Вы здесь

Вероятность как форма научного мышления. Глава 2. О природе статистических закономерностей (В. Г. Лёвин, 2016)

Глава 2. О природе статистических закономерностей

2.1. Понятие о статистических закономерностях

Выше было показано, что в истории науки ХХ столетия была признана возможность, опираясь на обобщенный смысл детерминизма органически включать неопределенность в круг идей об определенности явлений действительности. Важнейшим средством такого включения выступила статистическая форма описания массовых событий. Более того, выяснилось, что существует особый статистический тип определенности, устойчивости и, соответственно, необходимости и закономерности. Признание же статистического типа необходимости и закономерности переводит проблему соотношения вероятности и детерминизма на новый уровень – уровень законов.

В самом общем плане это означает, что статистическая форма описания явлений должна была получить еще свое оправдание в существенных чертах и признаках закономерности. В такой постановке данная проблема касается по существу вопроса о статусе вероятностно-статистических закономерностей, разработка которого до настоящего времени носит весьма дискуссионный характер.[43]

Как показал исторический ход длительной дискуссии, значительная часть выступлений ограничивалась сравнительно узкой постановкой вопроса, а именно: элиминирует ли статистический тип закономерности традиционно признаваемый классической наукой динамический тип закона? В тесной связи с этим вопросом ставился также другой: является ли однозначность атрибутивной характеристикой закона вообще? Их взаимозависимость выявляется, скажем, в том обстоятельстве, что из тезиса об однозначности и строгой определенности закономерности нередко выводилось отрицание объективного и универсального содержания статистических закономерностей.

В дальнейшем изложении я покажу более конкретный характер обсуждения поставленных здесь вопросов. Как это часто принято в теоретическом познании, автор намерен обратиться прежде всего к тем исходным идеализациям, которые используются при формировании закономерностей того и другого типа, и сопоставить последние под углом зрения их направленности на решение задач системного анализа.

С формальной стороны различие между динамическими и статистическими законами состоит в том, что математическое выражение статистических закономерностей опирается на понятие вероятности. Тогда как динамические законы описываются в форме дифференциальных уравнений либо однозначных функциональных зависимостей. Учитывая это обстоятельство правомерно говорить о поэлементном подчинении динамическим законам всех объектов некоторой рассматриваемой совокупности. В качестве таких элементов часто рассматривают состояния изменяющего во времени материального явления или процесса. Кроме того, в случае динамических законом говорят о жестко детерминированном, строго определенном характере этого подчинения.

В абстрактно-математическом плане статистическая форма зависимости для некоторой упрощенной ситуации также может быть выражена в виде функции. Однако таковая обладает рядом специфических особенностей, важнейшие из которых, например, в свое время М. Смолуховский определил следующим образом. Если статистический закон представить как функцию y=f(x), то должны выполняться такие указания: 1) небольшие изменения «Х» в общем вызывают большие изменения «У»; 2) совокупности таких группировок «Х», которым, приблизительно, соответствует одна и та же группировка значений «У», неизмеримо более многочисленны, чем совокупность группировок «Х», которым соответствует заметно отклоняющееся распределение значений «У».[44]

Очевидно, что первое из названных свойств выводит данную функцию из класса таких, для которых приложим принцип: ограничение приращения аргумента ограничивает область изменения функции. Следовательно, статистическая зависимость не может быть описана в дифференциальной форме, поскольку здесь неприложимо математическое понятие предела. Второе же свойство подчеркивает новый тип устойчивости, обнаруживаемый у данной функции, для выражения которой необходимо учитывать массовость рассматриваемого явления.

Отмеченный здесь характер соответствия между изменениями аргумента «Х» и функции «У» совпадает, по существу, с требованием непрерывности вероятностной функции распределения начальных данных. На этот признак указывали, например, А. Пуанкаре и Г. Рейхенбах.[45] Смысл названного требования состоит в том, что при общей устойчивости некоторого комплекса начальных условий реализации данного явления из него нельзя исключить факторы, обуславливающие вариации отдельных элементов массового явления. Ибо эти факторы невозможно изолировать или проконтролировать.[46]

Конец ознакомительного фрагмента.