Вы здесь

Гражданская оборона и защита от чрезвычайных ситуаций. Глава 2. Современные средства поражения и их поражающие факторы (Р. И. Айзман, 2018)

Глава 2

Современные средства поражения и их поражающие факторы

2.1. Радиационные опасности

Ядерное оружие – это оружие массового поражения взрывного действия, основанное на использовании огромного количества энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза легких ядер изотопов водорода (дейтерия и трития) в более тяжелые, например ядра изотопов гелия. Различают ядерное, термоядерное и нейтронное оружие, «грязные боеприпасы». По поражающему действию к нему приравниваются высокоточное оружие, боеприпасы объемного взрыва.

Поражающими факторами ядерного оружия являются: воздушная ударная волна (50 % всей энергии), световое излучение (30 %), проникающая радиация (до 9 %), электромагнитный импульс(до 1 %), радиоактивное заражение местности (до 10 %).

Воздушная ударная волна – это область сильного сжатия воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью. Волна при мощности 20 килотонн проходит 1 км за 2 сек, 2 км за 5 сек, 3 км за 8 сек. Она состоит из области сжатия и области разрежения, что приводит к метательному и опрокидывающему действию. Основная характеристика поражающего действия ударной волны – максимальное избыточное давление воздуха (выше атмосферного), так как она определяет скачок давления, который происходит практически мгновенно при подходе волны к объекту.

Избыточное давление по мере удаления от эпицентра взрыва ослабевает. При наземном взрыве мощностью 1 Мт на расстоянии 1 км оно 10 кг/см2, 5 км – 0,35 кг/см2 и 10 км – 0,12 кг/см2. При увеличении мощности взрыва в 10 раз радиусы зон поражения возрастают в 2,2 раза, 125 раз – в 5 раз. Человек более стойко переносит непосредственное воздействие ударной волны, чем наземные здания. Незащищенные люди получают тяжелые поражения при избыточном давлении 0,5–1 кг/см2, средней тяжести – при 0,4–0,5 кг/см2, легкие – при 0,2–0,4 кг/см2.

Обладая большим запасом энергии, ударная волна способна наносить поражение людям, разрушать различные сооружения, боевую технику и другие объекты на значительных расстояниях от места взрыва. Защита от ударной волны представляет наибольшие трудности.

По воздействию ударной волны на наземные здания и сооружения разделяют 4 зоны поражения.

Зона полных разрушений (3–6 % всей площади очага поражения), при давлении более 0,5 кг/см2. Здания, сооружения могут быть полностью разрушены. Защитные сооружения могут сильно разрушаться, а люди в них получить незначительные поражения. На улицах образуются сплошные завалы, воспрещающие движение транспортных средств и специальной техники. Тлеющие завалы образуют зоны задымления.

Зона сильных разрушений (10 %), при давлении 0,3–0,5 кг/см2. Наземные здания и сооружения в основном будут иметь сильные разрушения, деревянные – разрушатся полностью, убежища и подземные сети коммунально-энергетического хозяйства, а также большинство противорадиационных укрытий сохранятся. У некоторых убежищ будут завалены входы и выходы. Подвалы в зданиях не повреждаются, если перекрытия выдержат статическую перегрузку от обрушенных стен и междуэтажных перекрытий. Образуются местные завалы, переходящие на ближней границе в сплошные. Возможно возникновение сплошных пожаров. Люди в убежищах получат поражения лишь в случае нарушения герметизации, разрушения системы фильтровентиляции, затопления или загазованности помещений убежища. Характерны массовые в значительной части безвозвратные потери среди незащищенной части населения.

Зона средних разрушений (18 %), при давлении 0,2–0,3 кг/см2. Частичное разрушение зданий и сооружений. Деревянные здания будут сильно или полностью разрушены, каменные – получат средние и слабые разрушения. Убежища, ПРУ и подвальные помещения полностью сохраняются, а люди в них не пострадают. На улицах образуются отдельные завалы. Возможны сплошные пожары. Характерны массовые санитарные потери среди незащищенного населения. Люди незащищенные могут получить легкие травмы и ожоги, а при наземных взрывах возможны поражения радиоактивными осадками.

Зона слабых разрушений (до 60 %), при давлении 0,1–0,2 кг/см2. Здания получат трещины, разрушение перегородок, дверных и оконных заполнений. В некоторых местах образуются отдельные завалы. Незащищенные люди могут получить ожоги, легкие травмы от летящих осколков стекла и других небольших предметов, а также поражение радиоактивными веществами при наземных взрывах. Возможны отдельные очаги пожаров.

Световое излучение — это излучение электромагнитных волн в широком диапазоне длин – видимого участка спектра и невидимого (ультрафиолетового и инфракрасного). Оно распространяется практически мгновенно, а действует, пока не исчезнет огненный шар, т. е. от одной до десятков секунд. Основной характеристикой поражающего действия светового излучения является световой импульс. Он определяется количеством световой энергии (калорий), падающей на один квадратный сантиметр освещенной поверхности за все время свечения огненного шара. При взрыве в 20 килотонн на расстоянии 1 км от эпицентра он составляет 35 кал/см2.

Воздействуя на незащищенных людей и животных, световое излучение вызывает ожоги и обугливание кожных покровов: ожог первой степени (покраснение кожи) вызывается световым импульсом в 2–4 кал/см2; ожог второй степени (образование пузырей) – при 4—10 кал/см2; ожог третьей степени (образование язв и омертвение кожи) – при 10–15 кал/см2. Однако при равных по величине импульсах можно получить различные поражения. Дело в том, что чем короче время свечения (чем меньше мощность взрыва), тем сильнее действие равных по величине световых импульсов. Если, например, импульс 5 кал/см2 при взрыве боеприпаса мощностью 20 т вызывает ожог средней, то при взрыве 20 кт – уже тяжелой степени.

Световое излучение вызывает воспламенение различных предметов и материалов, что приводит к образованию очагов пожара на значительном удалении от эпицентра ядерного взрыва. Наиболее часто воспламеняются оконные занавеси, строительный мусор, бумага, ветошь, горючие жидкости.

Проникающая радиация – представляет собой совместное гамма-и нейтронное излучение, которые распространяются в воздухе на расстояние до 2,5–3 км. Это излучение проникает сквозь различные преграды и оказывает вредное биологическое воздействие на живые организмы. Действие проникающей радиации ослабляется в два раза при прохождении через слой бетона толщиной в 10, земли – в 14, дерева – 25 см.

Характер поражающего воздействия радиоактивного излучения оценивается суммарной дозой радиации (в рентгенах), полученной организмом за все время облучения (внешнего и внутреннего). В зависимости от полученной дозы радиации, различают 4 степени лучевой болезни:

♦ лучевая болезнь I степени возникает при суммарной дозе излучения 100–200 Р. Скрытый период продолжается две-три недели, после чего появляются недомогание, общая слабость, тошнота, головокружение и периодическое повышение температуры. Лучевая болезнь I степени излечима;

♦ лучевая болезнь II степени возникает при суммарной дозе излучения 200–400 Р. Скрытый период продолжается около недели. Признаки заболевания выражены более ярко. При активном лечении выздоровление возникает через 1,5–2 месяца;

♦ лучевая болезнь III степени возникает при суммарной дозе излучения 400–600 Р. Скрытый период продолжается несколько часов. Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 6–8 месяцев;

♦ лучевая болезнь IV степени возникает при суммарной дозе излучения свыше 600 Р, которая является наиболее опасной. Наблюдаются резкие головные боли, подавленное и угнетенное состояние. Через 1–4 часа после облучения может начаться тошнота, рвота, понос, повышенная температура. Скрытый период будет отсутствовать или проходить очень быстро. При дозах, превышающих 1000 Р, работоспособность населения утрачивается через несколько минут.

Радиоактивное заражение местности — это осадки радиоактивных веществ в районе взрыва и на пути движения радиоактивного облака, а также наведенная радиоактивность почвы, возникшая в результате воздействия нейтронного потока. Радиоактивное облако достигает несколько километров в радиусе и перемещается на высоте 10–20 км на большие расстояния – несколько сотен километров. Если действие ударной волны, светового излучения и проникающей радиации ограничено несколькими секундами, на расстояниях в несколько десятков километров, то радиоактивные вещества воздействуют в течение длительного времени до полного их распада. Радиоактивный распад не может быть прекращен или ускорен какими-либо средствами и способами. На степень заражения оказывают влияние метеорологические условия – ветер разносит радиоактивные вещества, а дождь смывает их.

Характеристикой радиоактивного заражения местности является уровень радиации Р/ч на определенное время после взрыва. По степени опасности зараженную местность по следу облака принято делить на 4 зоны: зона А – умеренного заражения, уровень радиации от 8 до 80 Р/ч; зона Б – сильного заражения, уровень радиации от 80 до 240 Р/ч; зона В – опасного заражения, уровень радиации от 240 до 800 Р/ч; зона Г – чрезвычайно опасного заражения; уровень радиации от 800 и более Р/ч.

Степень радиоактивного заражения местности непостоянна и довольно быстро меняется. Так, уровень радиации, установившийся через 1 ч после взрыва, через 2 ч уменьшается почти вдвое, через 3 ч – в 4 раза, а через 7 ч – в 10 раз, через двое суток – в 100 раз, а через 2 недели – в 1000 раз. В зоне умеренного заражения в укрытии нужно оставаться несколько часов, в зоне сильного заражения – до трех суток и в зоне опасного заражения – не менее трех суток.

Радиоактивные вещества не имеют никаких внешних признаков, их можно обнаружить только при помощи специальных дозиметрических приборов. Находящиеся в районе радиоактивного заражения незащищенные люди и животные подвергаются: внешнему облучению от наведенной радиоактивности почвы и контактирующих веществ; внутреннему облучению – при попадании радиоактивных веществ внутрь организма с зараженным воздухом, пищей или водой, что гораздо опаснее, как не подлежащие удалению.

Предельно допустимые величины заражения, мР/ч: поверхность тела человека – 20, нательное белье – 20, лицевая часть противогаза – 10, обмундирование, обувь, средства индивидуальной защиты – 30, поверхность тела животного – 50, техника и техническое имущество – 200, внутренние поверхности зданий – 50.

Кратность ослабления дозы облучения от зараженной местности составляет: недезактивированные открытые щели, траншеи и окопы – 3 (дезактивированные – 20), перекрытые щели – 40, убежища – 1000, многоэтажные дома – 70, подвалы деревянных домов – 7, каменных – 100, многоэтажных – 400.

Электромагнитный импульс – это кратковременное мощное электромагнитное поле с длинами волн от 1 до 1000 м и более, возникающее при ядерном взрыве в атмосфере и более высоких слоях. Поражающее действие обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, на технике и других объектах. На население электромагнитный импульс практически влияния не оказывает, а радиоэлектронные приборы, средства связи, вычислительную и компьютерную технику выводит из строя, линии электропередач сжигает. Это наиболее характерно для нейтронного боеприпаса.

Одновременное воздействие ударной волны, светового излучения и поникающей радиации в значительной мере обусловливает комбинированный характер поражающего действия взрыва ядерного боеприпаса на людей, технику и сооружения. При этом поражении населения травмы и контузии от воздействия ударной волны сочетаются с ожогами от светового излучения, лучевой болезнью от воздействия проникающей радиации и радиоактивного заражения. Некоторые виды техники, сооружений и имущества будут повреждаться ударной волной с одновременным возгоранием от светового излучения.

Комбинированное поражение наиболее тяжелое для человека. Так, лучевая болезнь затрудняет лечение травм и ожогов, которые в свою очередь осложняют лечение лучевой болезни. Кроме того, при этом снижается сопротивляемость человека к инфекционным заболеваниям.

Поражение населения принято по степени тяжести делить на смертельные, крайне тяжелые, средней тяжести и легкие. Крайне тяжелые и тяжелые поражения представляют опасность для жизни и зачастую сопровождаются смертельным исходом. Поражения средней тяжести и легкие, как правило, опасности для жизни не представляют, но приводят к временной потере работоспособности населения. Выход из строя людей от воздействия ударной волны и светового излучения определяется легким, а от действия проникающей радиации – средними поражениями, требующими лечения в медицинских учреждениях.

Потери населения принято делить на: безвозвратные – погибшие до оказания медицинской помощи; санитарные – утратившие работоспособность не менее чем на одни сутки и поступившим в медицинские пункты или лечебные учреждения.

Выход из строя техники и сооружений: слабые повреждения – не снижают работоспособности образца, устраняются водителем или расчетом; средние повреждения – требуется средний ремонт объекта в ремонтных органах; сильные повреждения – объект полностью становится непригодным к использованию, либо может быть возвращен в строй после капитального ремонта; полное разрушение объекта – его восстановление невозможно или практически нецелесообразно.

Радиоактивное заражение местности. Оно происходит в двух случаях: как при взрывах ядерных боеприпасов, так и при аварии на объектах с ядерными энергетическими установками. На АЭС особенностью процесса является то, что во время реакции в твэлах накапливаются радиоактивные продукты деления. Если в ядерном заряде процесс деления идет мгновенно, то в твэлах он длится несколько месяцев и больше. За этот срок короткоживущие изотопы распадаются. Поэтому идет накопление радионуклидов с большим периодом полураспада.

Возьмем к примеру реактор ВВЭР-440 (электрическая мощность 440 Мвт). Его загрузка составляет 42 т. В топливе примерно 3,3 % (около 1,4 т) делящегося вещества урана-235. После отработки одна тонна превращается в продукты деления, а 400 кг можно потом на комбинате «Маяк» извлечь и использовать в новых твэлах. Таким образом идет процесс накопления радиоактивных веществ с длительными периодами полураспада, которые, как правило, являются бета-гамма-излучателями.

На фоне тугоплавкости большинства радионуклидов такие как теллур, йод, цезий обладают высокой летучестью. Вот почему аварийные выбросы реакторов всегда обогащены этими радионуклидами, из которых йод и цезий имеют наиболее важное воздействие на организм человека и животный мир. Как видим, состав аварийного выброса продуктов деления существенно отличается от состава продуктов ядерного взрыва. Поэтому на следе радиоактивного облака происходит быстрый спад мощности дозы излучения.

При авариях на АЭС характерно, во-первых, радиоактивное заражение атмосферы и местности легколетучими радионуклидами (йод, цезий и стронций), а, во-вторых, цезий и стронций обладают длительными периодами полураспада – до 30 лет. Поэтому такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается.

И еще одна особенность. При ядерном взрыве и образовании следа для людей главную опасность представляет внешнее облучение (90–95 % от общей дозы). При аварии на АЭС с выбросом активного материала картина иная. Значительная часть продуктов деления находится в парообразном и аэрозольном состоянии. Вот почему доза внешнего облучения здесь составляет 15 %, а внутреннего – 85 %.

Сильное загрязнение местности от чернобыльской катастрофы (26.04.1986) происходило в ближайшей зоне (80 км) в течение 4–5 суток, а в дальнейшей зоне – примерно 15 дней. Мельчайшие частицы (радионуклиды) пересекли границу Польши, Швеции, Финляндии, Болгарии, Румынии, Венгрии и других стран. Наибольший уровень загрязненности отмечался в Великобритании, Швеции и Польше. У нас наиболее сложная и опасная обстановка сложилась в 30-километровой зоне от АЭС, в Припяти и Чернобыле, где и сегодня имеется опасность для жизни.

Значительное ухудшение радиационной обстановки происходит за счет ветрового переноса радиоактивных веществ, а также в результате перемещения людей и техники. Происходит, так называемое, вторичное загрязнение. Опыт Чернобыля показал, что один и тот же объект может за счет вторичных процессов загрязняться несколько раз. При пожаре леса радионуклиды превращаются в дым и золу, загрязняя воздух и поверхность земли. Пыль – один из трудных и опасных врагов в борьбе с радиоактивным загрязнением.

2.2. Химические опасности

Химическое оружие – средства боевого применения, поражающие свойства которых основаны на токсическом воздействии отравляющих веществ на организм человека, которые в состоянии пара или тонкодисперсного аэрозоля заражают воздух и поражают живую силу через органы дыхания (ингаляционное поражение). ОВ в виде грубодисперсного аэрозоля или капель заражают местность, военную технику, обмундирование, средства защиты и водоемы. Они способны поражать людей как в момент оседания облака зараженного воздуха, так и после оседания частиц ОВ вследствие их испарения с зараженных поверхностей, а также при контакте населения с этими поверхностями, при употреблении зараженных продуктов питания и воды.

В 1963 г. во Вьетнаме было уничтожено ядохимикатами свыше 320 тыс. га сельскохозяйственных культур, с 1961 по 1963 год химическими средствами неофициально было отравлено более 10 тыс. человек. В 1965 году, после официального разрешения войскам США использовать газы в боевых действиях, было уничтожено ядохимикатами свыше 700 тыс. га сельскохозяйственных культур и лесов, химическими средствами было отравлено 146 тыс. человек.

Количественной характеристикой заражения воздуха является массовая концентрация С – количество ОВ в единице объема зараженного воздуха (г/м3), различных поверхностей – плотность заражения Qm – количество ОВ, находящееся на единице площади зараженной поверхности (г/м2), водоисточников – концентрация ОВ, содержащегося в единице объема воды (г/м3).

Виды и типы отравляющих веществ отражены в табл. 2.1


Таблица 2.1

Классификация отравляющих веществ (по физиологическому действию на организм)


Степень опасности заражения воздуха оценивается по концентрации О В (миллиграмм на литр воздуха) и по времени, в течение которого незащищенный человек может получить поражение. Табун, зарин, зоман, Ви-Икс характеризуются высокой токсичностью и быстрым поражающим действием. Они могут поразить незащищенных людей на удалении 15–20 км от места заражения, при концентрации даже 0,0001 мг/л и меньше.

Зарин — бесцветная и практически без запаха жидкость. Хорошо растворяется в воде и органических растворителях, очень токсичное ОВ с ярко выраженным миотическим эффектом (сужение зрачков глаз). Основное боевое состояние – пар и неоседающий аэрозоль. Быстродействующее отравляющее вещество. Зарину присуще кумулятивное действие (накопление в организме) при всех путях его попадания в организм. Проникает в организм через органы дыхания, кожу (в виде капель и паров), с пищей и водой. Признаки поражения проявляются быстро, без периода скрытого действия. Вызывает светобоязнь, затруднение дыхания, боль в груди, судороги и приводит к тяжелому поражению центральной нервной системы в течение 15 мин. Стойкость летом 10–15 часов, зимой – 1–3 суток. Глубина распространения 10–20 км и более.

Ви-Икс — бесцветная, слаболетучая жидкость, без запаха, малорастворимая в воде, но хорошо – в органических растворителях. Быстродействующее отравляющее вещество. Очень эффективно действует в виде тонкодисперсного аэрозоля через органы дыхания, а через 3–5 мин – и через противогаз. В виде грубодисперсного аэрозоля и капель VX действует через кожные покровы и обмундирование. Обладает кумулятивным действием. Симптомы поражения аналогичны симптомам поражения ипритом, но при действии через кожные покровы они развиваются медленнее – до нескольких часов (период скрытого действия).

Иприт — бесцветная маслянистая жидкость, затвердевает при минус 14 °C. Слабо растворяется в воде и достаточно хорошо в органических растворителях, горючем и смазочных материалах. Тяжелее воды. Легко впитывается в пищевые продукты, лакокрасочные покрытия, резиновые изделия и в пористые материалы, надолго заражая их. Стойкое отравляющее вещество замедленного действия, основное боевое состояние иприта – пары и капли. Обладает разносторонним поражающим действием. Поражает незащищенных людей через органы дыхания, кожные покровы и желудочно-кишечный тракт. Действует на кожу и глаза. Обладает периодом скрытного действия и кумулятивным эффектом. При большой концентрации вдыхание паров в течение 2–5 мин ведет к поражению легких и смерти, при средней – поражение глаз с потерей зрения, при небольшой – воспаление глаз. Признаки поражения кожи: покраснение через 2–6 ч после воздействия, образование пузырей через 2–3 суток. Заживление язв длится около 30 суток. Стойкость летом до 1 суток (в лесу – 3–5 и более), зимой – недели и месяцы. Глубина распространения паров до 3 км.

Синильная кислота — бесцветная летучая жидкость, растворяется в воде, замерзает при минус 14 °C, кипит при +26 °C. Слаболетучая жидкость, без запаха, малорастворимая в воде, но хорошо – в органических растворителях. Проникает в организм через органы дыхания. Вызывает поражение центральной нервной системы вследствие нарушения окислительных процессов в тканях организма. Быстродействующее отравляющее вещество. При большой концентрации – молниеносная форма поражения, при средней – смерть наступает через 2–5 мин, при небольшой концентрации вдыхание в течение 15 мин приводит к тяжелому поражению. Стойкость летом на открытой местности – 20 мин, в лощине (особенно ночью) – 3–5 ч. Глубина распространения паров летом: днем – 1–2 км, ночью – до 10 км.


Аварийно химически опасные вещества. Одной из характерных особенностей развития мировой цивилизации во второй половине XX столетия является бурная химизация промышленной индустрии. Это обусловило возрастание технологических опасностей, которые привели к крупным химическим авариям, сопровождавшимися выбросами аварийно химически опасных веществ (АХОВ), значительным материальным ущербом и большими человеческими жертвами.

Только за период 1975–2000 гг. в мире произошло значительное количество крупных аварий и катастроф на промышленных объектах, в том числе авария на химическом заводе в Севезо (Италия, 1976 г.), авария века в Бхопале (Индия, 1984 г.), на ПО «Азот» (Литва, 1989 г.), аварии на химических предприятиях Китая (2006 г.). Социальный ущерб, который нанесли некоторые аварии, сопоставимы с ущербом от применения ядерного оружия. Например, в результате атомной бомбардировки г. Нагасаки (Япония) в 1945 году было убито и ранено 140 тыс. человек, а от аварии в Бхопале пострадало 220 тыс. человек.


Аварийно химически опасное вещество – опасное химическое вещество, применяемое в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды в концентрациях, поражающих живой организм (АХОВ – ГОСТ Р 22.9.05–95).

В России в настоящее время насчитывается около 3 тыс. химически опасных объектов, в сфере производства которых используются АХОВ в количествах, представляющих опасность как для персонала, так и для проживающего вблизи населения. Крупными запасами

АХОВ располагают предприятия химической, целлюлозно-бумажной, оборонной, нефтеперерабатывающей и нефтехимической промышленности, черной и цветной металлургии, промышленности минеральных удобрений, мясомолочной и пищевой, а также коммунально-бытового обеспечения населения. Химически опасные объекты находятся на территории всех крупных городов России.

На территории Сибирского регионального центра находится более 280 химически опасных объекта, с населением в зоне возможного заражения около 3900 тыс. человек, в том числе в Новосибирске более 10 объектов). Через города или в непосредственной близости от них проходят железнодорожные магистрали, по которым постоянно доставляются химически опасные грузы. А это значит, что во всех густонаселенных районах существует потенциальная опасность возникновения очагов химического поражения. Самыми распространенными АХОВ, используемые на ХОО, являются сжиженные аммиак и хлор, а также соляная кислота. Аммиак применяется на 1900 объектах (свыше 60 % от общей численности ХОО), хлор – на 900 (30 %).

Знание поражающих свойств АХОВ, заблаговременное прогнозирование и оценка последствий возможных аварий с их выбросом, умение правильно действовать в таких условиях и ликвидировать последствия аварийных выбросов – одно из необходимых условий безопасности населения. Перечень и ПДК в воздухе наиболее распространенных АХОВ изложен в табл. 2.2.


Таблица 2.2

Перечень и ПДК в воздухе наиболее распространенных АХОВ




Аммиак – бесцветный газ с резким запахом нашатырного спирта, в 2,5 раза легче воздуха, хорошо растворяется в воде (при +20 °C 1:700), при —33,4 °C кипит и при —77,8 °C затвердевает. Используется при производстве азотной кислоты, соды, синильной кислоты, удобрений, в органическом синтезе, при крашении тканей, в качестве хладагента в холодильных установках. 10 %-ный раствор аммиака известен под названием «нашатырный спирт». 18–20 %-ный раствор аммиака называется аммиачной водой и используется в качестве удобрения.

Порог ощущения – 0,037 г/м3, при 0,28 вызывает раздражение горла, при 0,49 – боль в глазах и конъюнктивит роговицы, потеря зрения, потеря зрения, 1,2 – приступообразный кашель, 1,5–2,7 приводит к смертельному исходу в течение 0,5–1 часа. Сжиженный аммиак при испарении охлаждается, и при соприкосновении с кожей вызывает отморожение различной степени, а также возможны химический ожог 1-й или 2-й степени и изъязвления.

Хлор — зеленовато-желтый газ с резким раздражающим запахом, в 2,5 раза тяжелее воздуха. Мало растворяется в воде (0,07 %), хорошо – в некоторых органических растворителях. Температура кипения —34,1 °C, плавления —101 °C, негорючий, но пожароопасен в контакте с горючими материалами. Находит широкое применение в промышленности, в том числе для отбеливания тканей и бумажной массы, в производстве пластмасс, каучуков, инсектицидов, растворителей, в цветной металлургии, а также в коммунально-бытовом хозяйстве для обеззараживания питьевой воды.

Может скапливаться в низких участках местности. При воздействии на организм поражает дыхательную систему. Вызывает сильное жжение, резь в глазах, слезотечение, учащенное дыхание, мучительный кашель, общее возбуждение, страх, в тяжелых случаях – рефлекторная остановка дыхания. Раздражающее действие появляется при концентрации 0,01 г/м3, смертельные отравления возможны при 0,25 г/м3 и вдыхании в течение 5 минут.

Азотная кислота — негорючая желтоватая жидкость с резким запахом, на воздухе дымит, пары тяжелее воздуха, смешивается с водой во всех отношениях. Температура кипения 83,5 °C. Используется при производстве удобрений, взрывчатых веществ, в цветной металлургии для травления и разделения металлов, в красильном деле, в полиграфии, в ракетной технике в качестве окислителя.

При контакте бумагой, древесиной, смазочными материалами и тканями может вызывать их самовоспламенение. Термически неустойчивое соединение, при разложении образуются токсичные окислы азота. Признаки поражения при небольших концентрациях паров 0,1–0,2 г/м3 и при контакте с ними в течение 10–15 минут: жжение и резь в глазах, носоглотке и в области грудины, слезотечение, чихание, кашель, общая слабость. При концентрациях 0,2–0,4 г/м3 и выше возможен отек легких, при 0,4–0,5 г/м3 – быстрая смерть. Концентрированная кислота при попадании на кожу вызывает сильный химический ожог.

Соляная кислота — негорючая агрессивная жидкость, реагирует с металлами с выделением водорода. Широко применяется в промышленности.

При контактном воздействии на коже появляются волдыри, пораженные участки имеют серо-белесоватый цвет, на слизистых оболочках глаз – воспалительные явления, помутнение роговицы, при вдыхании паров – охриплость, кашель, боль в груди, одышка. При проливах кислоты возможно образование очагов химического поражения на значительных территориях, а туман кислоты обладает высокими токсическими свойствами.

Водород хлористый — газ с резким запахом, на воздухе дымит, в 1,3 раза тяжелее воздуха. Применяется в производстве хлоридов металлов, синтетических смол, каучуков, органических красителей, гидролизного спирта, сахара, желатина, клея, для дубления и окраски кожи, при производстве активированного угля, крашении тканей, травлении металлов, в металлургии и нефтедобыче.

Хорошо растворяется в воде, негорючий, однако при нагревании емкости может взрываться. Отравление происходит туманом соляной кислоты, образующейся при взаимодействии газа с водяными парами воздуха. Пары действуют на организм как через органы дыхания, так и через кожу, оказывая сильное раздражающее действие на органы дыхания. В организме человека вызывает поражение и некроз клеток. Острое отравление сопровождается охриплостью голоса, удушьем, насморком, кашлем. При высоких концентрациях – раздражение слизистых, конъюктивит, помутнение роговицы, чувство удушья, хрипы, рвота, потеря сознания. Сильное раздражающее действие на кожу, при ожоге обычно возникает серьезное воспаление с пузырями. Длительное воздействие малых концентраций вызывает катары верхних дыхательных путей, быстрое разрушение эмали зубов, изъязвление слизистой оболочки носа. Предельно допустимая концентрация в рабочих помещениях – 0,005 г/м3, при 0,015 мг/м3 происходит раздражение слизистых оболочек верхних дыхательных путей, концентрации 0,05— 0,07 мг/м3 переносятся с трудом.

Сероводород — бесцветный газ с неприятным запахом (тухлых яиц), в 1,2 раза тяжелее воздуха, хорошо растворяется в воде и многих органических растворителях. Горюч, взрывоопасен в смеси с воздухом (от 4,3 до 46 % по объему).

В промышленности получается как побочный продукт при очистке нефти, природного и коксового газа. Применяют в производстве серной кислоты, серы, сульфидов, сераорганических соединений.

Опасен при вдыхании. Вызывает жжение в горле при глотании, конъюнктивит, одышку, головную боль, головокружение, слабость, рвоту, тахикардию, судороги. При концентрации 0,3–0,5 г/м3 симптомы поражения могут наступить через 15–30 минут, а при 1,2 г/м3 возможна смерть через несколько минут.

Создаваемые на ХОО минимальные (неснижаемые) запасы в среднем рассчитаны на 3 суток, а для предприятий по производству минеральных удобрений эти запасы доводятся до 10–15 суток. В результате на крупных предприятиях могут одновременно находиться сотни и даже тысячи тонн АХОВ. Причем на значительной части объектов пищевой и мясомолочной промышленности, в холодильниках торговых баз и особенно на предприятиях водоочистки, расположенных в крупных городах, содержатся значительные их запасы. Например, на отдельных овощных базах содержится до 150 тонн сжиженного аммиака, а на водопроводных станциях – от 100 до 400 тонн сжиженного хлора.

Все запасы этих веществ хранятся в резервуарах базисных и расходных складов, содержатся в технологической аппаратуре, транспортных средствах (в трубопроводах, железнодорожных цистернах, контейнерах). Их хранение регламентируется санитарными нормами, строительными правилами и специальными ведомственными документами, исходя из их агрегатного состояния.


Опасные производственные объекты – предприятия или их цехи, участки, площадки, а также иные производственные объекты, на которых: получаются, используются, перерабатываются, образуются, хранятся, транспортируются, уничтожаются следующие опасные вещества – воспламеняющиеся, окисляющие, горючие, взрывчатые, токсичные и вещества, представляющие опасность для окружающей природной среды; используется оборудование, работающее под давлением более 0,07 мегапаскаля или при температуре нагрева воды более 115 °C; используются стационарно установленные грузоподъемные механизмы, эскалаторы, канатные дороги, фуникулеры; получаются расплавы черных и цветных металлов и сплавы на основе этих расплавов; ведутся горные работы, работы по обогащению полезных ископаемых, а также работы в подземных условиях.

2.3. Биологические опасности

Бактериологическое (биологическое) оружие – средство массового поражения людей, сельскохозяйственных животных и растений. Основу его поражающего действия составляют болезнетворные микробы (бактерии, вирусы, риккетсии и грибки) и вырабатываемые некоторыми из них токсины (яды). Для доставки бактериальных средств к цели могут быть применены авиационные бомбы, снаряды, ракеты, выливные авиационные приборы и, как показал опыт в США, даже почта.

Для поражения людей противник может использовать возбудителей различных инфекционных заболеваний: чумы, гриппа, (птичьего гриппа?), туляремии, бруцеллеза, сибирской язвы, холеры, эпидемического сыпного тифа, натуральной оспы, ку-лихорадки и др.

Для поражения животных возможно поражение возбудителей ящура, чумы крупного рогатого скота, чумы свиней, сибирской язвы, оспы овец, сапа, бруцеллеза и других заболеваний.

Для поражения сельскохозяйственных растений – возбудителей ржавчины хлебных злаков, фитофтороза картофеля и других заболеваний, а также некоторые химические вещества, например гербициды и дефолианты.

К особенностям бактериологического оружия относятся: способность вызывать массовые заболевания людей и животных; большая продолжительность действия (споровые формы микробов сибирской язвы сохраняют поражающие свойства несколько лет); трудность обнаружения микробов и токсинов во внешней среде; продолжительный скрытый (инкубационный) период действия; способность болезнетворных микробов и токсинов вместе с воздухом проникать в негерметизированные укрытия и помещения, заражать в них людей и животных. Распознать микробы можно только в лаборатории при помощи приборов.

Незащищенные люди и животные могут получить поражение в результате: вдыхания зараженного воздуха; попадания микробов и токсинов на слизистые оболочки глаз, носа и рта и на поврежденную кожу; употребления в пищу зараженных продуктов питания и воды; укусов зараженными насекомыми и клещами.

Ряд заболеваний быстро передается от больных людей к здоровым и вызывает эпидемии. Наиболее вероятные объекты, где противник может применить бактериологическое оружие, – крупные населенные пункты, административные и политические центры, железнодорожные узлы, морские и речные порты, базы снабжения, склады продовольствия и фуража, источники водоснабжения, крупные животноводческие хозяйства и лесные угодья (дикие птицы).

Бактериальные средства противник может применить в виде жидких и сухих рецептур, которыми снаряжают различные боеприпасы. Особенно опасен для людей и животных воздух, зараженный аэрозолями бактериальных средств, так как в этом случае могут быть использованы возбудители болезней, которыми обычно через воздух люди и животные не заражаются. На образование очага влияют метеорологические условия и рельеф местности.

Стойкость воздействия бактериальных средств на организм человека или животного зависит от вида возбудителя и переносчиков, а также от метеорологических условий (скорость ветра, температура и влажность воздуха, солнечная радиация и др.). Особенно влияет температура воздуха. При низких температурах опасность поражения в бактериологическом очаге сохраняется дольше. Летом при высокой температуре и интенсивной солнечной радиации патогенные микробы быстро погибают. Бактериальное облако может застаиваться в оврагах, лощинах, во дворах, закрытых помещениях.

Косвенные признаки бактериологического нападения: появление массовых заболеваний среди людей; массовые заболевания и падеж сельскохозяйственных и диких животных; скопление насекомых и грызунов, необычных для данной местности; наличие в местах разрывов боеприпасов капель жидкости или порошкообразных веществ на почве, растительности и предметах; образование при разрыве боеприпаса легкого дыма или тумана.

Обнаружив хотя бы один из перечисленных признаков, немедленно принимают меры защиты (надевают противогазы, респираторы, маски и средства защиты кожи), сообщают в ближайший территориальный отдел гражданской защиты, медицинское учреждение или руководителю предприятия. Характеристика биологического оружия дана в табл. 2.3.


Таблица 2.3

Характеристики самых опасных бактериальных средств


Чума — в естественных условиях передается воздушно-капельным путем от больных легочной формой, а также через укусы блох от больных грызунов. Скрытый период – 3 суток. Продолжительность потери боеспособности – 7—14 суток. Летальность заболевания без лечения —100 %. Способность передачи болезни в результате контакта очень высокая. Очень тяжелое заболевание.

Сибирская язва — в естественных условиях передается при контакте с больными животными, шерстью и шкурами; употреблении зараженного мяса; вдыхании инфицированной возбудителями пыли. Скрытый период – 2–3 суток. Продолжительность потери боеспособности – 7—14 суток. Летальность заболевания без лечения – до 100 %. Способность передачи болезни в результате контакта практически отсутствует. Очень тяжелое заболевание. Споры возбудителя язвы хранятся десятилетиями. Так, в феврале 2006 г. в Москве на рынке впервые за последние 50 лет обнаружена сибирская язва.

Сап — в естественных условиях передается при контакте с больными животными, шерстью и шкурами; употреблении зараженного мяса; вдыхании инфицированной возбудителями пыли. Скрытый период – 3 суток. Продолжительность потери боеспособности – 20–30 суток. Летальность заболевания без лечения – 90—100 %. Способность передачи болезни в результате контакта незначительная. Очень тяжелое заболевание.

Холера — в естественных условиях передается при употреблении зараженной воды, пищи, фруктов, предметов домашнего обихода. Скрытый период – 3 суток. Продолжительность потери боеспособности – 5—30 суток. Летальность заболевания без лечения – 10–80 %.

Способность передачи болезни в результате контакта очень высокая. Очень тяжелое заболевание желудочно-кишечного тракта.

Ботулизм — в естественных условиях передается при употреблении содержащих токсин, один из наиболее токсичных продуктов жизнедеятельности микробов, пищевых продуктов (особенно неправильно консервированных грибов и просроченных консервированных продуктов). Скрытый период – 0,5–1,5 суток. Продолжительность потери боеспособности – 40—180 суток. Летальность заболевания без лечения – 60–70 %. Способность передачи болезни в результате контакта отсутствует.

Сыпной тиф — в естественных условиях передается через укусы вшей-переносчиков (от больных людей). Скрытый период – 10–14 суток. Продолжительность потери боеспособности – 60–90 суток. Летальность заболевания без лечения – 40 %. Способность передачи болезни в результате контакта высокая при наличии вшивости. Острое, очень тяжелое инфекционное заболевание.

Пятнистая лихорадка Скалистых гор — в естественных условиях передается через укусы вшей-переносчиков (от больных грызунов). Скрытый период – 4–8 суток. Продолжительность потери боеспособности – 90—180 суток. Летальность заболевания без лечения – 10–90 %. Способность передачи болезни в результате контакта отсутствует. Одно из самых тяжелых инфекционных заболеваний.

Для предотвращения распространения инфекционных болезней областей, руководителями районов, городов и предприятий применяется карантин и обсервация. В зонах карантина и обсервации с самого начала их проведения организуются дезинфекция, дезинсекция и дератизация.

2.4. Другие виды оружия

Обычные средства поражения

Термины «обычные средства поражения», «обычное оружие» вошли в употребление после появления ядерного оружия. В настоящее время некоторые образцы обычного оружия, основанные на новейших достижениях науки и техники, по своей эффективности вплотную приблизились к оружию массового поражения.

В совершенствовании обычных средств поражения можно проследить два четко выраженных направления. Во-первых, это повышение мощности взрывов на основе достижений химии взрывчатых веществ. Во-вторых, улучшение конструкций боеприпасов и средств их доставки к цели.

Термин «обычные» для этих средств может быть лишь условным. Такое оружие принято называть обычным высокоточным оружием. Оно основано на использовании энергии взрывчатых веществ и зажигательных смесей (артиллерийские, ракетные и авиационные боеприпасы, фугасы, мины и другие средства) и современных средств доставки к цели.

Характер поражающего действия обычного оружия зависит от конструкции боеприпаса. Оно может проявляться в форме бризантного, фугасного, кумулятивного или ударного действия.

Принцип ударного действия взрывчатых веществ заключается в том, что при выстреле химическая энергия пороха превращается в тепловую, а затем в кинетическую энергию снаряда (пули). При встрече с преградой совершается работа по ее разрушению.

В ряду обычных средств поражения особое место занимает оружие, обладающее высокой точностью попадания в цель. Примером его могут служить крылатые ракеты. Они оснащаются сложной комбинированной системой управления, наводящей ракету на цель по заблаговременно составленным картам полета. Полет подготавливают на основе информации, заложенной в память бортовой ЭВМ, с разведывательных искусственных спутников земли. При исполнении задания эти данные сопоставляются с рельефом местности и автоматически корректируются. Система управления обеспечивает крылатой ракете полет на малых высотах, что затрудняет ее обнаружение и увеличивает вероятность поражения цели.


Высокоточное оружие

К высокоточному оружию относят: крылатые ракеты, управляемые баллистические ракеты, авиационные бомбы и кассеты, артиллерийские снаряды, торпеды, разведывательно-ударные, зенитные и противотанковые ракетные комплексы.

Высокая точность поражения целей этими средствами достигается:

♦ наведением управляемых боеприпасов на визуально наблюдаемую цель (с помощью бортовой видео-аппаратуры);

♦ самонаведением боеприпасов с использованием радиолокационного обнаружения по отражению от поверхности цели (с помощью бортовой радиолокационной станции (РЛС);

♦ комбинированным наведением боеприпасов на цель, т. е. управлением с помощью автоматизированной системы на большей части траектории полета и самонаведением на конечном этапе.

Эффективность высокоточного оружия была убедительно подтверждена в локальных войнах.

Наиболее распространенными боеприпасами, относящимися к обычным средствам поражения, являются различного вида авиабомбы – осколочные, фугасные, шариковые, а также боеприпасы объемного взрыва.


Бризантные и фугасные боеприпасы

Бризантные боеприпасы (рис. 2.1) способны вызывать дробление, измельчение или пробивание среды, в которой происходит врыв. В них применяются ВВ, обладающие высокой скоростью детонации (распространения взрыва) и выделяющие при взрыве большое количество энергии. В настоящее время в качестве бризантных ВВ чаще всего используются тротил, гексоген и их смеси.

Тротил – химическое название «тринитротолуол (сокращенно ТНТ)» – кристаллическое вещество желтого цвета, в воде не растворяется, с металлами не взаимодействует. Тротил можно пилить, резать, сверлить. Зажигается с трудом. Горит на воздухе спокойно, в замкнутом объеме (корпусе боеприпаса) взрывается. Высокие боевые свойства, доступная сырьевая база (каменный уголь) обусловливают массовое использование тротила в военном деле.

Гексоген – по своим взрывчато-энергетическим характеристикам превосходит тротил, однако применяется он в чистом виде реже, в связи с повышенной чувствительностью к детонации, удару и трению.

Эффективность бризантного действия осколочного боеприпаса характеризуется площадью, в пределах которой поражаются цели при взрыве. Так, при стрельбе по атакующей пехоте 76-мм снарядом размеры зоны поражения составляют40 × 20=800 м2,152-мм снарядом—50 × 20= 1000 м2. Максимальный разлет осколков может достигать 300–500 м.

Характерной особенностью фугасных боеприпасов является способность проникать в грунт (среду) и при взрыве выбрасывать его с образованием воронки. Фугасное действие обусловлено расширением газообразных продуктов взрыва и прохождением ударной волны в среде. Мерой фугасного действия является объем воронки в грунте, образующейся при взрыве 1 кг ВВ. У тротила, например, при взрыве на поверхности грунта средней плотности она составляет 0,15 м2, а при заглублении на 0,4 м – 2 м2.

Взрывы без выброса грунта называются камуфлетными. Они могут происходить в случае большого заглубления боеприпаса.

Разрушающее действие ВВ не ограничивается местом образования воронки. Как правило, поражаются и более удаленные объекты. Так, при взрыве тротилового заряда массой 100 кг сильные разрушения каменных зданий воздушной ударной волной происходят в радиусе 50 м, деревянных построек – 100 м, стекла в окнах разбиваются на расстоянии 200 м. Сильный взрыв может вызвать детонацию (взрыв) взрывоопасных материалов на удалении нескольких десятков метров. При взрыве 100 кг тротила детонация возможна на расстоянии 100 м.


Рис. 2.1


Кассетные и шариковые боеприпасы

Значительное место среди осколочно-фугасных боеприпасов занимают шариковые и кассетные бомбы, применяемые авиацией (рис. 2.2).

Кассеты – устройства, снаряжаемые мелкими бомбами, предназначены, как правило, для поражения площадных объектов. Они широко использовались армией США по Вьетнаме. Количество бомб в кассете может быть различным – от нескольких штук до сотен и тысяч.

Авиационная кассета (контейнер) при подлете к земле от действия вышибного заряда разрушается, а разлетающиеся шариковые бомбы взрываются на большой площади.

Особенно большие возможности – у кассетных боеприпасов для систем залпового огня. С их помощью можно в короткие сроки создавать минные поля и тем самым затруднять действия войск противника, сковывать их маневр. Кассеты с кумулятивными боеприпасами малого калибра предназначены для поражения бронеобъектов. Эффективность таких боеприпасов для систем залпового огня в пять и более раз выше, чем обычных осколочно-фугасных снарядов.

Широко применявшаяся американскими войсками во Вьетнаме шариковая бомба представляет собой 35-мм цилиндрический корпус диаметром 7,5 см, заполненный взрывчаткой. В его стенках имеется 250 металлических шариков массой по 0,7–1 г. Истребитель-бомбардировщик берет на борт до 1000 таких бомб. При взрыве бомбы шарики рассеиваются на площади, равной 100 м2. Площадь поражения открытой живой силы одним самолетом более 10 га. Эффективность шариковых бомб более поздних модификаций возросла еще почти в два раза.

Кассетная бомба CBU-97 состоит из 10 суббоеприпасов, то есть из 10 бомб. Каждая имеет инфракрасную головку самонаведения. Таким образом, после того, как кассета раскрывается, каждый боеприпас самостоятельно спускается на парашюте и ведет поиск цели. Как только цель обнаружена (например, какая-нибудь бронетехника), запускается ракетный ускоритель и происходит ее уничтожение. Естественно, бомба не может отличить танк от автомобиля или автобуса, поэтому говорить о точности не приходится. Цена этому – сотни жизней. Одна кассета CBU-97 уничтожает бронеобъекты на территории в 6 гектаров. А каждый бомбардировщик, доставляющий этот смертоносный груз берет по 30 таких бомб.

Шариковые (кассетные) противопехотные бомбы могут быть размером от теннисного до футбольного мяча и содержать до 200 металлических или пластмассовых шариков диаметром 5–6 мм. Радиус поражения у такой бомбы в зависимости от калибра составляет 1,5—15 м.

Часто эти бомбы называют кассетными, потому, что с самолетов их сбрасывают в упаковках (кассетах), содержащих 96—640 бомб. От действия вышибного заряда такая кассета над землей разрушается, а разлетающиеся шариковые бомбы взрываются на площади до 250 тысяч квадратных метров. Оснащают их различными взрывателями, инерционными, нажимного, натяжного или замедленного действия.

Таким же способом можно применять кассеты в противопехотных минах. От удара о землю из них выбрасываются проволочки-усики. При прикосновении к ним мина взлетает на высоту человеческого роста и взрывается в воздухе. Такие боеприпасы на открытой местности наносят множество ранений (эффект града) живой силе на больших площадях.

Чтобы защититься от действия таких боеприпасов, люди должны укрыться в любых защитных сооружениях.


Рис. 2.2


Авиационные осколочные боеприпасы

Осколочные авиабомбы применяются для поражения людей и животных. При взрыве бомбы образуется большое количество осколков, которые разлетаются в разные стороны на расстояние до 300 м от места взрыва. Кирпичные и деревянные стены осколки не пробивают. Осколочные боеприпасы предназначены главным образом для поражения людей.

В некоторых государствах проводят интенсивные работы по совершенствованию обычных осколочно-фугасных боеприпасов. Один из наиболее показательных примеров – создание и широкое применение различных боеприпасов с готовыми или полуготовыми убойными элементами.

Особенность таких боеприпасов – огромное количество (до нескольких тысяч) элементов (шариков, иголок, стрелок и прочее) массой от 1 до нескольких граммов.


Боеприпасы объемного взрыва

Боеприпасы объемного взрыва иногда называют “вакуумными бомбами”. В качестве боевого заряда в них используется жидкое углеводородное топливо: окись этилена или пропилена, метан.

Боеприпасы объемною взрыва представляют собой небольшой контейнер, который сбрасывается с самолета на парашюте. На заданной высоте контейнер раскрывается, выпуская содержащуюся внутри смесь. Происходит образование газового облака, которое подрывается специальным взрывателем и мгновенно воспламеняется. Возникает распространяющаяся со сверхзвуковой скоростью ударная волна. Ее мощность в 4–6 раз превышает энергию взрыва обычного взрывчатого вещества. Кроме того, при таком взрыве температура достигает 2500–3000 °C. На месте взрыва образуется безжизненное пространство размером с футбольное поле. По своей разрушительной способности такой боеприпас может быть сравним с тактическим ядерным боеприпасом.

Поскольку топливно-воздушная смесь боеприпасов объемного взрыва легко растекается и способна проникать в негерметичные помещения, а также формироваться в складках местности, простейшие защитные сооружения от них спасти не могут.

Возникающая в результате взрыва ударная волна вызывает у людей такие поражения, как контузия головного мозга, множественные внутренние кровотечения вследствие разрыва соединительных тканей внутренних органов (печени, селезенки), разрыв барабанных перепонок уха.

Высокая поражающая способность, а также неэффективность существующих мер защиты от боеприпасов объемного взрыва послужили основанием для того, чтобы Организация Объединенных Наций (ООН) квалифицировала такое оружие как негуманное средство ведения войны, вызывающее чрезмерные страдания людей. На заседании чрезвычайного комитета по обычным вооружениям в Женеве был принят документ, в котором такие боеприпасы признаны видом оружия, требующим запрещения международным сообществом.


Ручные осколочные гранаты

Широкое применение в Вооруженных Силах России получили ручные осколочные гранаты. Они активно применяются как в обороне, так и в наступлении для уничтожения живой силы противника.


Гранатометы

В настоящее время каждое мотострелковое подразделение имеет на вооружении ручные гранатометы. Дальность выстрела гранатомета, в зависимости от модели, 200–500 метров. При наличии выстрелов к гранатомету, гранатометчик может вести бой одновременно как с бронетехникой, так и с живой силой.


Кумулятивные боеприпасы

Кумулятивные боеприпасы (рис. 2.3) предназначены для поражения бронированных целей.

Принцип их действия основан на прожигании преграды мощной струей газов высокой плотности с температурой 6000–7000 °C. Сфокусированные продукты детонации способны прожигать отверстия в броневых перекрытиях толщиной в несколько десятков сантиметров и вызывать пожары.

Для защиты от кумулятивных боеприпасов можно использовать экраны из различных материалов, расположенные на расстоянии 15–20 см от основной конструкции. В этом случае вся энергия струи расходуется на прожигание экрана, а основная конструкция остается целой.


Бетонобойные боеприпасы

Бетонобойные боеприпасы (рис. 2.4) предназначены для разрушения взлетно-посадочных полос аэродромов и других объектов, имеющих бетонное покрытие.

Бетонобойная бомба «Дюрандаль» массой 195 кг и длиной 2,7 м имеет массу боевой части (боеголовки) 100 кг. Она способна пробивать бетонное перекрытие толщиной 70 см. Пробив бетон, бомба взрывается (иногда с замедлением), образуя воронку глубиной 2 м и диаметром 5 м.


Рис. 2.3


Зажигательные средства и защита от них

На протяжении многовековой истории огонь служил оружием для уничтожения живой силы и военного имущества противника, вывода из строя его боевых средств, разрушения построек, инженерных сооружений. И сейчас зажигательное оружие занимает важное место в общей системе вооружений.

Значительное развитие зажигательное оружие получило во время первой и особенно второй мировой войны. Начиная с 1942 г. большую часть авиационных бомб, сброшенных английскими и американскими летчиками на германские города, составляли зажигательные. В некоторых налетах за одну ночь их расходовалось до миллиона, что составляло 80—100 % бомбовой загрузки самолетов. 70–80 % разрушений в городах вызваны пожарами от зажигательных боеприпасов. Бомбардировки Дрездена и Гамбурга привели к жертвам, которые могут быть сравнимы с последствиями ядерных ударов по Хиросиме и Нагасаки.


Рис. 2.4


В Северной Корее (1950–1952 гг.) впервые в больших количествах американцы стали применять напалм. Совершая в среднем 700— 1000 самолето-вылетов в сутки, американская авиация сбросила свыше 200 тыс. напалмовых бомб.

Масштабы использования зажигательного оружия американскими войсками во Вьетнаме не имеют равных в истории войн. За шесть лет (с 1965 по 1971 г.) ими было применено около 1700 тыс. т зажигательных боеприпасов, в результате уничтожены тысячи населенных пунктов. Этой тактики «выжженной земли» придерживались, и израильские агрессоры в войне против арабских стран. До 75 % из общего числа потерь арабов в 1967 г. составили пораженные напалмом.

Совершенствуются и средства применения: зажигательные авиационные баки, кассетные бомбы, огнеметы. Широкое применение находят зажигательные артиллерийские ракеты, снаряды и гранаты.

Во Вьетнаме американцы применяли 66-мм реактивный гранатомет М202А1 многократного действия. Он имеет четыре ствола, которые изготовлены из стекловолокна и размещены в прямоугольном лафете. Масса снаряженного гранатомета – 12 кг. Каждая обойма содержит четыре 66-мм реактивные гранаты по 1,36 кг каждая. Время производства четырех выстрелов – 4 сек.; время перезаряжения – 30 сек.; начальная скорость гранаты – 110 м/с. Оптический прицел обеспечивает прицельную стрельбу на 200 м по точечным целям и до 730 м по площадным. В боекомплект, кроме зажигательной гранаты, входят кумулятивная и химическая, снаряженная отравляющим веществом раздражающего действия.

Современные зажигательные вещества делятся на три основные группы: огнесмеси на основе нефтепродуктов (напалмы); металлизированные зажигательные смеси; термит и термитные составы. Кроме того, к ним относят обычный и пластифицированный фосфор, щелочные металлы, а также самовоспламеняющуюся на воздухе смесь на основе триэтиленалюминия. Наибольшее распространение получили напалмы.

Напалмы не содержат окислителя и горят, соединяясь с кислородом воздуха. Они представляют собой желеобразные, вязкие вещества, хорошо прилипают к различным поверхностям и обладают высокой температурой горения. Первый образец напалма был синтезирован в США в начале 1942 г. и в том же году прошел боевое испытание в огнеметных атаках против японских войск. Американцы тогда писали, что никакой другой вид оружия не мог сравниться по своей эффективности с огнеметами, особенно в борьбе с дотами при прорыве сильно укрепленной обороны противника.

Первый воздушный налет с применением напалма американцы совершили в марте 1945 г. по районам Токио, наиболее подверженным пожарам. В отчете об этом указывалось, что разразился страшный пожар на площади более 15 кв. миль, пламя было видно на расстоянии 200 миль, результаты оказались «поразительными». Впоследствии специалисты США констатировали, что даже атомный взрыв не мог сравниться с массированным воздушным ударом зажигательными бомбами ни по количеству жертв, ни по масштабам разрушений. Таким образом, напалм с самого начала стал одним из наиболее варварских средств войны, от которого пострадало много мирного населения.

Получают напалм путем добавления к жидкому горючему, обычно бензину, порошка-загустителя. В период второй мировой войны загуститель состоял из алюминиевых солей нафтеновой, пальмитиновой и олеиновой кислот (слово «напалм» образовано из начальных букв названий первых двух). В настоящее время к напалмам относят все зажигательные смеси на основе жидкого горючего с добавкой одно или нескольких органических загустителей. Как правило, в них 3—10 % загустителя и 90–97 % бензина.

Чтобы напалмы самовоспламенялись, их смешивают с натрием и магнием или с фосфором. Если к напалму добавить металлы магний и алюминий в виде порошков или стружек, а также уголь, асфальт, селитру и другие вещества, то получится смесь, называемая пирогелем. Температура его горения до 16 000 °C. В отличие от обычных напалмов пирогели тяжелее воды, горят всего лишь 1–3 мин. Попадание горящего пирогеля на открытые участки тела человека и на обмундирование вызывает глубокие ожоги. Одежда обычно прогорает раньше, чем ее можно снять.

Известны и термитные составы (рис. 2.5). В основе их действия лежит реакция «алюминотермии». Измельченный алюминий при этом вступает в соединение с окислами тугоплавких металлов с выделением большого количества тепла. Для военных целей порошок прессуют. Горящий термит разогревается до 3000 °C. При такой температуре растрескиваются бетон и кирпич.

При воздействии на личный состав зажигательные вещества вызывают, как и световое излучение ядерного взрыва, термические ожоги. Однако поражение напалмом имеет ряд особенностей.

Во-первых, он прилипает к коже человека. Это обуславливает длительное воздействие высокой температуры и глубокое поражение не только кожи, но и близлежащих органов, мышц, костей. На месте ожога в первые часы, как правило, возникает тяжелый плотный струп, вокруг которого развивается резкий отек тканей. Отторжение струпа происходит очень медленно и заканчивается лишь к началу второго месяца, а на полное заживление даже небольшой раны уходит два-три месяца.


Рис. 2.5


Во-вторых, в результате чрезвычайно сильного болевого раздражения часто уже в первые 30–60 сек. развивается резкое возбуждение (эректильная фаза шока), которое затем переходит в своеобразное оцепенение (фазу тяжелого торпидного шока).

Третьей особенностью воздействия напалма является то, что одновременно возникают ожоги верхних дыхательных путей, поражение легких и общее отравление организма.

Раскаленный воздух опасен для людей на расстоянии до 100 м и с подветренной стороны от места горения больших масс напалма. С наветренной стороны тепловое излучение ощущается в 40–50 м. Температура воздуха вблизи пламени может достигать 5000 °C, а между очагами горения – около 1000 °C. Опасность поражения здесь сохраняется в течение 10 мин. В некоторых случаях возможно отравление людей из-за резкого снижения содержания кислорода в воздухе (на 1 кг напалма расходуется 3–5 кг кислорода, т. е. столько, сколько его содержится в 11,7 м3 воздуха) и образования при горении напалма поражающих концентраций окиси углерода.

Тяжелые поражения напалмом чаще всего заканчиваются смертельным исходом (до 35 % в очагах его применения и более 20 % – в медицинских учреждениях).

Характер воздействия напалма на бронетанковую технику зависит от того, двигаются машины или стоят на месте, а также открыты или закрыты люки в момент удара.

У танка с работающим двигателем наиболее уязвимыми местами являются воздухозаборные устройства или жалюзи. Попадающий в них горящий напалм может всасываться вместе с воздухом внутрь двигателя и вызывать воспламенение пластмассовых или резиновых соединительных трубопроводов, разрушать кабели, электропроводку и тем самым выводить из строя двигатель и машину в целом. Двигатель может заглохнуть и от недостатка кислорода в воздухе.

У стоящего танка наиболее уязвимы резиновые детали гусениц, а при открытых люках – и боевое отделение. В этом случае при внезапной атаке с воздуха горящий напалм, попадая внутрь машины, выводит ее из строя.

Белый фосфор – полупрозрачное, ядовитое твердое вещество, похожее на воск. Он способен самовоспламеняться, соединяясь с кислородом воздуха. Температура горения достигает 900—1200 °C.

Используется в основном как воспламенитель напалма и дымообразующее средство.

Вызывает ожоги и отравления.


Особенности тушения напалма, пирогеля. Меры защиты

Тушить напалм и пирогель очень трудно, поскольку они при взрыве зажигательных бомб разбрасываются в виде сгустков на большой площади и, если содержат белый фосфор, способны самовоспламеняться. Поэтому оставшиеся после тушения сгустки надо тщательно удалять со сгораемых предметов, собирать и сжигать в безопасном месте.

Тушить напалм и пирогель, если горит небольшая компактная масса этих смесей, можно водой и воздушно-механической пеной от пеногенераторов.

Пирогель тушится труднее. Если даже немного воды попадает в горящий пирогель, смесь разбрызгивается.

При тушении электронно-термитных авиабомб применяют мощные струи воды. Наибольший эффект достигается, когда эти бомбы опускают в емкости, резервуары, бочки с водой. Между тем, если тушить эти авиабомбы малым количеством воды, то будет разбрасываться расплавленный шлак, а его брызги могут вызвать увеличение очага пожара. Горящая зажигательная смесь, попавшая на технику, тушится штатными и подручными средствами пожаротушения, огнетушителями (особенно эффективно тушение порошковыми огнетушителями), песком, снегом, мокрой глиной.

Первую помощь поряженным зажигательной смесью нужно оказать как можно скорее на месте. При ожогах первой степени покрасневшую кожу обмыть раствором марганцовокислого калия или раствором питьевой соды, крепким чаем, спиртом. А если нет этих жидкостей – большим количеством воды. Затем обожженное место присыпать содой, тальком или крахмалом и смазать противоожоговой мазью.

При попадании горящей смеси на незащищенные части пострадавшего необходимо плотно накрыть шинелью, накидкой, брезентом, одеялом, обильно полить водой или окунуть пораженное место в воду.

Во всех случаях, когда горящие смеси попадают на одежду, ее следует тотчас же снять (сбросить) и погасить на земле.

Пожары строений, сооружений, посевов, лесов, возникшие в результате применения противником зажигательного оружия, тушатся приемами и способами, применяемыми при борьбе с пожарами в обычных условиях.

Противник может применить зажигательные боеприпасы и замедленного действия. Если это случится, то обезвреживать или уничтожать их должны только пиротехники или саперы.

Вопросы и задания

1. Перечислите виды оружия массового поражения.

2. Дайте характеристику всех видов оружия массового поражения.

3. Перечислите поражающие факторы ядерного, химического, бактериологического и нелетального видов оружия.

4. Дайте характеристику опасных химических и бактериологических средств.

5. Оцените новые виды оружия (в том числе НВО) с позиции поражения живой силы, техники и экологии.

6. Обычные средства поражения.