Вы здесь

Будем правильно дышать!. Глава I. Физиологические проявления дыхания (В. И. Романов, 2011)

Глава I. Физиологические проявления дыхания

1. 1. Устройство и функционирование органов дыхания

Этот раздел книги написан, в основном, по материалам работ [2–8]. В этих работах дыхание и органы, позволяющие его производить, рассмотрены не просто как процедура и механизмы для “набирания и выпускания воздуха”, а как сложная биологическая система, использующая кислород для высвобождения энергии, содержащейся в молекулах пищи. Другими словами дыхательная система – это средство и биологические органы для приобретения живым организмом клеточной энергии.

Медицинский словарь [4] определяет дыхание, как “основной процесс жизни, в котором кислород используется для окисления органических топливных молекул, которые обеспечивают энергией организм, производя углекислый газ и воду”.

Различают дыхания двух тесно связанных друг с другом типов: организменное и клеточное. Организменное дыхание – это физический процесс поступления кислорода в организм, тогда как клеточное дыхание представляет собой сложный ряд реакций, использующих этот кислород для обеспечения тела энергией. Первый этап организменного дыхания – вентиляция лёгких – заключается в чередующемся обмене вдыхаемого и выдыхаемого воздуха, т. е. в наполнении лёгких атмосферным воздухом и удалении его наружу. Этот процесс осуществляется благодаря дыхательным движениям грудной клетки. Рассмотрим его детально.

Рёбра (12 пар) прикреплены спереди к грудине, а сзади – к позвоночнику. Они защищают органы грудной клетки (сердце, лёгкие, крупные кровеносные сосуды) от внешних повреждений, их движение – на вдохе и выдохе, осуществляемое межрёберными мышцами, способствует наполнению и опустошению лёгких.

Снизу грудная клетка герметично отделена от брюшной полости диафрагмой, которая своей выпуклостью несколько вдаётся в грудную полость. Лёгкие заполняют почти всё пространство грудной клетки, за исключением её средней части, занятой сердцем. Нижняя поверхность лёгких лежит на диафрагме, их суженные и закруглённые верхушки выступают за ключицы. Наружная выпуклая поверхность прилегает к рёбрам.

В центральную часть внутренней поверхности лёгких, соприкасающихся с сердцем, входят крупные бронхи, лёгочные артерии (несущие в лёгкие венозную кровь из правого желудочка сердца), кровеносные сосуды с артериальной кровью, питающие ткань лёгких, и нервы. Из лёгких выходят лёгочные вены, несущие в сердце артериальную кровь. Вся эта зона образует так называемые корни лёгких. Каждое лёгкое покрыто оболочкой (плеврой). У корня лёгкого плевра переходит на внутреннюю стенку грудной полости. Поверхность плеврального мешка, в котором заключено лёгкое, почти соприкасается с поверхностью плевры, выстилающей внутреннюю сторону грудной клетки. Между ними имеется щелевидное пространство – плевральная полость, где находится небольшое количество жидкости.


Органы дыхания человека


Во время вдоха межрёберные мышцы поднимают и разводят рёбра в стороны, нижний конец грудины отходит вперед. Диафрагма (главная дыхательная мышца) в этот момент также сокращается, отчего её купол становится более плоским и опускается, отодвигая брюшные органы вниз, в стороны и вперёд. Давление в плевральной полости становится отрицательным, лёгкие пассивно расширяются, и воздух через трахею и бронхи втягивается в лёгочные альвеолы. Так происходит первая фаза дыхания – вдох.

При выдохе межреберные мышцы и диафрагма расслабляются, рёбра опускаются, купол диафрагмы приподнимается. Лёгкие сдавливаются, и воздух из них вытесняется наружу. После выдоха наступает короткая пауза.

Необходимо отметить особую роль диафрагмы не только как главной дыхательной мышцы, но и как мышцы, активизирующей кровообращение. Сокращаясь во время вдоха, диафрагма давит на желудок, печень и другие органы брюшной полости, выдавливая из них венозную кровь по направлению к сердцу. Во время выдоха диафрагма приподнимается, внутрибрюшное давление снижается, и это усиливает приток артериальной крови к внутренним органам брюшной полости. Таким образом, дыхательные движения диафрагмы, совершающиеся 12÷18 раз в минуту, производят мягкий массаж органов брюшной полости, улучшая их кровообращение и облегчая работу сердца.

Разберём дыхательный процесс в целом, анатомию дыхательных путей и ряд других особенностей, связанных с этим процессом [120]. Внешнее дыхание осуществляется через следующие самостоятельные органы: нос, носоглотку, трахею, бронхи, лёгкие и лёгочные альвеолы, а также 1–2 процента газообмена осуществляются через кожу и пищеварительный тракт.

В процессе вдыхания порции воздуха воздушная струя, поднимаясь кверху через носовые отверстия, проходит главной своей массой по среднему носовому ходу, после чего, дугообразно опускаясь вниз сзади и снизу, направляется в носоглоточную полость. Таким закруглённым маршрутом достигается более продолжительное соприкосновение воздуха со слизистыми оболочками воздухоносных путей. Проходя через носовую полость, воздух согревается, увлажняется и очищается. Увлажняется воздух почти до полного насыщения за счёт носовой слизи, выделяемой слизистой оболочкой носа (около 0,5 кг влаги за сутки).

Далее воздух проходит через носоглотку, гортань и попадает в трахею, имеющую вид цилиндрической трубки длиной 11–13 сантиметров и диаметром от 1,5 до 2,5 сантиметра. Она состоит из хрящевых полуколец, соединённых между собой волокнистой соединительной тканью. Трахея выстлана изнутри слизистой оболочкой, покрытой мерцательным эпителием. Движения ворсинок мерцательного эпителия выводят наружу попавшую в неё пыль. Далее трахея разветвляется на бронхи, а те в свою очередь, на бронхиолы – более мелкие воздухоносные пути. В отличие от трахеи, бронхи уже имеют в составе стенок мышечные волокна.

В стенках бронхов располагаются слизистые железы, которые покрыты мерцательным эпителием. Совместная деятельность слизистых желёз, бронхов, мерцательного эпителия и мускулатуры способствует увлажнению поверхности слизистой оболочки, разжижению и выведению наружу вязкой мокроты при патологических процессах, а также выведению частиц пыли и микробов.

Воздух, пройдя путь по вышеописанным воздухоносным путям, очищенный и нагретый до температуры тела, попадает в альвеолы, смешивается с имеющимся там воздухом и приобретает близкую к 100-процентной относительную влажность.

Газообмен между внешним воздухом и кровью при выдохе и вдохе лёгких происходит в основном в альвеолах, которых насчитывается свыше 700 миллионов; они покрыты густой сетью кровеносных капилляров.

Воздух попадает в альвеолы благодаря изменению объёма легких из-за дыхательных движений грудной клетки. Так, при вдохе объем лёгких увеличивается, давление воздуха в них становится ниже атмосферного воздуха и последний засасывается в лёгкие. При выдохе объём легких уменьшается, давление в них воздуха становится выше атмосферного и воздух устремляется наружу. Во время вдоха давление в воздухоносных путях на 10–25 мм водного столба ниже атмосферного; во время выдоха оно на 20–40 мм водного столба выше атмосферного. Чем интенсивнее дыхание, тем сильнее падение давления воздуха в лёгких при вдохе и повышение его при выдохе.

Если говорить о клеточном дыхании, то в живом организме все клетки задействованы в том или ином виде дыхания. Процесс дыхания позволяет клетке переносить химическую энергию, запасённую в углеводородах, липидах и некоторых белках в молекулы-носители, такие как аденозинтрифосфат (АТФ). Затем при необходимости клетки используют хранящуюся АТФ для различных реакций, которые происходят внутри клетки – в первую очередь для образования клеточных белков.

Таким образом, по мере распада пищевых молекул из них высвобождается энергия, которая может быть использована для поддержания функций клетки. Этот процесс зависит от наличия кислорода. Заметим, что при отсутствии кислорода в организме может развиваться анаэробное дыхание или ферментация (брожение), но оно не представляет какого-либо значения для дыхательной системы человека и здесь не рассматривается.

Кислород играет основополагающую роль в обеспечении клетки энергией, – если его добавить к молекуле глюкозы (простой сахар), то получится углекислый газ и вода – с полным выходом 36 молекул аденозинтрифосфата (АТФ). Клетки расходуют АТФ в качестве энергетического средства для проведения большинства энергозатратных реакций. Химическая реакция жизнедеятельности клетки описывается следующим уравнением:

C6H12O6 + 6O2 —» 6СО2 + 6H2О

(с типичным выходом энергии в 36 АТФ).

Этот клеточный процесс известен как гликолиз.

Рассмотрим анатомические особенности дыхательной системы человека. Основной задачей её является газообмен. Однако, дыхательная система выполняет множество и других функций, таких как насыщение лёгких воздухом (механическое дыхание), использование кислорода (его обработка) и удаление углекислого газа и воды из организма. Основными структурами, задействованными в этом процессе, являются: полость носа, глотка, гортань, трахея, бронхи, бронхиолы и альвеолы лёгких (смотри рисунок № 1).

Функционально дыхательная система обычно делится на проводящий отдел и дыхательный отдел. Проводящий отдел состоит из всех проходов и структур, которые проводят газы к дыхательному отделу. Газообмен происходит в дыхательном отделе, который состоит из бронхиол и альвеол.

Проводящая система

Наружный воздух попадает в наш организм через два отверстия: рот и нос.

После входа в полость носа он согревается с помощью разветвлённой сети кровеносных сосудов, покрывающих полость носа. Полость носа покрыта волосками, называемыми вибриссами, которые обычно располагаются в ноздрях для задержания микрочастиц от попадания в лёгкие. Мелкие частицы, такие как пыль, пыльца растений или дым, задерживаются на влажной слизистой оболочке, которая выстилает полость носа.

Глотку, представляющую также элемент проводящей системы организма, выстилает слизистая оболочка, покрытая выделяющими слизь клетками. Слизь помогает задерживать пыль, пыльцу и другие инородные частицы. Без подобного специального покрытия эти чужеродные частицы попадали бы в места, где происходит газообмен и мешали бы физиологическим обменным процессам. Но слизь сама по себе не решает всех проблем удаления «биологического мусора». Если бы она оставалась на стенках глотки, то, в конечном счёте, высыхала бы и не могла бы выполнять защитную очистительную функцию. Наше тело должно быть в состоянии постоянно удалять старый слой слизи и производить новый. Для этого существует особая группа пальцевидных выростов, известных как реснички. Эти особые выросты удаляют старую слизь и наносят новый “свежий” слой слизи, поддерживая глотку во влажном состоянии.

«Реснички [5] представляют собой крошечные волосоподобные выросты размером приблизительно 0.25µм в диаметре, в центре которых находится пучок микротрубочек. Их функцией является передвижение жидкости по поверхности клеток или проталкивание отдельной клетки через жидкость. На эпителиальных клетках, которые выстилают дыхательные пути человека, огромное число ресничек (109 на каждом см2) удаляют слои слизи вместе с задержанными частицами пыли и мёртвых клеток, и продвигают их по направлению ко рту, где они проглатываются или выплёвываются и таким образом удаляются».

По мере продвижения воздуха к альвеолам в лёгкие он проходит через глотку в гортань, обычно называемую голосовой камерой. В голосовой камере находятся несколько маленьких, расположенных строго по парам констрикторных (сжимающих) мышц, которые помогают менять длину, положение и напряжение голосовых связок, и имеют специфическую иннервацию [6]. Гортань выполняет две функции: предохраняет попадание пищи (в основном жидкостей) в трахею и участвует в образовании звуков.

Отмечается [2] замечательное свойство гортани в передаче речевых сообщений, причём она обладает анатомическими особенностями, которые можно обнаружить только у людей. Ни среди современных живых существ, ни среди тех, которые принадлежат к летописи окаменелостей, нет ни одного, кто обладал бы чем-либо напоминающим гортань (“голосовую камеру”), которая обнаруживается только у людей. Отметим, что птицы и животные производят звуки для общения, не используя гортань.

Речь осуществляется речевым аппаратом человека, который состоит из набора органов. Они представляют собой механизм по извлечению звука. Этот механизм управляется волей человека и сам по себе не издает никаких произвольных осмысливаемых звуков, а только по воле человека. По сути дела весь механизм речеобразования человека образно можно представить духовым инструментом наподобие волынки, где лёгкие – это мехи подающие воздух, а ротовые и носовые полости – резонаторы, язык и губы – клавиши переключения звуков, а голосовые связки – резонаторные усилители звуков. Всё очень наглядно и конкретно.

Лёгкие создают первичное давление воздуха, необходимое для создания речевого сигнала. Полость глотки, полость рта и полость носа придают форму окончательному исходящему звуку, который воспринимается как речь. Может ли эволюция объяснить существование гортани, и почему у других животных не развилась способность говорить? Наши знания не позволяют пока ответить на эти вопросы [2].


Дыхательный отдел лёгких


Ещё болеё сложно и совершенно устроены трахея и бронхи человека. Из гортани воздух поступает прямо в трахею или дыхательное горло. В работе [9] даётся такой комментарий: «Ниже глотки дыхательные пути состоят из трахеи – трубки, которая доходит почти до середины груди; бронхов (бронхиального дерева), образованных разделением трахеи, где затем каждая трахея делиться ещё раз; и бронхиол – тонких и коротких эластичных дыхательных путей, вновь многократно разделяющихся и образовывающих альвеолярные ходы, от которых отходят альвеолы».

Трахея разветвляется на два бронха, а затем продолжает разветвляться дальше и образует бронхиальное дерево [8]: «Глубже в лёгких бронх разделяется и образует вторичные бронхи и сегментарные (третичные) бронхи. Бронхиальное дерево продолжает разветвляться на меньшие трубочки, называемые бронхиолами. В бронхиолах есть маленький хрящ, который содержит плотные клетки гладкой мускулатуры, способные сжимать или расширять эти дыхательные пути».

Дыхательная система

После того, как воздух прошёл определённую «термопылевую» обработку и подготовку, он готов для прохождения в отдел, где осуществляется газообмен, то есть в лёгкие. Говоря о лёгких, авторы [7]отмечают:

«Если лёгкое сравнить с близко расположенным, механически активным сердцем, то оно может показаться относительно неактивным. Лёгкое – это орган, который на протяжении всей жизни подвержен изменению внешнего и внутреннего давления из-за пульсирующего сердца и механического движения воздуха посредством ритмических сокращений дыхательных мышц. И хотя может показаться, что лёгкое – это бездеятельный орган, в действительности оно считается очень активным и действующим. В человеческом организме в течение дня через лёгкие проходит 12 тысяч литров воздуха и 6 тысяч литров крови».


Устройство бронхиол и альвеол


Ткань лёгких состоит из мельчайших наполненных воздухом пузырьков – альвеол, стенки которых густо оплетены кровеносными сосудами. В отличие от многих других органов лёгкие имеют двойное кровоснабжение: систему кровеносных сосудов, обеспечивающих специфическую функцию лёгких – газообмен, и специальные артерии, питающие саму лёгочную ткань, бронхи и стенку лёгочной артерии.

Капилляры лёгочных альвеол представляют собой весьма густую сеть с расстоянием между отдельными петлями в несколько микрометров. Это расстояние увеличивается при растяжении стенок альвеол во время вдоха.

Общая внутренняя поверхность всех капилляров, находящихся в лёгких, достигает примерно 70 м2.

Одномоментно в лёгочных капиллярах может находиться до 140 мл крови, при физической работе количество протекающей крови может достигать 30 л в 1 мин.

Кровоснабжение разных участков лёгкого зависит от их функционального состояния. В выключенных из вентиляции участках лёгких кровоток резко снижен. Такие участки лёгочной ткани становятся беззащитными при вторжении болезнетворных микробов.

В нормально функционирующих лёгочных альвеолах имеются специальные клетки, которые называются альвеолярными макрофагами. Они защищают лёгочную ткань от органической и минеральной пыли, содержащейся во вдыхаемом воздухе, обезвреживают микробы и вирусы и нейтрализуют выделяемые ими вредные вещества (токсины). Эти клетки переходят в лёгочные альвеолы из крови. Длительность их жизни определяется количеством вдыхаемой пыли и бактерий: чем больше загрязнён вдыхаемый воздух, тем быстрее гибнут макрофаги.

От способности этих клеток к поглощению и перевариванию болезнетворных бактерий в большой степени зависит уровень сопротивляемости организма к инфекции. Кроме того, макрофаги очищают лёгочную ткань от её собственных погибших клеток. Известно, что макрофаги быстро «узнают» повреждённые клетки и направляются к ним, чтобы их устранить. Организм человека лишь частично использует кислород атмосферного воздуха. Как известно, во вдыхаемом воздухе в среднем содержится 21 %, а в выдыхаемом —15÷17 % кислорода. В состоянии покоя организм потребляет 200–300 см3 кислорода в минуту.

Переход кислорода в кровь и углекислоты из крови в лёгкие происходит вследствие разницы между парциальным давлением этих газов в воздухе, находящемся в лёгких, и их напряжением в крови. Поскольку парциальное давление кислорода в альвеолярном воздухе составляет в среднем 100 мм рт. ст., в крови же, притекающей к лёгким, давление кислорода равно 37–40 мм рт. ст., он переходит из альвеолярного воздуха в кровь.

Установлено, что в состоянии покоя средний взрослый человек за каждую минуту поглощает 250 мл кислорода, и выдыхает около 200 мл углекислого газа. Именно внутри альвеол лёгких происходит настоящий газообмен с помощью простой диффузии. Говоря о функциональной значимости альвеол, утверждается [7]: «В человеческом лёгком расположено приблизительно 300 миллионов альвеол со средним диаметром 250 µм, что даёт общую альвеолярную площадь поверхности в 143 м2».


Газообмен альвеолы с капилляром


Каждая альвеола – это всего лишь отдельная клетка, покрытая одним слоем, отсюда толщина воздушно-кровяного барьера составляет толщину стенок двух клеток – клеточная стенка одной альвеолы и клеточная стенка одного капилляра. Альвеолы по форме многогранны и обычно расположены группками, как медовые соты, которые называются альвеолярными «мешочками».

Огромная площадь поверхности альвеол и маленькое диффузионное расстояние между воздухом альвеолы и кровью капилляра быстро приводит кровь в газообразное равновесие с воздухом в альвеоле. Функция альвеол облегчается ещё и за счёт того, что альвеолы окружены такой сетью капилляров, что они почти постоянно покрыты кровью. та комплексная система снабжения клеток энергией также зависит и от гемоглобина, который поставляет кислород во все части организма.


Поглощение кислорода в в альвеоле


Без него все внутренние органы не могли бы получать кислород. Гемоглобин – это сложный белок, который имеет две цепи (альфа и бета) – он окрашивает кровяные тельца в красный цвет. Таким образом, дыхательная система полностью зависит от циркулирующей крови, которая поставляет кислород в и выводит углекислый газ.

Упрощённая схема транспорта кислорода и углекислого газа в организме при нормальных условиях выглядит следующим образом: во время вдоха кислород проникает через альвеолярную лёгочную мембрану и связывается с гемоглобином красных клеток крови – эритроцитов. Эритроциты доставляют кислород к тканям.

Там гемоглобин, восстанавливаясь, отдаёт кислород и присоединяет углекислый газ. Возвращаясь в лёгкие, гемоглобин вновь окисляется и отдаёт углекислый газ, который удаляется из организма с выдохом.

При спокойном дыхании не все альвеолы участвуют в дыхании одновременно, часть их находится в спавшемся состоянии. Они раскрываются при усиленном дыхании во время мышечной работы и при действии на организм разреженного воздуха (в горах). Таким образом, в лёгких, как и в капиллярах кровеносной системы, при небольшом уровне активности происходит попеременное включение в деятельность то одних, то других «функциональных единиц» (т. е. альвеол).

Лёгкие в зависимости от глубины вдоха и выдоха заполняются воздухом различно. Содержащийся в них воздух после максимального выдоха называется остаточным. Объём вдоха и выдоха при спокойном дыхании составляет около 500 миллилитров и называется дыхательным воздухом. Разница между дыхательным воздухом и остаточным, который выдыхается только при максимальном выдохе, называется резервным воздухом. И, наконец, то количество воздуха, которое человек может вдохнуть сверх среднего вдоха при максимальном, называется дополнительным. Воздух, не участвующий в газообмене, но находящийся в воздухоносных путях, называется вредным пространством. Его объём примерно равен 150 миллилитрам. Сумма дыхательного, резервного и дополнительного воздуха называется жизненной ёмкостью лёгких.

Вдыхаемый воздух является смесью альвеолярного и атмосферного воздуха, имеющегося в воздухоносных путях. Если собирать выдыхаемый воздух последовательными порциями за один выдох, то получается следующее: вначале выходит воздух, состав которого такой же, как и атмосферного, далее процент углекислого газа растёт, а кислорода снижается. В самом конце выдоха в воздухе содержится 5,5 % углекислого газа, а кислорода только 14 %. Разница в составе объясняется тем, что выдыхаемый воздух содержит не только воздух, заполнивший альвеолы и участвующий в газообмене с кровью, но и воздух вредного пространства. В зависимости от степени вентиляции лёгких различают поверхностное и глубокое дыхание. При поверхностном используется только дыхательный объём воздуха, при глубоком, помимо дыхательного, используется еще дополнительный и резервный. В зависимости от этого меняется и частота дыхания. При поверхностном она составляет 16–18 раз в минуту, при глубоком и медленном (растянутом) – 4–8.

Очень важно, что глубокое и быстрое дыхание вымывает, а вернее сказать выветривает из организма углекислый газ, дефицит которого в организме вызывает сужение бронхов и сосудов, что приводит к кислородному голоданию клеток мозга, сердца, почек и других органов, поднимает артериальное давление, нарушает обмен веществ. Поэтому все лечебные дыхательные аппараты и тренажёры устроены так, чтобы уменьшить глубину и частоту дыхания (подробно об этом смотри в разделе 3.2. книги).

Дыхание человека в течение жизни меняется. Так, в раннем детском возрасте оно поверхностное. Пропорции тела и внутренних органов ограничивают полное развёртывание лёгких во время вдоха. Выдыхаемый воздух у детей раннего возраста содержит больше кислорода и меньше углекислого газа, чем у детей более старшего возраста. Поэтому частота дыхания тем выше, чем моложе ребёнок: у новорожденного – от 40 до 50–55 раз в минуту; у ребёнка 1–2 лет – 30–40 раз в минуту; 6 лет – 20 раз в минуту; 10 лет -18 – 20 раз в минуту.

Тип дыхания у новорождённого и грудного ребёнка – диафрагмальный (нижний), с 2 лет – смешанный рёберно-диафрагмальный, а с 8 – 10 лет у мальчиков вырабатывается по преимуществу дыхание диафрагменного типа, у девочек – ключичное (верхнее).

После достижения половой зрелости и до 40 лет дыхательная функция находится в наивысшем состоянии. Но после сорока лет в лёгких наблюдаются деструктивные процессы. Так, в бронхах начинается атрофия слизистой и подслизистой оболочек тканей с замещением их жировой и склерозированной соединительной тканью, обызвествление хрящей. Это ведёт к уменьшению эластичности бронхиальных путей и к потере тонуса. В самой лёгочной ткани начинается атрофия, которая выражается в истончении альвеолярных перегородок и уменьшении их упругости; следствием этого является расширение альвеол в результате уменьшения сопротивления их стенок атмосферному давлению. Так например, если у новорождённых диаметр альвеол составляет 0,05 миллиметра, то у взрослого человека уже 0,2–0,25 миллиметра, а в старости он увеличивается до 0,34 миллиметра. Естественно, всё это отражается на дыхании, – оно становится все более и более углублённым при той же частоте. И по мере приближения смерти человека оно все более и более углубляется.

Укажем, что лёгкие являются одновременно не только органом дыхания, но и выделения, регуляции температуры тела и даже принимают участие в выработке физиологически активных веществ, участвующих в регуляции свертывания крови, обмена белков, жиров и углеводов. Поэтому, чем чище организм, тем лучше лёгкие выполняют свои обязанности, в противном случае они заняты в основном выделительной функцией в ущерб остальным.

Завершая этот раздел, можно отметить, что дыхание является самым наглядным и убедительным проявлением жизни. «Не дышит!», «Перестал дышать!» – общепринятые во всём мире выражения, обозначающие прекращение жизни, смерть. Благодаря дыханию организм получает кислород и освобождается от излишков углекислого газа, образующегося в результате обмена веществ. Дыхание и кровообращение обеспечивают все органы и ткани нашего тела необходимой для жизни энергией. Освобождение энергии, необходимой для жизнедеятельности организма, происходит на уровне клеток и тканей в результате биологического окисления. При недостатке кислорода в крови в первую очередь страдают такие жизненно важные органы, как сердце и центральная нервная система. Кислородное голодание сердечной мышцы сопровождается угнетением синтеза аденозинтрифосфорной кислоты (АТФ), являющейся основным источником энергии, необходимой для работы сердца. Мозг человека потребляет больше кислорода, чем непрерывно работающее сердце, поэтому даже незначительный недостаток кислорода в крови отражается на состоянии и работоспособности мозга.

Поддержание дыхательной функции на достаточно высоком уровне является необходимым условием сохранения здоровья и предупреждения развития преждевременного старения.

1.2. Роль газообмена в здоровье организма

Практически все живые существа на нашей планете, за исключением анаэробных бактерий, живут и развиваются в воздушной среде, представляющей собой смесь газов – в основном азота, кислорода, паров воды, оксидов и диоксидов углерода, азота и в незначительных количествах других газов.

Основными газами, обеспечивающими жизненно важные процессы окисления, являются кислород и двуокись углерода – СО2. Этими газами живые организмы буквально «напичканы», но их содержание не всегда является оптимальным. Между тем, – как недостаток кислорода, так и недостаток углекислого газа в крови организмов может повлечь тяжёлые последствия. Содержание углекислого газа в крови регулирует возбудимость нервной системы, влияет на активность ферментных, гормональных и пищеварительных процессов. Углекислый газ крови участвует в синтезе белка, регенерации повреждённых тканей и др. Кислород необходим для извлечения энергии из пищи, причём умеренное кислородное голодание вызывает заметный оздоровительный эффект и является действенным методом торможения процессов старения.

Потребность организмов в углекислом газе возникла «исторически» ещё много миллионов лет назад, когда углекислый газ в атмосфере составлял основную часть её объёма. Зарождавшийся на планете фотосинтез заключался в поглощении углекислого газа клетками растений, выбросе в атмосферу кислорода и накоплении углерода. Постепенное обогащение атмосферы кислородом послужило одной из основ для возникновения животной жизни. Но законы обмена веществ в клетке, нуждающейся для жизни не только в кислороде, но и в углекислом газе, сохранились.

Между тем следует помнить, что углекислый газ является вазодилятатором (вазодилятация – это расширение сосудов). Повышенное содержание СО2 расширяет кровеносные сосуды, что позволяет большему количеству растворённых газов проходить через кровеносную систему, достигая мозга. Таким образом, чрезмерное повышение уровня СО2 в крови увеличивает риск кислородного отравления, азотного наркоза, декомпрессионной болезни и гипотермии.

Сейчас в атмосферном воздухе присутствуют только сотые доли процента углекислого газа, а в крови его содержится несколько процентов. С таким газовым дисбалансом организм не всегда способен успешно справиться и ему надо помогать. Оптимальным балансом между кислородом и углекислым газом в артериальной крови можно управлять подбором дыхательных упражнений (об этом в разделе 4.3 книги). Это сделать непросто, так как механизмы насыщения крови О2 и СО2 противоречивы, и нужно искать компромиссное решение. При выполнении дыхательных упражнений главной заботой является накопление в крови именно углекислого газа.

Отмечается [10], что в реальном газообмене участвует только часть объёма вдыхаемого воздуха, достигающая альвеол лёгких. Она составляет около 70 % от минутного объёма и называется альвеолярной вентиляцией, или альвеолярным объёмом, и измеряется в литрах в минуту. В свою очередь газообмен кислорода и углекислого газа в артериальной крови определяется парциальными давлениями (напряжениями) в ней этих газов.

На рисунке 1 показаны зависимости этих давлений от альвеолярной вентиляции лёгких. В нормальных условиях давление кислорода в артериальной крови составляет около 95 мм рт. ст., а углекислого газа – 40 мм рт. ст. Отмечается [10], что парциальное давление углекислого газа мало меняется с возрастом, а парциальное давление кислорода снижается примерно на 25 %. Этот параметр можно рассматривать как один из объективных показателей старения организма. Увеличение парциального давления кислорода сопровождается уменьшением парциального давления углекислого газа. Избыток кислорода как бы вымывает из крови углекислый газ; уровень же углекислого газа, превышающий норму, приводит к кислородному голоданию. Такая сложная взаимная зависимость концентраций углекислого газа и кислорода для нормальной работы живого организма диктует ему тактику поведения.


Рис. 1. Зависимость парциальных давлений кислорода РО2 и углекислого газа РСО2 от альвеолярной вентиляции в артериальной крови [10].


По современным представлениям, газообмен в лёгких происходит меньше чем за 1 секунду. Углекислый газ в растворённом виде выходит из плазмы через стенки лёгочного капилляра в мельчайшее пространство между капилляром и стенкой альвеолы. Затем он проходит сквозь стенки альвеолы в тонкую влажную плёнку, выстилающую каждую альвеолу. Как углекислый газ, так и кислород, растворяются в этом влажном слое на своем пути в кровь и из неё. Газы переносятся путем диффузии – движения из области высокого в область низкого давления. Кислород проходит в противоположном направлении относительно углекислого газа – из альвеолы в кровь – и соединяется с гемоглобином эритроцитов, образуя оксигемоглобин. Лёгочные капилляры настолько узки, что эритроциты движутся по ним "гуськом" один за другим.

Насыщенная кислородом кровь возвращается в левое предсердие через лёгочные вены, которые проходят вдоль бронхиол и бронхов. Вдыхаемый воздух содержит около 20 % кислорода, ~0,03 % углекислого газа, остальную часть составляет азот и следовые концентрации других газов. Выдыхаемый воздух содержит около 16 % кислорода, а количество углекислого газа возрастает примерно в 100 раз и составляет ~4 %. Выдыхаемый воздух насыщен водными парами; эта невидимая потеря воды из организма составляет примерно 1 л в сутки.

Для реализации газообмена кровь должна доставлять к альвеолам кислород и уносить углекислый газ. Поэтому газообмен зависит также от объёма крови, проходящей через альвеолы за единицу времени. Отношение альвеолярного объёма воздуха к этому объёму крови характеризует состояние воздушно-кровяного обмена, которое в норме равно 0,9÷1,0.

Статистическая «норма» для среднего человека составляет 12 дыханий в минуту. При этом лёгкие сильно вентилируются с избыточной потерей углекислого газа. Поверхностное и более медленное – хотя бы в полтора-два раза – дыхание приведёт, по мнению Ю.Гущо [10], к увеличению продолжительности жизни, так как позволит улучшить газообмен в крови и отодвинуть наступление болезней. Недостаток же углекислого газа, вызванный глубоким частым дыханием ртом, приводит к спазмам сосудов, сокращению стенок бронхов. Сужение сосудов уменьшает потребление кислорода почками, сердцем, мозгом, печенью и другими органами, повышает артериальное давление и уменьшает венозный кровоток. Застой крови в венах, в свою очередь, приводит к сосудистым нарушениям и, как следствие, ко многим болезням.

Азот и углекислый газ также играют важную роль в газообмене организма, являясь незаменимыми в синтезе белков. При правильном газообмене молекулы кислорода соединяются с гемоглобином, а дальше доносятся кровью до каждой клетки. При недостатке СО2 кислород не усваивается в полной мере, организм испытывает его дефицит. И для того чтобы молекула азота закрепилась в кишечнике для синтеза белков, также необходим углекислый газ, в противном случае синтез белков не осуществляется [11]. В результате углекислый газ, растворяясь в воде, увеличивает количество ионов водорода Н+ в растворе, то есть создаётся кислая среда. Именно в кислой среде ускоряются процессы связывания кислорода с гемоглобином, т. е. лучше усваивается вдыхаемый кислород. Научными исследованиями установлено, что дыхание йогов в наибольшей степени соответствует этому требованию.

Между тем дыхание обычных людей – глубокое и частое – приводит к избыточному выведению углекислого газа из организма. В результате происходит перевозбуждение центральной нервной системы, сдвиг кислотно-щелочного равновесия в сторону щелочной среды. Следствием этого нарушается обмен веществ и постоянство внутренней среды. Это выражается в снижении иммунитета, склонности к аллергиям, воспалительным заболеваниям, отложению солей, ожирению или похуданию. Кроме того, нарушается работа желез внутренней секреции, развиваются опухоли и т. д. При чрезмерной потере СО2 включаются защитные механизмы организма, пытающиеся остановить этот разрушительный для организма процесс. К ним относятся [11]:

• спазм сосудов бронхов;

• сужение кровеносных сосудов;

• увеличение секреции слизи в бронхах, носовых ходах, развитие аденоидов, полипов;

• отложение холестерина, что способствует развитию склероза тканей и, как следствие, преждевременного старения, развития инфарктов и инсультов.

При нормализации дыхания количество углекислого газа, водорода и азота в организме достигает должного уровня, и восстанавливается энергообмен, при котором естественным образом ликвидируются все перечисленные выше патофизиологические состояния. А если ещё больше уменьшить дыхание, как советуют йоги, то у человека развиваются предпосылки к сверхвыносливости, высокому потенциалу здоровья и долголетию.

Если научиться дышать с частотой 1÷3 дыхания в минуту, как это делают опытные йоги, то можно действительно есть низкобелковую пищу, используя для синтеза белка углекислый газ [10,3]. Процедуры нравственного и физического очищения, провозглашаемые йогой, голодание, диета, физические упражнения замедляют дыхание, улучшают общее состояние организма, состояние нервной и сосудистой систем и качество газообмена между атмосферным воздухом и кровью.

Одним из первых, кто обнаружил негативные эффекты на организм человека глубокого неконтролируемого дыхания был Бутейко К.П. До него в медицинской практике считалось, что при глубоком дыхании организм полнее насыщается кислородом, а значит обменные процессы в клетках протекают мобильнее и энергетический уровень в них возрастает. Оказалось, что это не так.

Бутейко К.П с помощью приборов описал, так называемый, вентиляционный эффект [12]. Лабораторные приборы зафиксировали, что содержание кислорода в крови при глубоком дыхании не увеличивается, а наоборот, человек испытывает …кислородное голодание. Сущность вентиляционного эффекта состоит в том, что после глубокого вдоха и выдоха из организма уходит значительное количество углекислого газа. Казалось бы это хорошо – ведь углекислый газ является отходом дыхания и в больших концентрациях ядовит! Это заблуждение опроверг в 1911 году наш соотечественник Альбицкий И.М. [13], обнаруживший, что в здоровом организме подлежит удалению лишь часть СО2, а другая часть необходима ему как одна из важнейших компонентов.

Более поздние исследования Бутейко К.П. и других учёных подтвердили это предположение [14]. Оказалось, что живая клетка функционирует в оптимальном режиме, если в ней присутствует 1÷2 % кислорода и 7÷8 % углекислого газа. При глубоком дыхании СО2 «выветривается», что приводит к нарушению деятельности нервной системы, усилению щелочной реакции, изменению активности ферментов. Сбой в работе ферментов вызывает нарушение обменных процессов всех видов и во всех клетках организма – он заболевает. Многочисленные опыты на животных с подключёнными дыхательными аппаратами при глубоком дыхании в течение нескольких десятков минут приводили их к гибели. Ещё одной важной ролью в организме СО2 является её необходимость для синтеза аминокислот.

К сожалению концентрация углекислого газа в атмосфере 0,03 %, что в сотни раз ниже естественных потребностей клеток организма, и поэтому приходится путём задержек дыхания компенсировать эту недостачу.

Имя доктора Бутейко К.П. – автора метода, позволяющего людям избавиться от многих хронических болезней без применения лекарств широко известно в нашей стране. Те, кому довелось близко познакомиться с его "Методом волевой ликвидации глубокого дыхания", знают, какая важная, можно сказать ключевая роль отводится в нём углекислому газу (CО2). К.П. Бутейко и его последователи за почти 40 лет практического применения метода, доказали, что от многих хронических болезней, в том числе от гипертонической болезни, человек может избавиться, увеличив содержание в организме углекислого газа.

Сегодня роль дефицита СО2 в развитии многих болезней изучена достаточно хорошо, и один из способов их лечения, созданный на основе этих знаний, воплощён в методе ВЛГД (волевой ликвидации глубокого дыхания) и дозированной физической нагрузки. В частности, при лечении бронхиальной астмы методом Бутейко, результатом применения комплекса будет то, что постепенное повышение процентного содержания СО2 в воздухе лёгких будет способствовать быстрому устранению гиперсекреции и отёка слизистой оболочки бронхов и снижению повышенного тонуса гладких мышц стенки бронхов.

Более того, по словам создателя метода ВЛГД и его многочисленных последователей, через некоторое время повышение СО2 до определённой величины приводит к стиханию аллергического воспалительного процесса в бронхах и практически полному устранению клинических проявлений астмы. Причём поддержание нормального уровня СО2 в среднем около полугода приводит к полному завершению аллергического воспалительного процесса в бронхах, разрушению рефлекторного механизма развития спазма бронхов, что делает невозможным развитие приступов удушья ни при каких условиях, даже при условии искусственного создания дефицита СО2 в лёгких. Для повторного формирования рефлекторного механизма спазма бронхов, по их мнению, потребуется в среднем 10÷15 лет, что является гарантированным сроком клинической ремиссии.

Следует иметь в виду, что альвеолярная гипокапния (снижение парциального давления СО2) является результатом не только лёгочной гипервентиляции, но в большей степени – следствием гиподинамии и снижения активности общего обмена веществ. Задержки дыхания позволяют не только устранить избыточность общей вентиляции лёгких, но и повысить активность метаболизма, что значительно ускоряет процесс устранения дефицита альвеолярного СО2.

Похожие выводы о целебном воздействии углекислого газа на живой организм сделаны и в других работах [15–22], среди которых можно отметить книгу Мишустина Ю.Н. [23], посвящённую, в основном, излечению заболеваний сердечно-сосудистой системы. Приведём некоторые положения этой книги ввиду важного обобщающего их характера.

«…Известно, что сужение микрососудов тела приводит к уменьшению кровотока в органах (нарушению регионарного кровообращения), то есть к нарушению нормального кровоснабжения их тканей – ишемии. А на уровне клеток ишемия ведёт к их кислородному голоданию (гипоксии тканей). Из-за нехватки кислорода клетки перестают выполнять свои функции в полном объёме. Острый же дефицит кислорода приводит к массовой гибели клеток – инфарктам органов, причём не только сердца (инфаркт миокарда) или головного мозга (ишемический инсульт), но и других органов. У здорового (как правило, относительно молодого) человека нормальный просвет микрососудов постоянно поддерживается за счёт поддержания организмом нормальной концентрации растворенного в крови углекислого газа. Это вещество постоянно вырабатывается в каждой клетке организма как конечный продукт (наряду с водой Н20) окисления углеводородов (в основном глюкозы). CО2 в конце концов выделяется из организма через лёгкие. Но на пути к лёким углекислый газ некоторое время находится в крови, играя при этом роль естественного регулятора просвета микрососудов, то есть сдерживая их сужение. Таким образом, можно считать установленным, что нормальная концентрация CО2 в артериальной крови – залог отсутствия стойкого повышенного артериального давления (АД), нередко сопровождающегося кардионарушениями.

Простой способ снятия приступов головной или сердечной боли заключается всего лишь в искусственном, волевом сдерживании дыхания в течение нескольких минут. Головная или сердечная боль снимается вследствие расширения микрососудов, поскольку их расширение приводит к снижению нагрузки на сердце и артериального давления.

Извне в организм ничего не вводится, значит, на стенки артериол аналогично папаверину подействовало вещество, производимое самим организмом. Это вещество – углекислый газ.

Стоило увеличить содержание в крови CО2 – артериолы расширились. А пока углекислого газа в крови было "мало", артериолы были сужены – имели хронический повышенный тонус.

Есть ещё один простой опыт, подтверждающий этот результат [11]. Делаем несколько очень глубоких вдохов и выдохов до тех пор, пока…"не закружится голова". Избыточное дыхание приводит к уменьшению концентрации в артериальной крови CО2. Вследствие этого происходит сужение артериол головного мозга, вызывающее ишемию мозга. Головокружение – результат нехватки кислорода».

Что касается газообмена, то он не ограничивается только кислородом и углекислым газом, а касается обмена и других газов между организмом и внешней средой. Из окружающей среды в организм непрерывно поступают, кроме кислорода, потребляемого всеми клетками, органами и тканями, – азот, небольшое количество СО2 и других атмосферных газов. Из организма выделяются образующийся в нём углекислый газ, парообразная вода, некоторое количество кислорода и газообразные продукты обмена веществ.

Кроме лёгких в газообмене организма участвуют внутренние органы (в основном – пищеварительный тракт) и кожные покровы (кожа). Поступающие внутрь газы имеют разные источника. Есть два источника газа, который скапливается в просвете пищеварительного тракта – это атмосферный воздух и кишечные газы. Рассмотрим их кратко [24].

Заглатывание воздуха с последующими переходом его в желудок

Атмосферный воздух попадает в пищеварительную систему организма путём его заглатывания. Глотание определяется как нейромышечная реакция с произвольным и непроизвольным компонентами. В среднем человек глотает около 600 раз в сутки (200 раз во время еды, 50 раз во время сна, 350 раз в остальное время), преимущественно бессознательно [24]. Небольшие порции воздуха (2–3 мл) попадают в желудок при каждом акте глотания. Физиологическая роль проглоченного воздуха заключается в стимуляции моторики желудка. Часть воздуха проходит через привратник в кишечник. При избыточном скоплении воздуха и повышении внутриполостного давления возникает отрыжка вследствие рефлекторного сокращения мышц желудка, диафрагмы и мускулатуры брюшного пресса при открытом входном отделе и спазме привратника. Воздух верхней части кишечника состоит из азота (78 объемных %) и кислорода (21 %), один процент приходится на благородные газы и углекислоту; растворимость воздуха в воде 29 см3/л.

Продукция газов бактериями кишечника.

Большинство поступающих в пищеварительный тракт с пищей углеводов перевариваются и всасываются в тонкой кишке при участии специфических ферментов. Содержащиеся же преимущественно в овощах, фруктах сахараолигосахариды вербаскоза, раффиноза и стахиоза не усваиваются и захватываются толстокишечной флорой. С участием бактериальных ферментов – амилаз и дисахаридаз – происходит расщепление (гидролиз) этих неперевариваемых углеводов до органических кислот и газов – водорода (Н2) и углекислоты (СО2), а у части лиц и до метана (СН4). Такие сложные полисахариды, как ксиланы, пектин, микрополисахариды, гликопротеин, также расщепляются преимущественно микрофлорой толстой кишки. Кроме того, часть микроорганизмов расщепляют протеазами и уреазами пищевой белок до аминов, фенолов, индолов, аммиака (NH3) и других продуктов. Есть мнение, что состав кишечной флоры устанавливается в течение первых 8 лет жизни под влиянием пищевых продуктов, употребляемых семьёй.

Рассмотрим теперь газовый состав содержимого нижней части кишечника. Его представляют:

Водород. Присутствие Н2 в кишечнике и, следовательно, в выделяемом воздухе человека – результат только жизнедеятельности бактерий, потребляющих углеводы. Он легко попадает через стенку кишечника в кровь и затем выдыхается лёгкими.

Метан образуется облигатными анаэробами – архебактериями, берущими энергию в результате преобразования Н2, СО2, формиата, ацетата и метанола в СН4; важным источником образования СН4 в кишечнике является индол. Метанобактерии обнаруживаются в фекалиях у 90 % людей, у 30–40 % СН4 обнаруживается в выдыхаемом воздухе. Отмечена положительная корреляция между концентрациями в кишечнике метана и водорода. Больше метана вырабатывается у лиц, страдающих запорами.

Углекислый газ образуется в результате микробной ферментации углеводов, в том числе входящих в состав растительных волокон.

Аммиак образуется вследствие микробной деградации мочевины и аминокислот. В результате гидролитических процессов в NH3 превращается до 30 % мочевины, образующейся в печени.

Сероводород образуется преимущественно при преобразовании серосодержащих аминокислот белков анаэробными сульфатредуцирующими бактериями.

Таким образом, основными компонентами газа в пищеварительном тракте человека являются: углекислый газ, водород, метан, азот и кислород, аммиак, сероводород. Азот и кислород имеют внешнее происхождение, а углекислый газ, водород и метан образуются в результате бактериальной ферментации. Эти газы не имеют запаха. Запах кишечного газа частично обусловлен сероводородом и аммиаком, но значительную роль играют так называемые следовые газы, содержащиеся в концентрациях ниже 1 части на миллион. Это серосодержащие вещества, такие как метанэтиол и диметилсульфид.

Отметим, что газообмен необходим для всех живых организмов, без него невозможен нормальный обмен веществ и энергии, а следовательно и сама жизнь. Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются СО2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и в конечном итоге выделяющегося из него СО2 зависит не только от количества потребляемого О2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Другие газообразные выделяемые человеком продукты, в основном, токсичны. Они называются антропотоксинами [25,26].

Исследования показали [27,28], что воздушная среда помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Анализ воздуха помещений позволил идентифицировать в них ряд токсических веществ, которые можно распределить пo классам опасности следующим образом:

высокоопасные вещества (2-й класс опасности)

диметиламин, сероводород, двуокись aзотa, окись этилена, бензол;

умеренно опасные вещества (3-й класс опасности)

уксусная кислотa, фенол, метилстирол, толуол, метанол, винилацетат;

малоопасные вещества (4-й класс опасности)

ацетон, метилэтилкетон, бутилацетат, бутан, метилацетат.

Пятая часть выявленных антропотоксинов относится к числу высокоопасных веществ. Концентрации остальных веществ, хотя и составляли десятые и меньшие доли oт ПДК, однако, вместе взятые свидетельствовали о неблагополучии воздушной среды. Даже двух-четырехчасовое пребывание в этих условиях отрицательно сказывалось нa показателях умственной работоспособности исследуемых.

Кстати, человек дышит не только лёгкими, но и кожей, хотя кожное дыхание незначительно (1÷2 % общего объёма дыхания) и выделяет при этом множество газообразных токсикантов. Их концентрации незначительны, но при большом скоплении людей и продолжительном времени экспозиции дозы ядовитых выделений могут вызвать признаки отравления: головную боль, тошноту и вялость, снижение работоспособности и иммунитета. Хочется скорее вырваться на свежий воздух.

У некоторых млекопитающих, например, лошади, кожное дыхание имеет большее значение и его доля может возрастать до 8 % [111]. Хотя перейти полностью на кожный тип дыхания, как это могут делать земноводные, звери, конечно, неспособны. У насекомых тело покрыто хитиновым панцирем, и кожное дыхание для них невозможно. Дышат они совершенно особым способом – трахейным. Трахеи насекомых это сеть тончайших разветвлённых трубочек, пронизывающих всё их тело. Почти в каждом сегменте тела у насекомых есть пара дыхалец – отверстий, ведущих в систему трахей. Крупные насекомые, двигая мускулами брюшка активно вентилируют свои трахеи. Всё-таки трахейный тип дыхания – не самый совершенный, и чем крупнее насекомое, тем труднее воздуху поступать в глубину его тела. Это одна из причин, почему размеры насекомых имеют жёстко заданный «потолок». Большинство водных животных избрали жаберный тип дыхания. Жабры – это особые разветвленные выросты тела – наружные (как, скажем, у аксолотлей) или внутренние (как у костных рыб или многих ракообразных). Чтобы не задохнуться, таким животным приходится постоянно омывать их свежей водой. Рыбы делают это так: набирают воду в рот, а затем, закрыв рот, выталкивают её через жаберные щели. Жабры густо пронизаны кровеносными сосудами: кровь разносит кислород по всему телу. Более подробно о кожном дыхании можно прочитать в разделе 3.4. нашей книги.

Что же надо сделать для восстановления нормального газообмена в организме, а значит и здоровья? Ответ даётся [23] в виде лаконичных как формулы соотношений:

Восстановить нормальное здоровье = нормальное дыхание = нормальное содержание CО2 в крови = нормальный тонус (просвет) микрососудов.

Восстановление способности организма поддерживать оптимальную концентрацию CО2 в крови – необходимое условие и единственный способ избавления как от многих болезней, так и от разрушающих организм медикаментов.

1.3. Физиологические эффекты при дыхании кислородом

В предыдущих разделах книги неоднократно отмечалась животворящая роль кислорода практически для всех организмов планеты, однако это не всегда верно. Практика использования кислорода в биологии и медицине показала, что этот газ может быть весьма токсичным и при некоторых условиях вызывает смерть реципиента. Оказалось, что кислород, как и озон, может иметь негативные последствия при его вдыхании в избыточных концентрациях, но если для озона допустимым является нахождение нескольких частиц на миллиард частиц воздуха, то для кислорода его безопасные концентрации в воздушной среде могут составлять десятки процентов в зависимости от парциального давления в газовой смеси.

Кислород (О2) – наиболее важный компонент человеческой жизни. Недостаток кислорода ведёт к анаэробному метаболизму, лактат-ацидозу и в конечном счёте к необратимому повреждению мозга. Избыток кислорода, с другой стороны, приводит к токсическому повреждению эндотелия лёгких, а у новорождённых – к ретролентальному фиброзу и слепоте [29]

Интенсивность насыщения кислородом плазмы крови описывается законами Дальтона и Генри. Закон Дальтона гласит, что общее давление смеси газов равно сумме давлений каждого газа, входящего в её состав. Давление каждого газа в смеси пропорционально процентному содержанию этого газа в смеси, и называется парциальным. С законом Дальтона непосредственно связан закон Генри, который формулируется так [30]: «Растворимость газа прямо пропорциональна его парциальному давлению над раствором…». Применительно к живому телу его можно перефразировать несколько иначе: «количество газа растворённого в жидкости (крови), прямо пропорционально его парциальному давлению». Следовательно, растворимость кислорода в крови пропорциональна его парциальному давлению в лёгких. При повышении абсолютного давления вдыхаемого воздуха или увеличении содержания в нём кислорода в лёгкие поступает избыток кислорода. При этом перенос (транспорт) кислорода будет осуществляться не только гемоглобином крови, но и за счёт растворения кислорода в плазме крови.

Механизм кислородного отравления таков. Появившийся в крови избыток кислорода вызывает увеличение количества окисленного гемоглобина и снижение восстановленного. Именно восстановленный гемоглобин осуществляет транспорт углекислого газа и удаление СО2 из организма. Снижение содержания восстановленного гемоглобина в крови приводит к задержке углекислого газа в тканях – гиперкапнии. Проявляется гиперкапния в виде одышки, покраснения лица, головной боли, судорог и, наконец, – потери сознания.

Кислородное отравление (гипероксия) определяется [31] как отравление, возникающее вследствие дыхания кислородосодержащими газовыми смесями или чистым кислородом при повышенном давлении. Отравление кислородом может произойти при использовании кислородных аппаратов, регенеративных аппаратов, при использовании для дыхания искусственных газовых смесей, во время проведения кислородной рекомпрессии, а также вследствие превышения лечебных доз в процессе оксигенобаротерапии. При отравлении кислородом развиваются нарушения функций центральной нервной системы, органов дыхания и кровообращения.

При избытке кислорода изменяется и его метаболизм (обмен веществ) в тканях [109]. Основной путь утилизации О2 в клетках различных тканей – четырехэлектронное восстановление его с образованием воды при участии клеточного фермента – цитохромоксидазы. В то же время небольшая часть молекул кислорода (1–2 %) претерпевает одно-, двух- и трёхэлектронное восстановление, когда образуются промежуточные продукты и свободнорадикальные формы кислорода.

Свободнорадикальные метаболиты обладают высокой активностью, действуя в качестве окислителей, повреждающих биологические мембраны. Липиды – основной компонент биологических мембран – представляют собой чрезвычайно легко окисляющиеся соединения. Свободнорадикальное окисление липидов часто становится разветвлённой цепной реакцией, склонной к самостоятельному поддержанию даже после нормализации содержания кислорода в организме. Многие продукты этой реакции сами являются высокотоксичными соединениями и способны повреждать биологические мембраны.

При избытке кислорода в тканях, его восстановление до воды возрастает с 1–2 % в норме, до высоких значений, пропорциональных степени этого избытка.

Из вышесказанного следует, что избыток кислорода в организме приводит к значительным нарушениям в транспорте газов и повреждению мембран клеток различных органов и тканей. Причём не существует скрытого периода при отравлении кислородом, так как биохимические нарушения начинаются сразу же с увеличением его парциального давления в дыхательной смеси. Отмечается, что кислородную интоксикацию [32,31] усиливает тяжёлая физическая работа, переохлаждение, перегревание, содержание вредных газообразных примесей в дыхательной смеси, накопление углекислого газа в организме, повышенная индивидуальная чувствительность. Отравление кислородом может быть более выражено в присутствии нейтрального газа.

Отравление кислородом разделяют по преобладанию проявлений на три формы: лёгочную, судорожную и сосудистую [32]. Дадим краткое их описание, выполненное для подводных ныряльщиков и плавцов, но пригодное и для «сухопутных» реципиентов.

Лёгочная форма

Возникает при относительно длительном дыхании смесью, с парциальным давлением кислорода 1,3÷1,6 бар и более. Она характеризуется преимущественным поражением дыхательных путей и лёгких. Сначала проявляется раздражающее действие кислорода на верхние дыхательные пути – сухость в горле, отёк слизистой оболочки носа с появлением чувства «заложенности». Затем появляется усиливающийся кашель,

сопровождающийся чувством жжения за грудиной. Всё это происходит на фоне повышения температуры тела. При нарастании степени отравления могут развиться кровоизлияния в сердце, печень, лёгкие, кишечник, головной и спинной мозг. После прекращения вдыхания избыточно обогащённой кислородом смеси интенсивность симптомов снижается в течение суток, и окончательно они исчезают в течение 2÷4 суток.

Судорожная форма

Возникает при парциальном давлении кислорода в дыхательной смеси 2,5÷3 бар и характеризуется преимущественным поражением центральной нервной системы. На фоне нарастающей бледности и потливости возникает сонливость, нарушение зрения, безучастность или эйфорическое возбуждение. При нарастании степени отравления возникает оглушение, сильная рвота, тик мимических мышц и наконец потеря сознания и судороги. Во время повторных приступов судорог может наступить смерть от остановки дыхания. Если приступ разовьётся под водой – велик риск утопления. Если дыхание избыточным потоком кислорода прекращено, судороги прекращаются в течение нескольких минут и сознание возвращается. После восстановления сознания пострадавший может проспать несколько часов, как после приступа эпилепсии. Судорожный приступ не оставляет остаточных явлений.

Необходимо отметить, что потребление кислорода у человека находится в пределах от 0,33 до 3 л/мин. При этом, максимальное потребление 3 л/мин могут выдержать в течение 10 минут только хорошо тренированные пловцы, далее развивается отравление. При нахождении под водой в состоянии покоя (например – при декомпрессии) потребление О2 составляет в среднем 0,66 л/мин. Если декомпрессия проходит в холодной воде, то его потребление составляет 1 л/мин. При тяжёлой физической работе кислород может потребляться в количестве 2 л/мин.

Сосудистая форма

Наблюдается при парциальном давлении кислорода выше 3 бар. При этой форме отравления происходит внезапное расширение кровеносных сосудов, резкое падение артериального давления и сердечной деятельности. Часто появляются многочисленные кровоизлияния в кожу и слизистые оболочки. Подобные кровоизлияния могут быть и во внутренних органах. Во время резкого падения артериального давления может наступить смерть от остановки сердечной деятельности.

Первая помощь при появлении признаков кислородного отравления заключается в скорейшем прекращении вдыхания обогащённой кислородом смеси и переключении на воздух. В течение суток пострадавший должен находиться в тёплом, затемнённом, хорошо вентилируемом помещении с соблюдением охранительного режима. При тяжёлых случаях отравления необходима специализированная медицинская помощь.

Первыми признаками кислородного отравления является онемение пальцев рук и ног, подергивание мышц лица (особенно губ) и век, чувство беспокойства. Затем довольно быстро наступают общие судороги и потеря сознания. Если пострадавший не будет поднят на поверхность, приступы судорог становятся всё чаще и длительнее, а промежутки между ними уменьшаются. При быстром повышении парциального давления кислорода приступы общих судорог с быстрой потерей сознания могут наступить внезапно без появления начальных признаков отравления.

Изложенные выше проявления передозировки кислорода отмечались у ныряльщиков, пользовавшихся дыхательными аппаратами со смесями газов или чистым кислородом. Что касается работников различных производств, связанных с контактами с О2, то содержание кислорода при вдыхании в рабочей зоне при атмосферном давлении не должно быть меньше 19 % и более 23 % по объёму. Отмечается, что при вдыхании кислорода предельная концентрация 02 для человека при его содержании 70–80 % и давлении 0,9 МПа – более 3 минут вызывает смерть от паралича дыхательных путей [33].

Конец ознакомительного фрагмента.