слоем твердого водорода находятся центральные области планеты, где, как предполагают ученые, расположено твердое железосиликатное ядро, радиус которого не более 1/8 полного радиуса Юпитера. Существуют модели, согласно которым под газовой оболочкой Юпитера скрывается поверхность, покрытая сплошной коркой водяного льда или даже жидким океаном, масса которого в 30 раз превышает массу Земли. Внутренние области Юпитера сильно разогреты, температура там может достигать нескольких тысяч градусов. Тепловое излучение неизбежно выходит наружу, это сказывается на повышении температуры внешней части атмосферы, что удается зарегистрировать при астрономических наблюдениях Юпитера. Существуют и другие гипотезы о строении внутренних областей Юпитера, но однозначного ответа, какая из точек зрения является верной, пока найти не удается.

3.2.5. Сатурн

Рассказы астрономов о Сатурне часто начинаются с демонстрации необычной картинки: в огромном резервуаре с водой как пробка плавает Сатурн. Смысл этой сказочной картины в том, что средняя плотность вещества Сатурна очень невелика, меньше плотности воды. Поэтому, если бы удалось его погрузить в воду в земных условиях, что, конечно же, возможно только в сказке, то он бы всплыл на поверхность.

Сатурн, благодаря своим знаменитым кольцам, самая эффектная планета Солнечной системы (см. рис. 7 на вкладке). От Солнца он расположен в 2 раза дальше, чем Юпитер, его радиус в 9,5 раза больше земного. Вращение вокруг своей оси, как и у Юпитера, очень быстрое, сатурнианские сутки длятся чуть больше 10 часов. Атмосфера Сатурна содержит в основном водород, гелий и метан. Считается, что и сам Сатурн состоит тоже из водорода и гелия (поэтому его плотность невелика: и водород, и гелий – самые легкие из всех существующих веществ). Наблюдательные данные свидетельствуют, что толщина газовой атмосферы Сатурна близка к 1000 км. Жидкая смесь водорода с гелием расположена ниже и образует всепланетный океан. На глубине около половины радиуса планеты при очень высоких давлении и температуре, так же как и на Юпитере, идет слой металлического водорода. Железосиликатное ядро, расположенное еще глубже, подогревает всю планету и ее атмосферу.

Яркие кольца Сатурна были открыты еще в XVII в. Последние исследования с Земли и с космических аппаратов показали, что кажущиеся сплошными кольца Сатурна в действительности распадаются на множество узких и тонких колечек. Выяснилось, что кольца – не уникальная особенность Сатурна, и другие планеты-гиганты также обладают кольцами, только намного менее яркими, чем кольца Сатурна. Поэтому с Земли они не видны. Но с автоматических станций «Вояджер» обнаружены два кольца вокруг Юпитера. Оправдались также предсказания о существовании колец вокруг Урана и Нептуна. Кольца Сатурна (и всех других планет-гигантов) состоят из покрытых льдом камней, размер которых редко больше 10 м в поперечнике. Толщина колец Сатурна удивительно мала по космическим меркам, всего 2 км, поэтому на снимках, сделанных с Земли, они кажутся совсем плоскими.

3.2.6. Уран и Нептун

Обе эти планеты находятся очень далеко от Солнца, на окраине Солнечной системы. Они по своим свойствам и размерам мало отличаются друг от друга: радиус Урана в 4 раза больше земного, Нептун чуть поменьше Урана. Массы этих планет очень близки. Обе они сравнительно быстро вращаются вокруг своих осей. Так, сутки на Уране близки к 10 часам, на Нептуне они немного длиннее. Но периоды обращения вокруг Солнца для них сильно отличаются. Год на Уране составляет 84 земных года, а нептунианский год – 165 земных лет. Это означает, что с момента открытия Нептуна (это произошло в 1846 г.) до сих пор не прошел и один год на Нептуне.

Атмосферы этих планет-близнецов похожи между собой и похожи на атмосферу Сатурна. В них обнаружен водород, гелий, метан и следы аммиака. Наблюдение с Земли объектов в атмосферах и на поверхностях этих далеких планет – достаточно сложная задача. На Уране с трудом просматриваются слабые сероватые полосы, параллельные экватору, и темно-серые пятна на полюсах. На Нептуне полосы гораздо слабее, для их наблюдения необходимо использовать очень крупные телескопы (см. рис. 8 на вкладке).

Сведения об этих далеких планетах не полны, и поэтому предположения об их внутреннем строении носят предварительный характер. Считается, что их недра напоминают внутреннее строение Юпитера и Сатурна, с тем отличием, что внутри Урана и Нептуна, по всей видимости, отсутствуют слои металлического водорода. Но ядра этих планет также очень горячие, они являются источниками нагрева поверхностей и атмосфер.

3.2.7. Плутон

Эта планета (будем ее называть планетой) труднонаблюдаема с Земли даже в мощные телескопы, поэтому наши сведения о ней не очень многочисленны. Обращается Плутон вокруг Солнца по сильно вытянутой орбите, иногда он приближается к Солнцу ближе, чем Нептун. Период обращения почти 250 земных лет. Размеры Плутона постоянно уточняются, однако известно, что это наименьшая из больших планет Солнечной системы. Один оборот вокруг своей оси Плутон совершает за несколько земных суток. У Плутона есть единственный спутник, названный Хароном, который по размеру только в 3 раза меньше самого Плутона. Расстояние между Плутоном и его спутником очень невелико, всего около 20 000 км, поэтому Плутон и Харон иногда называют двойной планетой.

3.2.8. Астероиды

В состав Солнечной системы, кроме больших планет, входят тысячи малых планет, которые называются астероидами. Этот термин в переводе означает «звездоподобные». Такое название появилось, поскольку малые планеты даже в крупные телескопы выглядят слабыми звездочками без заметного диска, и лишь собственное движение на фоне дальних звезд свидетельствует, что это тела Солнечной системы (рис. 9). Более 3500 из них зарегистрировано. Зарегистрированными считаются астероиды, для которых, хотя бы приближенно, определена орбита. Однако открытых, но не зарегистрированных астероидов намного больше, причем открытия и регистрация астероидов непрерывно продолжаются. Наибольший из астероидов – Церера, обнаруженный в 1800 г., имеет поперечник более 1000 км. Остальные астероиды меньше по размеру, только 14 из них в поперечнике превосходят 250 км. Большинство астероидов имеют неправильную форму, они напоминают большие каменные осколки. Это роднит их с метеоритами. Можно считать, что метеориты – это те из астероидов, которые сталкиваются с Землей и падают на ее поверхность.


Рис. 9. Астероид Gaspra


Большинство астероидов (примерно 97 %), подобно планетам, имеют почти круговые орбиты, которые заключены между орбитами Марса и Юпитера. Остальные выходят за эти пределы и двигаются по сильно вытянутым эллиптическим орбитам. Некоторые из малых планет уходят далеко за орбиту Сатурна, другие подходят к Солнцу в 2 раза ближе, чем Меркурий. Астероиды с вытянутыми эллиптическими орбитами пересекают почти круговые орбиты больших планет и могут иногда менять свои траектории под действием их притяжения. Так, в период между 1949 и 1968 гг. астероид Икар подошел близко к Меркурию, который силой своего притяжения слегка изменил траекторию Икара. Расчеты астрономов показали, что даже такое незначительное изменение может привести к прохождению Икара в середине 1968 г. вблизи Земли. Расстояние максимального сближения Земли и Икара должно было составлять «всего лишь» 6 млн км. По космическим масштабам это очень незначительное расстояние, и ученые опасались, что вследствие дополнительных влияний других планет Икар снова «слегка» изменит свою орбиту и столкнется с Землей. К счастью, этого не произошло, Икар действительно прошел мимо Земли, как и было предсказано. Этот случай показывает, что столкновение Земли с крупным астероидом возможно, за всю историю существования Земли такие столкновения наверняка происходили. Вполне возможно, что различные земные катастрофы, например гибель динозавров 65 млн лет тому назад, связаны именно с такими необычными космическими событиями.

3.2.9. Кометы

Среди «населения» Солнечной системы кометы можно выделить как еще одну категорию небесных тел, которые всегда представляли интерес для наблюдателей. В отличие от неподвижных звезд и постоянно движущихся и всегда присутствующих на небе планет, кометы – редкие и яркие гостьи, появляющиеся на короткое время и затем надолго исчезающие в космических просторах. Если на небе появилась комета, то она выглядит как туманное светящееся пятнышко. Это пятнышко называют головой кометы. Кометы могут быть очень яркими, тогда их легко наблюдать невооруженным глазом, иногда даже в дневное время. Такие кометы всегда имеют длинные светящиеся хвосты. Именно поэтому они и получили название «кометы»,

что в переводе с греческого означает «хвостатые звезды». Слабые кометы, едва различимые глазом, анализируют по фотографиям, полученным с помощью больших телескопов. Слабые кометы также имеют едва заметные короткие хвосты. Однако все кометы, когда они покидают близкие к Солнцу области, либо выглядят как едва заметные туманные пятнышки, либо вообще становятся неразличимыми.

Многочисленными наблюдениями установлено, что хвост кометы всегда направлен в сторону, противоположную Солнцу. Поэтому, когда комета приближается к Солнцу, то она движется головой вперед, оставляя хвост за собой. Когда же, обогнув Солнце, комета от него удаляется, хвост движется впереди головы.

Самая яркая часть кометы – голова – содержит внутри себя твердое ядро. Размеры ядра по космическим масштабам очень малы – от нескольких километров до нескольких десятков километров. Ядро окружено огромной газопылевой оболочкой, которая может достигать сотни тысяч километров в поперечнике. Хвост еще больше, его длина составляет миллионы километров.

Предполагается, что на больших расстояниях от Солнца кометы представляют собой только голые ядра, глыбы твердого вещества, состоящего из обыкновенного водяного льда и замороженных газов – метана, аммиака и т. д. В лед вморожены металлические и каменные песчинки и пылинки. По мере приближения к Солнцу этот лед начинает испаряться, создавая вокруг ядра оболочку из газа и пыли. Давление солнечного света отталкивает этот разреженный газ в сторону, противоположную Солнцу, образуя кометный хвост. У некоторых больших комет процесс испарения кометного вещества происходит очень интенсивно, оболочка и хвост при этом вырастают до гигантских размеров. Так, диаметр оболочки кометы Холмса, наблюдавшейся с Земли в 1882 г., был равен 1,5 млн км, а длина хвоста достигала 300 млн км.

За всю историю наблюдений было открыто много комет. Но особое внимание заслужила комета Галлея, названная по имени первооткрывателя, английского астронома Эдмунда Галлея, обнаружившего ее на небе в 1682 г. Изучение траектории кометы, вычисление орбит комет, наблюдавшихся ранее, сопоставление сроков позволило Галлею предсказать, что найденная им комета должна снова появиться на небе через 75 лет. Предсказания астронома полностью оправдались. С тех пор каждые 75 лет телескопы нацелены в сектор неба, предсказанный астрономами, для пристального наблюдения за кометой Галлея. Последний раз она проходила вблизи Земли в 1986 г. (см. рис. 10 на вкладке). Исследование кометы Галлея в тот год проводилось не только с Земли, но и со специальных космических зондов, посланных для встречи с ней. Исследования были успешными и дали много нового материала о строении, составе и жизни кометы. Но это уже другая история.

3.2.10. Луна

Теперь ненадолго приблизимся к нашей родной планете. По дороге задержимся на расстоянии около 384 000 км от земной поверхности и поглядим внимательно на наш естественный спутник. Из всех небесных тел Луна не только самое близкое к Земле, но и самое изученное из них. Ее светлый диск или серп на протяжении всей истории человечества разгоняет ночную темноту во всех странах, во всех частях света. Люди разглядывали ее всегда, интересовались ее движением по небесному своду, изучали ее фазы, измеряли и продолжают измерять длительность различных земных процессов лунными месяцами. Люди уже побывали на Луне, там работают измерительные приборы, которые передают на Землю характеристики лунной поверхности и другую ценную информацию. Сведения о Луне настолько обильны, что ей посвящено много научных и популярных книг. Здесь мы приведем только то, что кажется нам наиболее интересным и что полезно знать обычному, рядовому человеку в нашем подлунном мире.

Радиус Луны составляет 1740 км, это почти в 4 раза меньше земного радиуса. Масса Луны в 81 раз меньше земной. Следствием этих отличий является уменьшение силы тяжести; на поверхности Луны она в 6 раз меньше той, которую мы испытываем на Земле. Если ваш вес составляет 80 кг, то на поверхности Луны вы будете весить всего немногим больше 13 кг. Такая незначительная с точки зрения землян сила тяжести, вероятно, стала причиной отсутствия на Луне атмосферы. Все попытки ученых ее обнаружить с помощью различных экспериментальных методов не увенчались успехом. Предполагается, что за время существования Луны газовая оболочка постепенно улетучилась, так как недостаточное притяжение планеты не может долго препятствовать удалению за пределы окололунного пространства быстро движущихся молекул газовых компонентов.

Даже невооруженным глазом можно увидеть на диске Луны светлые и темные области, которые условно называют лунными материками и морями (рис. 11). Кстати, постоянство внешнего облика поверхности Луны говорит о том, что наш спутник всегда повернут к Земле одной и той же стороной, одним своим полушарием. Это означает, что период вращения Луны вокруг своей оси равен периоду ее обращения вокруг Земли. Оба этих периода составляют 27 земных суток и 8 часов – этот срок называется лунным месяцем.


Рис. 11. Луна. Вид в телескоп


Уже первые астрономические наблюдения Луны с использованием телескопов, начатые в XVII в. Галилеем, позволили обнаружить присутствие на ее поверхности сложного рельефа. В настоящее время крупные телескопы позволяют различать на Луне объекты размером менее 1 км. При непосредственном изучении Луны космическими аппаратами и космонавтами, побывавшими на ее поверхности, отдельные районы Луны могут быть исследованы так же подробно, как земная поверхность. В результате таких исследований было установлено, что крупные детали лунной поверхности – материки и моря – это типовые формы всего лунного рельефа. Первые представляют собой горные области, вторые, наоборот, – впадины, глубина которых относительно среднего уровня лунной поверхности иногда достигает нескольких километров. Некоторые лунные горы, в частности гора Лейбниц (по имени знаменитого математика XVIII в.) достигают девятикилометровой высоты. Значит, перепад высот и глубин на Луне не уступает тому, что имеется на нашей планете. Лунные материки не имеют собственных названий, однако каждое лунное море получило свое имя еще во времена Галилея (например, Море Кризисов, Море Дождей, Море Спокойствия, Море Облаков и т. д.). Части морей, вдающиеся в материки, называются заливами. Темные пятна небольших размеров называются озерами, а области, имеющие яркость, промежуточную между материками и морями, – болотами (Болото Снов около Моря Спокойствия).

Горные хребты на Луне по большей части носят привычные земные названия – Альпы, Карпаты, Алтай, Кавказ. Большинство лунных хребтов имеют несколько сотен километров в длину при высоте до 3 км. Чаще всего лунный рельеф изобилует многочисленными кольцевыми горами, или лунными кратерами. Их названия соответствуют именам известных ученых – кратеры Коперника и Циолковского. Многие лунные кратеры имеет огромные размеры; лунный кратер Шиккард имеет поперечник более 200 км. Некоторые лунные кратеры являются центрами, от которых радиально расходятся системы светлых лучей, тянущихся иногда на сотни и тысячи километров. Космические лунные зонды показали, что светлые лучи часто представляют собой скопление мелких кратеров, образовавшихся, по всей видимости, при выбросе вещества из центрального большого кратера.

Происхождение различных форм лунного рельефа продолжает анализироваться учеными. Но общие тенденции процесса формирования лунной поверхности в целом понятны. Все время своего существования лишенная атмосферы Луна подвергалась непрерывному метеоритному обстрелу. При отсутствии торможения метеоритов в газовой среде, как это происходит в земных условиях, небесные камни со скоростями не менее 5 км/с ударялись о лунную поверхность. Происходили взрывы, при которых выделялось большое количество энергии. Тем большее, чем больше скорость и масса метеорита. При скоростях более 10 км/c взрывные эффекты возрастали в сотни и тысячи раз. Есть основания предполагать, что в далеком прошлом метеоритная бомбардировка Луны была более интенсивной, чем в настоящее время. Следствием метеоритной бомбардировки является образование лунных кратеров.

Количество падающих на Луну метеоритов зависит от их размеров, чем они меньше, тем они многочисленнее. Микрометеориты, имеющие массу меньше 1 г, сталкиваются с Луной практически непрерывно. В результате таких столкновений на Луне сформировался тонкий пемзообразный поверхностный слой. Наряду с влиянием метеоритов лунная поверхность подвергается постоянному воздействию солнечного ультрафиолетового излучения, которое не ослабляется поглощением в газовой атмосферной среде и также участвует в формировании самого поверхностного слоя Луны.

Вместе с тем, кроме внешних факторов воздействия на лунную поверхность, следует учитывать и влияние внутренних сил. Похожие на гладкие поверхности лунные моря напоминают обширные лавовые потоки. Гофрированная, как бы пенистая поверхность каменных валов позволяет предположить, что они представляют собой застывшие края лавовых потоков. В некоторых местах лунной поверхности видно, как лава обтекала препятствия на своем пути. Часть центральных горок лунных кратеров имеют выраженные «жерла». Возможно, они являются лунными вулканами? Несколько раз российские и американские астрономы наблюдали выделение газов из некоторых лунных кратеров, что классифицировалось ими как лунные извержения (рис. 12). Поэтому полагают, что вулканическая деятельность на Луне продолжается.

Химические анализы лунных пород проводились непосредственно аппаратами на поверхности Луны и в земных лабораториях, где исследовались образцы, доставленные с Луны в возвращаемых модулях лунных кораблей. Результаты этих анализов показали, что набор химических элементов в лунных образцах тот же, что и в земных изверженных вулканических породах. Однако за счет прямого влияния метеоритного вещества лунные породы обогащены титаном, цирконием и другими металлами, реже встречающимися в вулканических породах Земли.


Рис. 12. Кратер Аристарх и долина Штерера. Разлом лунной коры. Здесь наиболее часто видно в телескоп свечение газов, выделяющихся из недр Луны


Многое в природе и строении Луны остается пока невыясненным. Но это и понятно, ее непосредственное изучение началось совсем недавно. Оно продолжается со все нарастающей скоростью. Надеемся, что и будет продолжаться в самом ближайшем будущем. Так что есть реальный шанс совсем скоро узнать много нового о Луне.

3.2.11. Земля

Наконец мы приблизились к Земле. Можем взглянуть на нее с космической точки зрения, как на планету Солнечной системы: выяснить, каково ее строение, планетарные параметры и свойства и многое другое. Ведь о Земле, наверное, известно намного больше, чем о планетах и других космических телах, которые находятся от нас на огромных расстояниях. Взглянем вначале на Землю из космоса, так легче получить общее представление. Тем более что взгляд из космоса сейчас вполне возможен – имеется большое количество фотографий Земли, сделанных с орбит искусственных спутников, из других точек околоземного пространства, с Луны и более отдаленных областей Солнечной системы (см. рис. 13, 14 на вкладке).

Посмотрим на рис. 14. Ничего неожиданного, голубая планета, темно-синие океаны, зеленовато-коричневые континенты, все узнаваемо, почти как на глобусе. Видны белые облака, закрывающие часть поверхности. Это наш космический дом. Чтобы понять, как он стал таким, каким мы его знаем, и как он устроен внутри, о чем мы знаем не так уж много, заглянем в прошлое. Постараемся представить себе волнующий момент в истории космоса – рождение Земли, а заодно и всех остальных планет Солнечной системы. Как судят об этом естественные науки? Имеются ли какие-либо основания описать процессы образования планет и объяснить, почему Солнечная система такая, какая она есть сейчас, почему Земля стала нашим домом? Детального ответа на все эти вопросы мы дать не сможем, исследования в этой области находятся в стадии развития, данные все время уточняются, появляются новые факты и новые мнения. Да и события эти происходили очень давно, в то время не было фото- и видеоаппаратуры, чтобы зафиксировать происходящее. Не было и самих наблюдателей! Но общая картина, как ее представляют себе ученые, существует. Она построена с помощью известных законов природы на основе имеющихся в распоряжении науки данных.

Самое начало, самый трудный для описания этап. Предполагается, что вначале вокруг уже существующего Солнца вращалось допланетное газопылевое облако – это гипотеза российского академика О. Ю. Шмидта, которая поддерживается большинством ученых, занимающихся этим вопросом. Анализ движения мелких частиц показал, что, вращаясь вокруг Солнца по различным, отличающимся друг от друга орбитам, частицы, которых было огромное множество, неизбежно сталкивались друг с другом. Это приводило к обмену между ними энергией, разогреву и к слипанию их в вакууме. В результате столкновения и слипания «усреднялись» параметры движения частиц, сближались орбиты. К слипшимся частицам присоединялись новые, образовывались сгустки, которые росли в размерах тем быстрее, чем больше становились. Это является следствием закона всемирного тяготения – чем больше (массивнее) тело, тем сильнее оно притягивает к себе другие тела. Так постепенно образовывались первичные зародыши планет. Чем крупнее они становились, тем ближе к круговым (вследствие «усреднения») становились их орбиты. Наклоны орбит также «усреднялись», что на следующем этапе привело к образованию планет, орбиты которых находятся почти в одной плоскости. И изменением формы орбит, и выравниванием плоскостей вращения вокруг Солнца также управлял закон всемирного тяготения.

В областях, близких к Солнцу, частицы, образовавшие планеты, сильно нагревались. Летучие легкие компоненты, входящие в их состав, – замерзшие газы – испарялись. Поэтому поблизости от Солнца образовались небольшие планеты, состоящие из тугоплавких тяжелых элементов, – Меркурий, Венера, Земля и Марс – планеты земного типа. В более далеких и в более холодных частях Солнечной системы легкие элементы, находящиеся первоначально в твердом состоянии, сохранились. Поэтому там образовались планеты-гиганты – Юпитер, Сатурн, Уран, Нептун, состоящие в основном из водорода и его соединений. Совсем далеко от Солнца, там, где вещества в газопылевом облаке оставалось уже немного, образовался небольшой Плутон, орбита которого не смогла прийти к оптимальному виду, так как за ним уже не было значительных масс для образования других тел. По поводу образования Плутона высказываются, правда, и другие предположения.

Модель О. Ю. Шмидта позволяет объяснить многие особенности строения Солнечной системы, в частности эмпирический (выведенный на основе наблюдений) закон планетных расстояний, связывающий радиус орбиты планеты с ее номером, отсчитывающимся в порядке удаления от Солнца. Возникновение систем спутников планет также удовлетворительно может быть объяснено процессом, аналогичным процессу образования самих планет.

Безусловно, остаются вопросы, которые не удается полностью решить в рамках одной, даже очень привлекательной гипотезы. В рождении Земли не все совершенно ясно.

Но какие бы новые данные ни появились в результате новейших исследований, одно положение не может подвергаться сомнению. Ведущую роль в рождении и дальнейшей эволюции Земли играет Солнце. Его поле тяготения, свет и другие виды излучения определяют всю историю Земли.

Итак, Земля родилась из небольшого сгустка частиц протопланетного (газопылевого) облака. Произошло это, по современным данным, примерно 4,5 млрд лет тому назад. Этот срок очень велик. Жизнь одного поколения людей не превышает стомиллионной доли жизни планеты. Со времен античности до нашего времени сменилось не более 60 поколений, а за всю историю Земли могло бы смениться 100 000 000 поколений.

Когда молодая Земля выросла примерно до современной массы, а это произошло примерно через 100–200 млн лет после ее образования, она нагрелась. Главным источником разогрева первично холодной Земли считается тепло, выделяющееся при радиоактивном распаде нестабильных изотопов. Это то же тепло, которое выделяется в ядерных реакторах атомных электростанций. Только для получения большего эффекта люди ускоряют процессы распада, в единицу времени тепла на атомных электростанциях выделяется больше, чем в естественных условиях. Дополнительно нагрев Земли усиливался под действием ударов при столкновении с Землей других сгустков и более мелких тел, которых при образовании планет на орбитах вокруг Солнца было много. Предварительные расчеты показали, что в результате этих процессов температура на глубине 300–500 км под поверхностью выросла до 1500 °C. Разогрев Земли приводил к тому, что более тяжелые вещества плавились и опускались вниз, а более легкие поднимались наверх. Расплавлялись тяжелые металлы, железо, никель и погружались к центру планеты. Вверх поднимались вещества, содержащие кремний, алюминий, кислород, углерод. Этот процесс привел к гравитационному расслоению Земли (расслоению в поле тяжести) и образованию плотного ядра и менее плотных окружающих ядро оболочек.

Действительно ли так происходило, есть ли следы произошедшего расслоения, которые можно обнаружить? Оказывается, образование различных земных слоев – геосфер – на разной глубине под поверхностью действительно произошло, это можно подтвердить с помощью геофизических опытов. Во время землетрясений ударные волны пронизывают недра земного шара и на границах геосфер частично меняют скорость своего прохождения, частично отражаются от поверхности раздела. На специальных сейсмических станциях приборы улавливают эти волны, исследователи сравнивают показания различных станций и определяют центр землетрясения и одновременно устанавливают, на каких глубинах находятся поверхности раздела различных геосфер и через какие породы прошли ударные волны.

В настоящее время выделяются следующие оболочки Земли (см. рис. 15 на вкладке). В центре земного шара находится внутреннее металлическое ядро, в состав которого входят потонувшие в поле тяжести Земли железо и никель. Его радиус примерно 1250 км, т. е. граница внутреннего ядра находится на глубине 5150 км под внешней поверхностью (у нас под ногами). Расчеты показывают, что температура в центре Земли достигает 5000 °C!

Внутренне ядро окружено внешним ядром, верхняя граница которого находится на глубине 2900 км. Внешнее ядро реагирует на сейсмические волны как жидкая среда, видимо, вещество здесь находится в жидком или жидкопластичном состоянии. Ядро окутано слоем, который называется мантией. Мантия имеет сложное строение. До глубины 700 км находится нижняя мантия, вещество нижней мантии однородно по составу, об этом свидетельствуют скорости прохождения через нее сейсмических волн. Верхняя мантия расположена выше, до глубин 100–200 км. Она неоднородна по составу, в ней по мере приближения к поверхности Земли происходит падение температуры до 1000 °C, вещество этого слоя может являться смесью твердых и частично расплавленных пород.

Последняя твердая оболочка нашей планеты – земная кора. Иногда ее объединяют с твердой частью верхней мантии и называют литосферой. По составу она тоже неоднородна, как по вертикали (сверху вниз), так и по горизонтали. Ее верхней границей является поверхность Земли со всеми формами своего рельефа. Нижняя граница, расположенная на разной глубине и как бы отражающая рельеф земной поверхности, названа по имени югославского геофизика А. Мохоровичича, обнаружившего эту границу, поверхностью Мохоровичича. Под горными областями ее глубина может доходить до 80 км, под равнинами она находится не глубже 30–50 км, под океанами ее глубина составляет всего 10–12 км. Земная кора и есть та скорлупа, которая отделяет все, что на ней находится – живой мир, людей и всю человеческую цивилизацию, от частично расплавленного, раскаленного, подвижного внутреннего мира Земли. Толщина этой скорлупки в среднем меньше 1/100 радиуса земного шара, в некоторых же местах еще меньше, почти 1/1000. Об этом стоит подумать.

Современные исследования показали, что земная кора разбита сложной сетью глубоких трещин, которые уходят на большую глубину. Обычно такие трещины – их называют рифтами – соответствуют границам материковых массивов и океанических впадин (например, кольцевая зона разломов вдоль побережья Тихого океана) или горным поясам – Гималайскому, Уральскому и т. д. Горные пояса при этом представляют собой нечто вроде швов, закрывающих старые разломы. Свежие разломы – это рифты вдоль осей срединно-океанических хребтов. На суше аналогом таких рифтов являются Восточно-Африканские разломы.

Рифты разделяют всю земную кору на отдельные блоки – литосферные плиты, или платформы. Считается установленным, что литосферные плиты могут скользить по подстилающим пластичным полурасплавленным породам верхней мантии. Этот ослабленный подстилающий слой называют астеносферой («астенос» в переводе с греческого означает слабый, ослабленный), он делает возможным горизонтальный дрейф блоков литосферы. Впервые гипотезу о дрейфе материков высказал немецкий ученый А. Вегенер в начале XX в. Он обратил внимание на совпадение береговых линий некоторых материков, они как будто совмещаются друг с другом. Стыковка получается более плотной, если брать не береговую линию, а очертание шельфа – материковой отмели. В 1970 г. американские ученые изучили совмещение некоторых материков с помощью ЭВМ. Результат говорит сам за себя: хорошо совместилось более 93 % границ шельфа, т. е. краевой части материков. Особенно хорошо состыковались Африка и Южная Америка, Антарктида и Африка.

Современная теория дрейфа литосферных плит – теория мобилизма – предполагает, что плиты с одного края наращиваются вдоль рифта. Это наращивание происходит за счет выдавливания вещества верхней мантии через рифты срединно-океанических хребтов. Каждая новая порция поступающего снизу вещества давит на породы, возникшие раньше, и отодвигает их в стороны от рифта. Это давление передается далее, и дно океана постепенно расширяется, раздвигая материки. С другого края плиты погружаются в верхнюю мантию под края соседних плит. Так, африканско-индийская плита, расположенная между срединными хребтами Атлантического и Индийского океанов, на западе постоянно наращивается, а на востоке погружается под индоокеанскую плиту. Общая картина расположения литосферных плит показана на рис. 16.

Оставшиеся оболочки Земли, о которых еще не шла речь, – это гидросфера и атмосфера. Гидросфера – жидкая водяная оболочка, а атмосфера – газовая оболочка Земли. Считается, что гидросфера и атмосфера образовались вместе с земной корой в результате высвобождения веществ верхней мантии. Основная часть воды гидросферы, примерно 97 %, занимает океанские впадины и окраины материков, образуя океаны и моря. Большая часть оставшейся воды (около 2 %) образует полярные шапки и горные ледники. Пресные воды континентов – реки, озера, грунтовые и подземные воды – содержат всего 1 %. Гидросфера играет очень важную роль в формировании современного облика земного шара. Воды океанов являются основной средой в тепловом балансе Земли. Медленно нагреваясь, они в теплом сезоне аккумулируют солнечное тепло и медленно отдают его в атмосферу, нагревая массы воздуха. Суша быстро нагревается и быстро теряет тепло. Поэтому только несколько процентов тепла в общий баланс дает суша, а большая часть поступает из океанов. Присутствие жидкой воды на поверхности Земли считается ключевым фактором образования и развития биосферы. Не было бы жидкой воды, не было бы и жизни на нашей планете.


Рис. 16. Карта, иллюстрирующая расположение основных тектонических плит


Атмосфера – самая легкая из всех оболочек Земли. Ее масса составляет всего одну стотысячную долю процента (0,00001 %) массы земного шара. Под действием силы тяжести верхние слои воздуха давят на нижележащие. Наибольшее значение атмосферное давление имеет у поверхности Земли – 105 Па. Такое же давление оказывает водяной столб высотой 10 м. Давление атмосферы уменьшается с высотой, с высотой же уменьшается и ее плотность. Около 50 % всей массы атмосферы сосредоточено в ее нижнем пятикилометровом слое, там, где мы сами обитаем. Первоначально атмосфера состояла из углекислого газа и азота с некоторым количеством водорода и паров воды. К нашему времени ее состав сильно изменился. Причина этого изменения кроется в появлении жизни на поверхности Земли и ее влиянии на атмосферу. За всю историю существования биосферы – около трех миллиардов лет – живые организмы постепенно приспособили состав атмосферы к своему жизненному циклу. Точнее, произошло взаимное приспособление биосферы и атмосферы: организмы менялись под воздействием внешней среды и сами меняли ее состав так, чтобы их существование могло продолжаться.

Газовую оболочку Земли, так же как и твердую, разделяют на несколько слоев, отличающихся по своим свойствам. Слои эти расположены на разной высоте от поверхности Земли, между ними нет четких границ, они постепенно переходят друг в друга, но примерные высоты и средние свойства слоев обычно приводят. На рис. 17 (см. вкладку) даны названия атмосферных слоев, показано их расположение и ход изменения температуры при увеличении расстояния от поверхности Земли.

Самый нижний слой вблизи земной поверхности, уровень которой отсчитывают от уровня моря, распространяется до высот от 12 до 17 км в зависимости от географической широты и атмосферных условий. Это тропосфера. Тропосфера вместе с гидросферой – это зоны жизни Земли. За пределами этих геосфер живая природа сама по себе существовать не может. Выше тропосферы расположена стратосфера, знаменитая тем, что внутри нее на высотах от 20 до 35 км имеется озоновый слой – природный экран, предохраняющий все живое на Земле от губительного ультрафиолетового излучения Солнца. Верхняя граница стратосферы находится на высотах 50–60 км. Еще выше лежит срединный слой атмосферы – мезосфера («мезос» – значит средний в переводе с латинского языка). Здесь возникают самые высокие на Земле тонкие облака. При освещении Солнцем из-за горизонта эти облака блестят, поэтому их называют серебристыми облаками. Природа серебристых облаков изучена пока не полностью. Предполагается, что они состоят из мелкой пыли, занесенной потоками воздуха на большие высоты. Переходные между атмосферными слоями области носят название пауз –

тропопауза, стратопауза, мезопауза. Их толщины невелики, от нескольких сотен метров до нескольких километров.

Между высотами 80 и 800 км расположена термосфера. Она характеризуется тем, что излучение Солнца нагревает находящийся на этих высотах очень разреженный газ. Чем дальше от Земли, тем выше температура в термосфере, на высотах 500–600 км она превышает 1500 °C. В термосфере газы находятся по большей части в атомарном состоянии. Под действием ультрафиолетового излучения Солнца нейтральные атомы теряют часть своих электронов. Такие атомы приобретают электрический заряд и называются ионами. Газы, содержащие ионы, т. е. частично заряженные газы, называются ионизированными. Поэтому термосферу, содержащую ионизированные газы, называют также ионосферой. Ионосфера влияет на распространение радиоволн. Ионизированные газы отражают радиоволны среднего и короткого диапазонов длин. Эти радиоволны вновь возвращаются на земную поверхность, но уже на значительном удалении от места радиопередачи. Таким образом, ионосфера позволяет осуществлять дальнюю радиосвязь без помощи ретрансляторов.

Экзосфера – самая верхняя, очень сильно разреженная часть атмосферы. Газ, существующий в экзосфере, для нас – это почти полная пустота. Однако, если сравнивать его с пустотой межпланетного пространства, которое существует на расстояниях нескольких миллионов километров от поверхности Земли, то его плотность в сотни раз больше. Определенное значение расположения верхней границы экзосферы указать трудно. Но считается, что на высотах 1500–2000 км отличить космическое пространство от шлейфа земной атмосферы становится почти невозможно.

3.2.12. Солнце

Мы очень коротко обсудили все тела и другие объекты, которые находятся в пределах Солнечной системы. Даже совсем немного поговорили о Земле. Не коснулись в рассказе только одного тела. Самого большого, самого массивного и самого главного – Солнца!

Всем своим существованием мы обязаны этой звезде, которая, так уж получилось по космическим законам, оказалась рядом с нами. Правильнее сказать, мы все и все, что нас окружает повседневно, появились благодаря этой звезде. Солнце – источник жизни на нашей планете. Если бы Солнце вдруг погасло, Земля за несколько суток превратилась бы в совершенно мертвую ледяную планету. Возможно ли такое? Ответ на этот вопрос можно получить. Для этого нужна научная информация (не очень много) о самом Солнце, которое находится от нас достаточно близко и давно исследуется с помощью оптических приборов и различными другими методами. Нужны еще некоторые сведения из других областей естествознания, чтобы понять, почему Солнце светит так ярко, так горячо и так долго.

Конец ознакомительного фрагмента.