Вы здесь

Взрыв мироздания. Глава 4. Вселенское яйцо (О. О. Фейгин, 2016)

Глава 4. Вселенское яйцо

Через миллиарды лет развитые формы разума смогут создавать новые вселенные. Возможно, они даже смогут выбирать, какие физические законы должны действовать в созданных ими мирах. Или им будет дано моделировать Вселенную такой же или даже сложнее, чем та, в которой сегодня мы полагаем свое существование.

М. Рис.
Наш последний час

Одним из первых модель рождения нашего мира в виде некоего «вселенского яйца», которое расколол Большой взрыв, в духе физических представлений своего времени предложил бельгийский священник, астроном и математик Жорж Леметр. Будучи в Америке, Леметр ознакомился с результатами измерений галактического красного смещения и галактических расстояний, выполненных Эдвином Хабблом. Эти данные позволяли предположить, что галактики разбегаются по всем направлениям, причем их скорость пропорциональна удаленности от Солнечной системы. Леметр вычислил последующую эволюцию «взорвавшейся» Вселенной на основе уравнений общей теории относительности и вывел линейную зависимость между скоростью удаления галактик и расстоянием до них.

В теории расширяющейся Вселенной Леметра зародышем мироздания служит не просто «вселенское яйцо» конечных размеров, а сверхмассивный первичный атом, существовавший вне пространства и времени. Его взрыв порождает опять-таки сверхтяжелые и потому нестабильные осколки, фрагменты которых тоже должны делиться. Если принять во внимание количество частиц, которое по современным оценкам содержит Вселенная, то получится, что атом-отец и его потомки во множестве поколений должны претерпеть несколько сотен делений и на этом остановиться.

Однако такая схема даже семьдесят лет назад не могла вызвать доверия. В процессе множественных делений в конце концов должны были возникать максимально устойчивые атомы. А поскольку титул абсолютного чемпиона ядерной стабильности принадлежит железу, то в космических масштабах именно оно должно было оказаться самым распространенным элементом. Однако в тридцатые годы прошлого века астрономы уже достоверно знали, что Вселенная почти полностью состоит из водорода и гелия. Несомненным достоинством модели Леметра было предсказание и объяснение закона Хаббла. Но данные об элементном составе Вселенной не согласовывались с теорией первичного атома. На макроуровне концепция бельгийского ученого работала превосходно, а на микроуровне заводила в тупик.

Именно на этом этапе в игру вступил Георгий Гамов. Гамов познакомился с моделью нестационарной Вселенной еще на студенческой скамье, когда учился у Фридмана. По окончании Ленинградского университета он посвятил себя ядерной физике и выполнил несколько классических работ, в частности построил теорию альфа-распада и предложил капельную модель ядра. Впоследствии он эмигрировал и в своих исследованиях полностью переключился на астрофизику. Основываясь на работах Леметра, Гамов начал поиск решения проблемы возникновения в Большом взрыве окружающих нас химических элементов.

Поскольку расширение Вселенной приводит к ее постепенному охлаждению, сжатие должно вызывать обратный эффект. Поэтому, исследуя модель Леметра назад во времени почти до исходного момента, Гамов заключил, что сразу после рождения мира все имевшееся вещество было чрезвычайно нагрето. Это был огромный шаг вперед по сравнению с леметровским атомом, для которого понятие температуры вообще не имело смысла. Однако следовало еще определиться с составом первичной материи.

Гамов предположил, что ранняя Вселенная была заполнена элементарными частицами, включая протоны, нейтроны и электроны. Эту смесь он назвал айлемом, использовав термин из средневекового английского языка, означающий некую первосубстанцию как источник всего сущего. И на этот раз интуиция не подвела замечательного физика, ведь по современным представлениям к концу первой секунды Большого взрыва все известное нам вещество Вселенной полностью состояло из айлема.

Спустя некоторое время астрофизики, анализируя построения Гамова, пришли к выводу, что Вселенная должна быть заполнена микроволновым излучением, возникшим примерно через 300 тыс. лет после ее начала. Это было предсказанием принципиально нового явления, еще не известного науке. Регистрация микроволнового излучения, осуществленная в шестидесятых годах прошлого века, оказалась сильным аргументом в пользу теории горячего рождения Вселенной.

Однако вернемся к совершенно фантастическому этапу инфляции. Когда маятник рождающейся Вселенной сделал один раз хроноквантовый «тик» и ее размеры стабилизировались, сформировался тот набор фундаментальных физических законов, которые до сих пор управляют окружающей нас реальностью. Одновременно из вакуума возник феерический фонтан рождающихся элементарных частиц. В результате к концу инфляционной фазы Вселенная уже была наполнена горячей кашей из разнообразных микрочастиц и электромагнитного излучения.

Очень важно, что обычных (естественно, с нашей точки зрения) частиц оказалось чуть больше, нежели античастиц. Эта разница была микроскопической, порядка стотысячных долей процента, но все же не нулевой. В результате, когда Вселенная охладилась настолько, что излучение перестало рождать новые частицы, вся антиматерия исчезла в процессе аннигиляции. Через 30 микросекунд после Большого взрыва субэлементарные кварки и связывающие их глюоны сконденсировались в нуклоны-протоны и нейтроны, а где-то на десятой секунде наступила эра первичного нуклеосинтеза, то есть возникновения композитных ядер гелия, дейтерия и лития.