Вы здесь

Дипломное проектирование винзаводов. 2 Технологическая часть (Л. В. Межуева, 2013)

2 Технологическая часть

Разработка технологической части начинается после техникоэкономического обоснования, установления вида и ассортимента продукции и основывается на анализе, систематизации, обработке информации материалов отчётов производственной и преддипломной практик, периодических изданий, специальной литературы, патентов (бюллетень РФ «Изобретения»), сайтов сети Интернета (www.fips.ru. и др.)

В разделе следует представить характеристику заданного вида продукции со ссылками на стандарты, технические условия, инструкции, которым она должна соответствовать, и базовые рецептуры, рекомендуемые для изготовления готовых изделий. Необходимо также привести требования и характеристику сырья, полуфабрикатов, рекомендуемых для производства с указанием нормативных документов, которым они должны соответствовать.

Перед выполнением продуктового расчёта необходимо разработать технологическую схему, которая отражает технологическое направление переработки сырья в заданный продукт и даёт наглядное графическое представление о последовательности технологических процессов и операций в производстве. Названия технологических процессов и операций в технологической схеме следует помещать в прямоугольники, указывая также параметры технологических режимов (при необходимости физико-механические, химические и другие показатели, характеризующие состояние полуфабрикатов, материалов). Пример выполнения технологической схемы представлен в приложении.

Технологическая схема предполагает перечисление операций осуществляемых на данном производстве, каждая из которых представляется в виде прямоугольника с указанием направления материальных потоков показанных в виде стрелок. Представление основных операций технологического процесса в виде схемы весьма удобно для его понимания. Она дает общее представление о функционировании процесса, и служит предпосылкой для аппаратурного оформления и более детальной разработки.

2.1 Выбор и обоснование технологической схемы

2.1.1 Технологическая схема переработки винограда

Виноградные грозди как исходное сырье можно перерабатывать по различным схемам, в разных режимах в зависимости от состояния ягод и гребней, целевых задач. В технологических схемах переработки винограда количество операций может насчитываться более 30, которые осуществляются с разной последовательностью в процессе приготовления конкретных типов виноматериалов и вин (рисунок 2). Первые три представленные на рисунке технологические схемы характеризуют переработку гроздей винограда по белому, а последующие четыре – по красному способу. Схемы 1–3 приняты для получения белых натуральных виноградных вин, шампанских, коньячных и хересных виноматериалов, схемы 4–7 употребляются для приготовления экстрактивных, полных во вкусе красных натуральных и некоторых розовых и желтых вин, а также специальных крепких вин (мадера, марсала портвейн и все десертные вина).


Рисунок 2 – Технологические схемы переработки винограда


Технологии переработки белого винограда

Как правило, белое вино получают из белых сортов винограда, но также возможно получать белое вино из красных сортов винограда с белой мякотью, которые осторожно прессуют, чтобы не экстрагировать цвет кожицы.

Схема получения белого вина более простая по сравнению со схемой получения красного вина.

После получения прессованного сока в результате отжима винограда сусло немедленно перемещают в чаны по системе труб, и затем может начаться винификация.

Прямой отжим. Ягоды со снятой кожицей подают к прессу. После отжима виноградного сока он подается насосом в бродильные чаны и слегка подвергается сульфитации для защиты от окисления, которой он очень подвержен. За счет продления операции прессования белого винограда, иными словами, оставляя сок взаимодействовать с кожицей в течение нескольких часов, получают мацерацию на кожице, с помощью которой экстрагируют ароматические вещества и делают вино менее кислотным.

При операции отстаивания прессованное сусло оставляют в чане в течение 36–48 часов. Это необходимая операция для обеспечения хорошего начала алкогольной ферментации, избежания осложнений во время винификации и придания характера и деликатности будущему вина. Во время отстаивания растительные частицы, способные придать нежелательный вкус вину, оседают на дне чана.

Наиболее распространенной процедурой отделения мутных частиц является оседание с последующим сливом с осадка, в ходе которого устраняется осадок, образовавшийся на дне чана. Данное оседание подразумевает блокировку любого брожения в течение как минимум 24 часов, чего можно достичь с помощью дозы сульфита, предварительно добавленного в сок.

Применение бентонита заключается в устранении белков из сусла. Бентонит улучшает прозрачность и устойчивость будущего вина. Так, добавление бентонита в дозах 40 г/л позволяет устранить оксидазы и белки из вина, что обеспечивает лучшую устойчивость будущего вина.

Затем сусло чаще всего направляют в чаны и иногда в бочки для брожения.

Белые сухие вина, как правило, характеризуются светло-желтосоломенным цветом, нежным вкусом, тонким ароматом без терпкости и грубости.

Сбор винограда для белых столовых вин проводят при оптимальной сахаристости сока ягод от 18 % до 20 % и титруемой кислотности от 7 до 9 г/дм3. При таких показателях сырья вино получается полным, с гармоничным вкусом, хорошо выраженным ароматом, достаточно устойчивым к заболеваниям.

Переработку винограда ведут в наиболее мягком механическом режиме, полностью исключающем перетирание кожицы, а также раздавливание и измельчение гребней, из которых могут извлекаться конденсированные формы полифенолов и другие нежелательные вещества, придающие вину грубость и неприятные привкусы (рисунок 3).


Рисунок 3 – Технологическая схема переработки винограда №1


Соприкосновение твердых частиц винограда с отжатым соком и сока с воздухом должно быть по возможности минимальным, чтобы избежать окисления сока и обогащения его избытком экстрактивных веществ. Сусло перед брожением должно быть хорошо осветлено, так как окислительные ферменты, абсорбированные на частицах взвесей, обладают особенно высокой активностью. Однако при недостаточном содержании экстракта (от 14 до 15 г/дм3 и меньше) полезно проводить настаивание сусла на мезге и тепловую обработку части мезги для получения гармоничного вина (рисунок 4).


Рисунок 4 – Технологическая схема переработки винограда №2 и 3


Широко применяют также диоксид серы, который действует как регулятор окислительно-восстановительных процессов и понижает окислительно-восстановительный потенциал в случае некоторого избытка кислорода, поступающего в вино. Применение SО2 с одновременным тщательным предохранением вина от контакта с воздухом обеспечивает получение вина малоокисленного типа.

Снижать тон окисленности и предупреждать его появление можно с помощью ферментных препаратов, получаемых из осадочных дрожжей.

После точного учета количества поступившего винограда и инспекции его качества по сортовому и химическому составу виноград из контейнера выгружают в приемный бункер с дозирующим шнеком – питателем, который подает его в дробилку – гребнеотделитель валкового типа, работающую в режиме, исключающем сильное измельчение кожицы и гребней. Отделенные гребни, выходящие из дробилки, подают транспортером на весы и после взвешивания в специальный приемный бункер. Затем гребни прессуют на шнековом прессе для извлечения гребневого сусла.

Мезгу подают мезгонасосом на стекатель для выделения из нее сусласамотека. В процессе транспортирования мезгу сульфитируют с помощью сульфодозатора. Сусло-самотек отбирают на стекателях, обеспечивающих быстрое отделение сусла и достаточно высокое его качество для белых столовых вин. Сусло-самотек направляют в сборники, а стекшую мезгу прессуют на специальных прессах. Прессовые фракции сусла поступают в соответствующие сборники.

Для получения белых столовых вин используют только суслосамотек, отбираемое в количестве не более 60 дал из 1 т винограда. Сусло, полученное на шнековых прессах, идет на приготовление ординарных крепленых виноматериалов.

Сусло из сборников подают насосами на сульфитацию, а затем обрабатывают в потоке бентонитом (для этого служат дозаторы) или другими сорбентами. Если сусло-самотек отстаивают при низкой температуре с предварительным охлаждением, то его сульфитируют пониженными дозами SО2, а бентонитовую суспензию не вводят. При охлаждении сусла от 10 °C до 12 °C время отстаивания снижается с 20–24 до 10–12 ч. При добавлении флокулянтов оно может быть уменьшено до 4–6 ч (рисунок 4).

В процессе отстаивания предварительно охлажденного сусла контролируют температуру и содержание в нем взвесей. В момент снятия с осадка в осветленном сусле взвесей должно быть не более 40 г/дм3, в прессовом сусле – 50 г/дм3. Осветленное сусло из отстойных резервуаров или из осветлителя непрерывного действия подают в головные резервуары бродильных аппаратов. В зависимости от типа аппарата брожение проводят в статических условиях или в потоке на дрожжах чистой культуры.

Технология переработки красного винограда

Сбор винограда можно осуществлять вручную или с применением механической техники; это выбор винодела, и этот выбор зависит от поставленных целей достижения качества и экономической рентабельности.

Собранный виноград транспортируют на винный склад и, как правило, помещают в специальную емкость – разновидность чана в форме воронки. Система шнеков передает собранный виноград на сортировочный стол или непосредственно в аппараты механической обработки, в которых происходит раздавливание винограда, часто сопровождаемое отделением ягод от гребней.

Отделение гребней. Несмотря на то, что данный этап не является обязательным для производства вина, он, тем не менее, позволяет получить более крепкое, гибкое и тонкое вино. Поскольку сок гребня не содержит сахара, этот сок имеет вяжущий, растительный вкус, который часто неприятен.

Однако во время сбора винограда, испорченного серой гнилью, было установлено, что гребни защищают вино от оксидазных энзимов благодаря содержанию в них танинов. Если работа винодела выполнена правильно и профессионально, собранный виноград будет здоровым.

Дробление винограда – одна из наиболее ответственных операций в технологическом процессе приготовления виноматериалов. В значительной степени эта операция определяет качество получаемого сусла и вина.

Дробление заключается в разрыве кожицы плодов, чтобы обеспечить стекание сока, так называемого сока-самотека.

Данный сок необходимо защитить с помощью концентрации сульфита 8 г/100 л. Прессовый сок также необходимо защитить с помощью той же концентрации сульфита, но поместить его в другой чан. Если, конечно, имеется большое количество сока.

Красные сухие вина существенно отличаются от белых по цвету, химическому составу, вкусовому сложению и букету. Красное сухое вино представляет собой особый тип вина со специфичными для него органолептическими показателями и диетическими свойствами. Характерные качества красных вин обусловлены тем, что в их сложении участвуют не только вещества виноградного сока, но и вещества в основном фенольной природы, которые содержатся в кожице и семенах. Фенольные вещества придают красному вину характерные для него цвет и вкусовую полноту. Эти вещества являются вместе с тем важными компонентами окислительно-восстановительной системы вина, вследствие чего красные вина способны потреблять значительно большее количество кислорода без отрицательного влияния на их качество.

Цвет красных вин – рубиновый, более или менее темный в зависимости от сорта винограда, типичности вин и местных условий. С возрастом цвет красных столовых вин изменяется, в противоположность белым столовым винам становится менее интенсивным и меняет свои оттенки. По интенсивности и особенностям цвета можно ориентировочно определить возраст красных вин или отличить выдержанные и старые вина от молодых. Цвет молодых красных вин более интенсивный, чем выдержанных и старых. У молодых вин он имеет сине-фиолетовый и сине-голубой оттенки. В процессе выдержки эти оттенки исчезают и заменяются последовательно вишневыми, гранатовыми и рубиновыми тонами. У старых вин, прошедших многолетнюю выдержку, в окраске появляются кирпичные и коричневые тона.

Для производства красных вин основное значение имеет подбор сортов винограда с большим технологическим запасом красящих веществ. Для лучших сортов установлена норма технологического запаса антоцианов от 450 до 600 мг на 1 кг винограда. Интенсивность цвета красных вин зависит также от рН, с понижением рН она увеличивается, поэтому добавление винной или лимонной кислот к низкокислотным винам повышает устойчивость их окраски.

Энотанин, взаимодействуя с антоцианами, образует полимерные соединения, существенно изменяющие цвет вина, обусловленный антоциановым комплексом. С увеличением концентрации танина цвет становится интенсивнее и переходит от малинового и светло-рубинового в темно-рубиновый.

В процессе брожения на мезге часть антоцианов, извлекаемых из кожицы, сорбируется на ее частицах и клетках дрожжей, окисляется в присутствии 0-дифенолоксидазы, взаимодействует с белками, конденсируется и вступает в другие реакции, в результате чего выпадает в осадок и уносится из среды с оседающими частицами.

По вкусу красные вина сильно отличаются от белых. Особенности вкусового сложения красных вин обусловлены высокой их экстрактивностью, и в первую очередь большим содержанием фенольных веществ, извлекаемых из кожицы и семян винограда. Содержание экстрактивных веществ в красных винах на много превышает содержание их в белых винах. В процессе переработки винограда и брожения на мезге в вино переходит от 50 % до 75 % фенольных веществ от всего технологического запаса их в винограде с учетом танина семян. Значительную часть фенольных соединений винограда составляют дубильные вещества (энотанин и др.), которые придают вкусу вина полноту и терпкость. Однако во вкусе высококачественных вин полностью отсутствует неприятная вяжущая горечь. Красные вина обладают более высокой, чем белые, биологической активностью. В них в большом количестве содержатся витамины, лецитины, ферменты, минеральные и другие вещества, полезные для организма.

Виноматериалы для красных столовых вин получают следующими способами: брожением на мезге; экстрагированием мезги в потоке; нагреванием мезги или гроздей винограда и сбраживанием окрашенного сусла; обработкой мезги ферментными препаратами; брожением мезги в условиях повышенного давления СО2; брожением целых гроздей винограда.

Виноград перерабатывают на поточных линиях с раздавливанием ягод и отделением гребней на дробилках-гребнеотделителях ударно-центробежного типа. Если перерабатывают виноград с недостаточным содержанием дубильных веществ, в мезгу разрешается добавлять хорошо вызревшие гребни. Мезгу сульфитируют из расчета от 75 до 100 мг SО2 на 1 дм3 и добавляют ферментные препараты в количестве от 0,005 % до 0,015 % к массе сусла (рисунок 5). После этого мезгу обрабатывают в мезгоподогревателе при температуре от 40 °C до 60 °C для активации действия ферментов. Дальнейшая обработка мезги зависит от принятого способа получения красных вин: брожением на мезге, экстрагированием или термической обработкой мезги.

Экстрагирование мезги и способы получения высокоэкстрактивных вин основаны на интенсивном перемешивании, брожении, нагревании или спиртовании мезги. Перемешивают мезгу в специальных настойноэкстракционных резервуарах, оборудованных гидродинамической мешалкой реактивного принципа действия. В них происходит многократное быстрое перекачивание мезги «на себя» и ее измельчение. Это способствует быстрому накоплению в сусле красящих и фенольных веществ, а также полисахаридов. Перемешивание мезги обычно совмещают с брожением сусла на мезге, что способствует ускорению экстрагирования веществ, содержащихся в кожице, семенах и гребнях раздробленного винограда.

Брожением на мезге получают красные виноматериалы для натуральных и игристых вин из сортов винограда с красными ягодами и для специальных крепких вин (мадеры, портвейна) из сортов с белыми ягодами. Брожение сусла на мезге происходит в различных резервуарах и в аппаратахвинификаторах, снабженных системой рециркуляции бродящего сусла, в которых процесс экстрагирования (рециркуляции) мезги идет в 3–4 раза быстрее, чем в обычных бродильных цистернах.


Рисунок 5 – Технологическая схема переработки винограда №4 и 5


Экстрагирование мезги проводят по способу Г. Г. Валуйко в специальных экстракторах, которые могут работать по двум разным режимам в зависимости от технологических условий. Первый режим предусматривает заполнение экстрактора мезгой, отбор из экстрактора сусла-самотека в количестве 50 дал с 1 т винограда, сбраживание отобранного сусла в отдельных бродильных установках и затем экстрагирование свежей мезги сброженным суслом, которое многократно подают насосом через разбрызгиватель в верхнюю часть экстрактора – на шапку (рисунок 6).


Рисунок 6 – Технологическая схема переработки винограда №6


Второй режим работы экстрактора состоит в следующем: мезгу после загрузки оставляют в покое до забраживания и начала формирования шапки, а затем проводят экстрагирование путем перекачивания бродящего сусла насосами из нижней части экстрактора в верхнюю. Второй режим применяют в тех случаях, когда суточное поступление винограда на переработку меньше производительности двух экстракторов.

Когда экстрактор загружают свежей мезгой, проэкстрагированные частицы вытесняются на поверхность и образующаяся шапка специальным транспортером подается в прессы.

Продолжительность процесса экстрагирования мезги зависит от ее предварительной обработки. Если мезгу подогревали от 40 °C до 50 °C, то для экстрагирования требуется от 2 до 4 ч, без термической обработки – от 8 до 10ч.

Полученное после экстрагирования сусло-самотек направляют для дображивания в крупные резервуары, а затем используют в производстве красных столовых виноматериалов.

Нагревание мезги до температуры от 50 °C до 60 °C относится к наиболее эффективным способам экстрагирования мезги, оно называется термовинификацией и используется в основном для производства красных натуральных вин, кагоров и других красных специальных десертных вин. Этот способ хорошо зарекомендовал себя и при переработке поврежденного болезнями винограда, когда часть ягод невозможно полностью отсортировать. Термовинификацию в этом случае рекомендуется проводить одновременно с сульфитацией, мезгу нагревать до температуры от 65 °C до 70 °C. Предусмотрены также технологические схемы термовинификации винограда с предварительным отделением сусла-самотека, его нагревом до требуемой температуры и возвращением на стекшую мезгу.

Спиртование мезги используют при получении высококачественных красных специальных десертных вин. При этом мезга до и после подбраживания спиртуется до объемной доли спирта от 10 % до 12 %, тщательно перемешивается и герметизируется. Процесс медленного брожения мезги и диффузионные процессы настаивания протекают от 10 до 30 сут, после чего мезгу отжимают на прессе. В результате в красных десертных винах развивается сложный букет с тонами чернослива и шоколада, а иногда и какао.

Сохранение цвета красных вин зависит также от применяемых технологических обработок. При обработке бентонитом из виноматериалов может удаляться до 40 % антоцианов, желатином – преимущественно продукты конденсации фенольных соединений, имеющих коричневый цвет. Деметаллизация виноматериалов гексациано-(П) -ферратом калия снижает яркий красный оттенок, в то время как при обработке трилоном Б окраска не изменяется. Обработка виноматериалов холодом вызывает осаждение нестойких фракций антоцианов, находящихся в коллоидном состоянии.

При обработке мезги пектопротеолитическими ферментными препаратами происходит быстрый гидролиз белка, пектина и нейтральных полисахаридов, в результате чего увеличивается проницаемость клеточных мембран, снижается вязкость сока, увеличиваются сокоотдача мезги, экстрактивность и выход сусла. Использование ферментных препаратов рекомендуется при производстве ординарных вин всех типов.

В виноделии применяют ферментные препараты пектоваморин (П10х) и пектофоетидин (П10х). Препарат пектофоетидин рекомендуется использовать для обработки сусла, пектоваморин – мезги с целью повышения окраски и экстрактивности виноматериалов.

Доза препарата определяется пробной обработкой и колеблется от 0,005 % до 0,03 % к массе мезги в пересчете на стандартную активность 9 ед. на 1 г.

Ферментные препараты вводят в сульфитированную мезгу в виде от 1 %-ной до 10 %-ной суспензии в сусле или в виде порошка. Режим ферментации мезги зависит от температуры и типа приготовляемых виноматериалов. При приготовлении белых крепленых виноматериалов ферментация длится 12 ч без подогрева и от 6 до 8 ч с подогревом от 30 °C до 35 °C.

Контроль за ферментацией мезги ведут по качественным показателям сусла (вязкость, окраска, экстракт, содержание метанола).

Лучшими сортами красного винограда являются Каберне-Совиньон, Саперави, Мерло, Хиндогны, Матраса, Мальбек, Тавквери, Рубиновый Магарача, дающие столовые вина, в которых при выдержке развиваются характерные вкус и букет. Виноград перерабатывают при технической зрелости: сахаристость не ниже 17 %, титруемая кислотность от 6 до 9 г/дм3. Время от сбора гроздей винограда до их переработки не должно превышать 4 ч. Переработку винограда на красные виноматериалы осуществляют по одной из 3 технологических схем:

1) брожение сусла на мезге;

2) экстрагирование красящих и дубильных веществ сброженным по «белому» способу виноматериалом;

3) тепловая обработка целого или раздавленного винограда.

Классическая схема переработки винограда по красному способу брожением на мезге предусматривает: дробление винограда с гребнеотделением, сульфитацию мезги (из расчета от 50 до 200 мг/кг винограда), брожение сусла на мезге с погруженной или плавающей „шапкой”, отделение сброженного сусла, прессование мезги, дображивание сусла-самотека, фракций 1-го и 2-го давлений (прессовые фракции используются в купажах крепленых вин), снятие с осадка дрожжей, отдых, обработку виноматериалов, хранение или выдержку (для марочных вин).

Особенностью данного способа является естественный контакт сусла с мезгой, в результате чего в вине растворяются красящие, фенольные, экстрактивные и ароматические вещества кожицы, семян и гребней. При переработке винограда с низким содержанием фенольных веществ рекомендуется добавлять в мезгу часть хорошо вызревших гребней (до 15 %).

Технологическая схема получения красных столовых виноматериалов путем экстракции красящих и фенольных веществ из мезги сброженным виноматериалом предусматривает: дробление винограда с гребнеотделением, сульфитацию мезги из расчета от 50 до 200 мг/кг винограда, отбор сусласамотека, брожение сусла, экстрагирование мезги, выгрузку и прессование мезги, дображивание виноматериала, снятие с дрожжей, обработку, хранение, реализацию.

Тепловая обработка целых гроздей осуществляется путем их погружения в горячее сусло или горячую воду, нагреванием паром или горячим воздухом. Целые грозди винограда нагревают при 100 °C в течение 5 мин. На поверхности кожицы создается температура до 80°С, а внутри ягоды – до 30°С. При этом способе кожица ягод обесцвечивается, а красящие вещества переходят в сусло. Затем виноград раздавливают, мезгу прессуют, а сусло направляют на брожение по „белому” способу.

Приготовление розовых столовых виноматериалов осуществляется по одной из технологий:

1) аналогичной схеме получения белых виноматериалов из красных сортов винограда;

2) аналогичной схеме получения красных виноматериалов; различие лишь в том, что при изготовлении розовых вин время контакта с мезгой значительно меньше;

3) путем сбраживания белого сусла на красной выжимке, оставшейся в бродильной емкости после спуска молодого красного вина, далее по технологии приготовления красных виноматериалов;

4) купажной – путем смешивания белых и красных виноматериалов.

2.2 Технологическая схема производства натуральных вин

2.2.1 Основные технологические операции производства вин

Осветление сусла является важной операцией, необходимой для удаления из него загрязняющих примесей, частиц виноградной грозди, а также дикой микрофлоры. Вместе с твердыми частицами мути отделяются сорбированные на них ферменты, что способствует уменьшению окисления сусла. От полноты осветления зависит качество будущего вина. Осветление сусла положительно влияет на ход брожения и формирования букета. Вина, получаемые из хорошо осветленного сусла, имеют более гармоничный вкус, развитый аромат, отличаются лучшей прозрачностью и стабильностью.

Хорошее осветление сусла создает благоприятные условия для медленного брожения и более полного сохранения ароматических веществ, переходящих из винограда и возникающих во время брожения. Поэтому, чем выше температура брожения, тем меньше взвесей должно содержать сусло.

Полное осветление сусла не всегда является необходимым. В сусле, которое направляют на брожение, допускается содержание от 2 % до 5 % взвесей.

В зависимости от назначения получаемого виноматериала и технологических условий применяют различные способы осветления сусла: отстаивание, центрифугирование и др.

Отстаивание является основным и наиболее широко применяемым способом осветления перед брожением. Оно обеспечивает многосторонний технологический эффект и приводит к формированию свойств сусла, наиболее благоприятных для получения высококачественных вин.

Осветление в процессе отстаивания основано на способности дисперсных систем разделяться на основные фазы в поле сил тяжести. При отстаивании оседают содержащиеся в сусле взвеси, а также дополнительно образующиеся осадки нерастворимых соединений, от которых осветленную часть сусла отделяют декантацией.

Осветление виноградного сусла сопровождается физическими процессами, связанными с адгезией, флокуляцией, седиментацией, а также биохимическими превращениями, обеспечивающими ферментацию сусла, при которой проходят окислительные и др. химические реакции. Все эти реакции приводят к образованию соединений, выпадающих в осадок, что способствует лучшему осветлению сусла.

Физические процессы, протекающие при осветлении сусла, сводятся к гравитационному разделению жидкой и твердой фаз. Скорость этих процессов зависит от сопротивления жидкой среды движению в ней твердого тела, т. е. от физических свойств суспензии и размеров твердых частиц.

Биохимические процессы существенно влияют на качество и формирование технологических свойств сусла.

Продолжительность процесса зависит от назначения состава сусла, содержания в нем взвесей микроорганизмов и колеблется от 14 до 24 ч. В большинстве случаев достаточное осветление и ферментация сусла обеспечивается за промежуток времени от 14 до 16 ч.

При получении малоокисленных виноматериалов из сусла при отстаивании удаляют окислительные ферменты. Для этого в него вводят дисперсные минералы, эффективно сорбирующие ферменты, например бентонит. Этим ускоряется и улучшается осветление, уменьшается содержание в сусле азотистых веществ. дозировки бентонита в этом случае колеблются от 1 до 3 мг/дм3 в зависимости от оксидаз в сусле. Бентонит и другие дисперсные материалы сорбируют ферменты и вместе с ними оседают на дно отстойных резервуаров. Инактивации ферментов при этом не происходит, поэтому осветленное сусло необходимо возможно быстрее и тщательно отделить от выпавших осадков, чтобы окислительные ферменты вновь не перешли в сусло.

Внося в сусло одновременно с бентонитом небольшое количество синтетических полиэлектролитов-флокулянтов, можно значительно увеличить скорость осаждения. Время осветления сусла сокращается от 2 до 6 часов в случае применения полиакриламида, ферментных препаратов. При этом обеспечивается более быстрое выведение из мутного сусла взвесей с адсорбированными на них окислителиными ферментами и дикой микрофлорой, что способствует улучшению качества осветленного сусла и получаемого из него вина.

В качестве оборудования для осветления сусла отстаиванием применяют различные резервуары, которые используют в качестве отстойников периодического действия. Вместимость отстойников не должна быть очень большой, чтобы обеспечивалось достаточно быстрое их заполнение суслом, создавались благоприятные условия для процесса осаждения и упрощалось обслуживание. Рабочую вместимость каждого отстойного резервуара принимают обычно с таким расчетом, чтобы он заполнялся суслом за время от 2 до 3 часов.

Обработка бентонитом. Бентонит находит наиболее широкое применение в винодельческий промышленности как универсальный осветлитель и стабилизатор вина. Для этих минералов характерны слоистое строение кристаллической решетки, способность к обмену оснований и поглощению воды, которое сопровождается резким увеличением объема – набуханием. По внешнему виду бентонит – белый порошок с серым или коричневыми оттенками.

Серые бентониты перед употреблением просушивают при температуре 120 °C в течение от 30 до 50 мин.

Для обработки виноматериалов пользуются 20 %-й водной суспензией бентонита. Оптимальную дозу бентонита в каждом случае устанавливают пробной оклейкой. Перед началом обработки водную суспензию бентонита разбавляют испытуемым виноматериалом.

После перемешивания виноматериал оставляют в покое до 10 суток для образования и уплотнения осадков. Затем осветленный виноматериал снимают с осадка с одновременным фильтрованием. Оставшиеся осадки бентонита прессуют или центрифугируют для выделения содержащегося в них вина.

Обработка флокулянтами. Применяют для ускорения осветления сусла и вина. Наиболее широко для этой цели используют полиакриламид, который вносят в вино при обработке его бентонитом и другими дисперсными материалами.

Комплексная обработка виноматериалов бентонитом с полиакриламидом уменьшает продолжительность выдержки вина на осадке в среднем в 10 раз по сравнению с обработкой бентонитом без флокулянта. Значительно сокращается процесс деметаллизации виноматериала и последующего осветления в случае комплексной обработке ЖКС с бентонитом и ПАА.

Для обработки виноматериала готовят 0,5 %-ный раствор ПАА в воде, подогретой до 60 °C. С целью ускорения растворения смесь предварительно измельченного ПАА и вода интенсивно перемешивают. Хранить раствор допускается не более 3 суток; перед обработкой его разбавляют вином до концентрации 0,05 %.

При производственной обработке сначала в вино вводят необходимое количество бентонитовой суспензии, а затем, после перемешивания, – соответствующую дозу полиакриламида. Оптимальные дозировка ПАА для каждой обработки составляют от 3 до 7 мг/дм3 в зависимости от состава вина, характера мути и количества вносимого бентонита.

После внесения бентонита и раствора ПАА виноматериал хорошо перемешивают и оставляют в покое для осветления, которое обычно достигается через несколько часов. Осветлившийся виноматериал снимают с осадка декантацией.

Фильтрование. Осветление сусла фильтрацией проводят очень редко. В основном это проводится в тех случаях, когда по технологическим условиям исключается возможность сульфитации, в производстве коньячных виноматериалов.

Чтобы уменьшить аэрацию, процесс проводят на центрифугах герметичного и полузакрытого типа, работающих в атмосфере инертных газов.

Фильтрование – отделение твердой фазы от жидкой путем удерживания твердых частиц пористыми перегородками, пропускающими жидкость. Фильтрованию подвергают виноматериалы на различных технологических стадиях, готовые вина, предназначенные для розлива в бутылки, виноградный сок, сахарные сиропы и ликеры, дрожжевые осадки.

Способ осветления вин, основанный на фильтровании, прост, высокопроизводителен и универсален. При правильном выборе фильтрующих материалов и фильтров с учетом особенности вина, количества и свойств осадков, а также необходимой полноты осветления достигается хороший технологический эффект. Относительно плохо фильтруются только высоковязкие жидкости, которые содержат большое количество взвесей, образующих на фильтрующих материалах легкосжимаемые, липкие слои.

В процессе фильтрования вино обогащается кислородом воздуха, что нежелательно в производстве столовых вин. При подаче вина на фильтрование насосами воздух может проникать через неплотности винопроводов, через промежуточные сборники вина, за счет увеличения объема свободного пространства в емкостях, из которых вино подают на фильтрование. За один цикл фильтрования в вино поступает до 9 мг/дм3 кислорода, т. е. происходит полное его насыщение при температуре от 18 °C до 20 °C.

Брожение. При брожении виноградного сусла – жидкости с невысокой вязкостью – обеспечиваются благоприятные гидродинамические условия для распределения активных дрожжевых клеток в бродящей среде, а также для массо- и теплообмена.

Скорость и ход брожения существенно влияют на качество вина. Боле высокое качество вин формируется в условиях медленного брожения, при котором меньшее количество ценных ароматических и вкусовых летучих веществ выделяется из сусла в атмосферу, лучше сохраняется сортовой аромат, уменьшаются потери спирта.

Основным факторам, влияющим на ход брожения, является температура. При повышении ее от 27 °C до 30 °C скорость брожения увеличивается, при температуре выше 30 °C происходит массовое отмирание дрожжевых клеток, при температуре от 37 °C до 40 °C брожение прекращается и получаются недоброды, содержащие остаточный сахар, который создает благоприятные условия для развития болезнетворных микроорганизмов. Высокие температуры брожения нежелательны, кроме того, потому, что повышают интенсивность выделения пузырьков СО2, которые выносят из сусла летучие вещества, в том числе и ценные эфирные масла. С понижением температуры от 10 °C до 12 °C, если при этом не применяются специальные холодостойкие расы дрожжей, брожение идет очень медленно и сахар, как правило, полностью не дображивает.

Оптимальная технологическая температура брожения сусла в производстве белых столовых марочных вин лежит в пределах от 14 °C до 18 °C.

От температуры брожения сусла зависит состав получаемого вина. При повышенной температуре вследствие активации автолитических процессов виноматериалы в большей степени обогащаются летучими кислотами, альдегидами и азотистыми веществами, в них уменьшается количество высших спиртов и общих эфиров.

Способ непрерывного брожения основан на ведении процесса в условиях регламентированного потока бродящего сусла. В таких условиях среда постоянно обновляется, при этом улучшаются условия питания дрожжевых клеток и они в течение более продолжительного времени находятся в активном состоянии. Расход сахара на рост и размножение дрожжей уменьшается, а выход спирта увеличивается.

При непрерывном брожении исключаются непроизвольные периоды разбраживания и дображивания.

При непрерывном способе брожения происходит брожение в обедненной кислородом и обогащенной спиртом среде. Дрожжи в такой среде размножаются медленнее, и концентрация их в среде бывает более низкой, чем в условиях периодических способов брожения.

Для контроля за брожением весь процесс условно делят на три периода: забраживание, бурное брожение и дображивание, или тихое брожение.

В период забраживания дрожжи размножаются и их количество накапливается от 100 до 150 млн/см3. За этот период сбраживается от 1 до 2 г/100 см3 сахара и накапливается объемная доля спирта от 0,6 % до 1,2 %. При благоприятных условиях забраживание длится от 12 до 24 ч.

В период бурного брожения сбраживается основное количество сахара, заметно повышается температура сусла, бурно выделяется С02, а на поверхности сусла появляется пена. Бурное брожение продолжается от 5 до 6 сут и считается законченным при остаточном сахаре от 2 до 3 г/100 см3.

Дображивание продолжается от 5 до 9 сут и заканчивается при остаточном содержании сахара от 0,2 до 0,3 г/100 см3.

За брожением сусла ведут контроль. Для этого определяют плотность, температуру сусла и физиологическое состояние дрожжей. При сбраживании 0,22 г/100 см3 сахара плотность сусла снижается на 0,001 г/100 см3, первоначальная температура сусла в период бурного брожения повышается в бочках на величину от 5 °C до 6 °C, в крупных емкостях – от 8 °C до 12 °C, в период дображивания снижается. На винодельческих предприятиях применяют периодический и полунепрерывный методы брожения сусла.

Брожение сусла периодическим методом. Оно осуществляется в бочках и крупных емкостях. Для сбраживания сусла их заполняют осветленным суслом на 2/з или 3/4 вместимости, вносят разводку ЧКД и закрывают шпунтовые отверстия бродильными шпунтами. Бродильные шпунты обеспечивают свободный выход С02 и препятствуют поступлению кислорода воздуха в бочку.

В период дображивания для предупреждения развития на поверхности сусла пленчатых дрожжей и бактерий уксусного скисания бочки доливают наиболее полно выбродившим суслом от 2-х до 3-х раз в неделю.

По окончании брожения бродильные шпунты снимают, бочки доливают под шпунт. Обычно для дображивания сусло из бочек перекачивают в крупные емкости. Брожение в бочках проходит при оптимальной температуре, и качество приготовляемых виноматериалов получается высоким. Виноматериалы характеризуются ярко выраженным ароматом сорта винограда, высоким содержанием ароматических продуктов брожения (сложных эфиров, высших одноатомных и ароматических спиртов) и повышенным экстрактом. К недостаткам брожения сусла в бочках относятся высокие трудоемкость и стоимость.

При брожении сусла в крупных емкостях поднимается температура сусла. Для ее снижения применяют доливной способ брожения или искусственное охлаждение. Доливной способ брожения сусла в стальных эмалированных резервуарах вместимостью 1500 дал разработан В. М. Лоза (1961). Сусло заливается в емкости отдельными порциями: первая порция – 50 %, вторая – 25 %, третья – 15 %, четвертая – 10 %. После подачи сусла первой порции вносят разводку ЧКД в количестве от 1 % до 2 % полезной вместимости резервуара. Контроль ведут по количеству накопившегося спирта.

При накоплении спирта 8 % и больше в бродильный резервуар заливают следующую порцию сусла. При добавлении свежего более холодного сусла снижается температура бродящего, брожение идет более умеренно и при более низкой температуре.

Доливной способ брожения сусла проходит при температуре от 27 °C до 28 °C и заканчивается за период от 8 до 12 суток.

Для брожения сусла с искусственным охлаждением применяют вертикальные металлические бродильные резервуары вместимостью до 2000 дал, которые снабжены рубашками для регулирования температуры.

Резервуары заполняют осветленным суслом на 85 % вместимости и вносят разводку ЧКД в количестве от 1 % до 2 %. В период бурного брожения при повышении температуры сусла сверх установленной через рубашки бродильных резервуаров пропускают холодную воду или рассол. По окончании главного брожения сусло перекачивают в другие емкости для дображивания.

При применении сверхкрупных резервуаров вместимостью от 15 до 50 тыс. дал для брожения сусла охлаждение через охладительные рубашки неэффективно, поэтому используют выносные теплообменники.

Осветленное сусло перекачивают в бродильный резервуар с коэффициентом заполнения 0,75 и добавляют разводку ЧКД в количестве от 2 % до 4 % к объему сусла. Температуру бродящего сусла поддерживают на заданном уровне циркуляцией бродящего сусла через теплообменник.

Контроль и управление ходом брожения осуществляются автоматически. По окончании бурного брожения емкости доливают свежим суслом или сброженным, а полученные виноматериалы оставляют в этих же емкостях для формирования. Способ брожения в сверхкрупных резервуарах применяют на больших специализированных винодельческих предприятиях для приготовления белых столовых вин, шампанских и коньячных виноматериалов.

Брожение сусла полунепрерывным методом. Проведение бурного брожения сусла в потоке с дображиванием периодическим методом впервые обосновал П. Н. Унгурян (1956). Метод позволяет сконцентрировать брожение в одной батарее, механизировать и автоматизировать процесс, ускорить брожение за счет устранения периода забраживания сусла и сократить потребность в разводке ЧКД.

Бродильные резервуары снабжены рубашками, что позволяет регулировать температуру бродящего сусла. Производительность установки при сахаристости сусла 17 г/100 см3 и остаточном сахаре в виноматериалах 2,5 г/100 см3, составляет 7000 дал в сутки. Коэффициент заполнения бродильных резервуаров 0,85. дображивают сусло периодическим методом.

Стабилизация вин. Одним из основных требований к качеству готового вина является их стабильная прозрачность, сохраняющаяся продолжительное время. Для решения этой задачи вина подвергают во время выдержки фильтрации, обработке органическими и минеральными осветлителями, воздействию тепла и холода. Такая обработка необходима для ускорения выделения из молодых вин частиц нестойких коллоидных веществ, фенольных и азотистых соединений, полисахаридов, металлов и др. веществ, которые могут в дальнейшем выделиться в осадок. Кроме этого, обработка необходима для предупреждения или устранения возможных помутнений в готовых винах, причиной которых являются болезни и пороки.

Для осветления вин и предупреждения помутнений из них удаляют взвешенные частицы различной степени дисперсности, нестойкие соединения, микроорганизмы.

Переливка. Переливка имеет своей целью отделить осветленный в результате выдержки или хранения виноматериала от выпадающих осадков, а также обеспечить оптимальный кислородный режим для формирования и созревания вина. Первую часть достигают снятием виноматериала с осадка декантацией или насосом, вторую – обеспечением контакта переливаемого вина с воздухом.

Первую переливку делают с целью снятия с бродящего молодого виноматериала с дрожжевых осадков, удаления из него диоксида углерода и насыщения воздухом.

До первой переливки в молодом виноматериале протекают физикохимические и биохимические процессы, следствием которых являются образование твердой фазы и выпадение осадков. Для того, чтобы получить достаточно осветленный виноматериал, переливка должна проводиться только после оседания частиц и уплотнения их на дне емкости.

Время первой переливки устанавливают по состоянию виноматериала. В сухих виноматериалах должен отсутствовать сахар, который является источником болезнетворных микроорганизмов, а процесс осветления вина должен быть в значительной мере законченным. При высоких кислотности и спиртуозности и низкой температуре вина первую переливку можно производить в более поздние сроки.

После первой переливки вино продолжает формироваться. В нем происходят окислительно-восстановительные процессы, в результате которых образуются нерастворимые вещества.

Вторую переливку проводят обычно в феврале – марте, до наступления теплого периода, когда осадки не взмучиваются выделяющимся диоксидом углерода и не идет дображивание. К этому времени виноматериал хорошо осветляется.

Третью переливку проводят в августе – сентябре и четвертую – в декабре.

Для обеспечения полного отделения виноматериалов от осадков при переливках необходимо соблюдать такие требования: − снимать вино с осадка без взмучивания, выбирая наиболее подходящий способ (сифоном, насосом или сливом через кран) в зависимости от вместимости и типа емкости, характера осадков, типа виноматериала и его возраста; − переливки производить в наиболее прохладное время, когда химические реакции проходят в вине медленно; − выбирать для переливки дни с высоким и устойчивым барометрическим давлением, когда газы, растворенные в вине, не выделяются и не взмучивают осадок; − избегать проведение переливки в ветреную погоду, когда в воздухе много пыли.

Центрифугирование. Очистка вин центрифугированием в виноделии пока применяется ограничено. Эффективна очистка центрифугированием при наличии в обработанном виноматериале большого количества взвесей, плотность которых значительно превышает плотность жидкой среды. Осветление вин с помощью центрифуги не исключает в дальнейшем фильтрование их на фильтрах тонкой очистки.

Выдержка виноматериалов – ответственный технологический процесс, в результате которого формируется вкус и букет, характерные для вина данного типа, выпадают в осадок нестойкие соединения и значительное количество микроорганизмов, вино осветляется и становится стабильным к помутнениям.

При выдержке в вине проходят различные физические процессы, характер и интенсивность которых изменяется на отдельных стадиях выдержки.

Конец ознакомительного фрагмента.