3
Не геометр да не войдет
С появлением чисел математика практически сразу разделилась на несколько направлений. Арифметика, логика, алгебра постепенно становились самостоятельными дисциплинами.
Одной из наиболее стремительно развивающихся дисциплин в эпоху Античности была геометрия. Она оставила в веках таких великих мыслителей прошлого как Фалес, Пифагор или Архимед, имена которых и по сей день мы встречаем на страницах школьных учебников.
Однако еще до того момента, когда геометрия стала самостоятельной дисциплиной, сама земля была ее непосредственным предметом анализа. Этимология слова подсказывает нам, что первоочередной задачей геометрии являлось измерение земли, что, таким образом, отчасти делает землемеров первыми геометрами. Задача разделения земельных участков всегда была одной из самых важных. Как разделить поле на равные части? Как рассчитать стоимость земельного участка исходя из его площади? Какая из этих двух частей находится ближе к реке? Как должен быть проложен канал, чтобы маршрут по нему оказался наиболее коротким?
Все эти вопросы были крайне важны для цивилизаций Античности, экономика которых строилась вокруг сельского хозяйства и, таким образом, на разделении земельных участков. Для того чтобы ответить на эти вопросы, знания из области геометрии развивались, обогащались и передавались из поколения в поколение, а умение ими оперировать, без сомнения, являлось одним из центральных аспектов жизни общества.
Для древних специалистов по измерению земель веревка была подчас первым геометрическим инструментом. В Древнем Египте существовала даже отдельная профессия – натягиватель веревки. Поскольку Нил регулярно выходил из берегов, именно люди этой профессии сообщали об изменении границ реки. Они вбивали столбики вдоль реки и натягивали веревки по границам полей в тех местах, где, согласно их вычислениям, должен был находиться край вышедшего из берегов Нила.
Возводя здание, также в первую очередь натягивали веревки на земле, точно обозначая границы будущего строения согласно плану архитектора. При строительстве дворца или иного значительного сооружения первую веревку зачастую натягивал в качестве символического жеста лично фараон.
Необходимо отметить, что веревка могла выполнять роль сразу нескольких геометрических инструментов. Землемеры использовали веревку как линейку, циркуль и треугольник с прямым углом.
Использовать веревку как линейку очень просто: ее достаточно натянуть между двумя зафиксированными точками, и получалась идеально ровная линия. Если требовалось определить длину, достаточно было сделать узлы на одинаковых расстояниях друг от друга по длине веревки. Использовать ее в качестве циркуля также было совсем не сложно. Одна из точек фиксировалась в земле, а точкой на веревке очерчивалась окружность на земле – так получался ровный круг. Чтобы начертить окружность определенного радиуса, достаточно было сделать разметку на веревке и начертить окружность, используя точку на веревке, расположенную на соответствующем количестве размеченных отрезков от центра.
А вот для того, чтобы использовать веревку для разметки угла, наоборот, требовалось приложить определенные усилия. Давайте на минуточку задумаемся над конкретной задачей: как изобразить прямой угол? На ум сразу приходят несколько способов. Если, например, нарисовать две окружности, пересекающиеся между собой, а затем соединить их центры и две точки пересечения, то две полученные линии будут перпендикулярны друг другу, образуя, таким образом, прямой угол.
С теоретической точки зрения этот способ безупречен, но вот на практике пользоваться им крайне неудобно. Представьте, как землемеры выходят на поле и начинают расчерчивать две окружности каждый раз, когда им требуется разметить прямой угол или проверить точность уже размеченных перпендикулярных линий. Такой способ оказывается на деле небыстрым и неэффективным.
Однако был и более практичный метод, который активно использовали землемеры: образование треугольника с прямым углом, используя саму веревку. Такой треугольник получил название прямоугольный треугольник. И самый распространенный среди них – со сторонами 3–4–5! Если вы возьмете веревку, разделенную на двенадцать частей тринадцатью узлами, вы сможете образовать треугольник со сторонами в 3, 4 и 5 интервалов соответственно. И магическим образом угол, образованный сторонами в 3 и 4 интервала, будет прямым.
За 4000 лет до этого жители Вавилона уже разработали специальные таблицы, позволяющие делать прямоугольные треугольники. Табличка «Плимптон 322», которая в настоящее время хранится в коллекции Колумбийского университета в Нью-Йорке, была создана приблизительно в 1800 г. до н. э. и представляет собой таблицу из пятнадцати комбинаций таких чисел. Помимо 3–4–5 там приводятся еще четырнадцать комбинаций, среди которых такие сложные, как 65–72–97 и даже 1679–2400–2929. За исключением нескольких незначительных опечаток, ставших следствием ошибки в расчетах или неправильного переписывания, треугольники из Плимптонской таблицы абсолютно правильные: в каждом из них есть прямой угол!
Сложно точно сказать, с какого момента вавилонские землемеры начали использовать свои познания об определении прямого угла на земле. В любом случае эти знания нашли свое применение много лет спустя исчезновения шумерской цивилизации. В Средние века веревка с тринадцатью узлами, также известная как веревка друидов, повсеместно использовалась при строительстве соборов.
Путешествуя по истории математики, часто отмечают, что ряд похожих выводов был сделан одновременно и независимо друг от друга в разных концах нашей планеты учеными, жившими за тысячи километров друг от друга в совершенно разных обществах. Удивительно странным совпадением является то, что в китайской цивилизации I в. до н. э. были сделаны открытия в области математики, очень схожие с аналогичными открытиями этого времени цивилизаций Древнего Вавилона, Египта и Греции.
Спустя столетия, приблизительно 2000 лет назад, во времена правления династии Хань, эти открытия собрали собраны воедино в одном из первых в истории произведений, посвященных исследованиям в области математики, под названием «Математика в девяти книгах».
Первая книга полностью посвящена методам измерения земельных участков различной формы. Прямоугольные, треугольные, трапециевидные, круглые, в форме полукруга или кольца – процедуры измерения полей всех этих форм подробно описаны в данной работе. Далее в этом произведении мы обнаруживаем, что девятая книга посвящена исследованию прямоугольных треугольников. Попробуйте догадаться, как звучит первая строчка этой книги. 3–4–5!
Таковы великие идеи. Они возникают в различных культурах и начинают активно произрастать на благодатной почве пытливых умов, стремящихся к новым знаниям.
Назовем несколько проблем того времени.
Многочисленные вопросы изменения полей, строительства зданий и сооружений, иначе говоря, землепользования, вставали перед учеными Античности. Вот несколько примеров.
Следующая задача из вавилонской таблицы BM 85200 свидетельствует о том, что люди не только изображали геометрический план, но и руководствовались непосредственным видом местности.
Пещера. При условии что длина: глубина. 1, земля, я отнял. Моя часть и оставшаяся земля 1’10. Длина и ширина, ’50. Длина, ширина, сколько?[2]
Вы уже, наверное, поняли, что стиль письма математиков Вавилона чем-то схож с телеграфным. Так, эту же задачу можно переформулировать следующим образом:
Глубина пещеры в двенадцать раз больше ее длины.[3] Если сделать пещеру глубже, таким образом, что она станет на единицу глубже, ее объем будет равен 716. Если сложить длину и ширину, получится 5/6.[4] Определите размеры длины, глубины и ширины пещеры.
Задача сопровождается подробным решением, в результате чего получаются следующие ответы: длина – 1/2, ширина – 1/3, глубина – 6.
Перенесемся теперь в долину р. Нил. И конечно же, речь пойдет о пирамидах. Следующая загадка обнаружена на известном папирусе под авторством Ахмеса приблизительно XVI в. до н. э.
Сторона основания пирамиды составляет 140 локтей, наклон[5] – 5 ладоней и 1 палец, какова высота пирамиды?
Локоть, ладонь и палец равны соответственно 52,5 см, 7,5 см и 1,88 см. Ахмес приводит решение: 93 локтя 1/3. В этом же папирусе переписчик также приводит задачу с окружностью.
Диаметр окружности – 9 кхет. Какова площадь круга?
Кхет – это также мера величины, равная приблизительно 52,5 метра. Чтобы разрешить эту задачу, Ахмес утверждает, что площадь такого круглого поля равна площади квадратного поля со стороной 8 кхет. Такое соответствие очень удобно, т. к. намного проще рассчитать площадь квадрата, чем круга. Таким образом, площадь квадрата составит 8 × 8 = 64. Последователи Ахмеса, однако, обнаружили, что полученный им результат не совсем точен. Площадь круга и квадрата не полностью соответствуют друг другу. Многие в дальнейшем – напрасно и вместе с тем целенаправленно – прилагали усилия, пытаясь ответить на вопрос: как начертить квадрат, площадь которого соответствует площади круга. Ахмес, не осознавая этого, сделал первую попытку ответить на вопрос, над которым ломали голову многие математики: определение квадратуры круга!
В Китае также занимались вопросом определения площади круглых полей. Следующая задача была опубликована в первой части «Математики в девяти книгах».
Длина окружности поля равна 30 бю, а ее диаметр – 10 бю. Какова площадь поля?[6]
Бю – мера величины, соответствующая 1,4 м. Как и в Египте, китайские математики допустили ошибку в параметрах данной фигуры. Сегодня нам уже известно, что условия этой задачи неверны, т. к. длина окружности диаметром 10 больше, чем 30. Тем не менее это не мешало китайским ученым определять примерную площадь (75 бю), а также пытаться решить даже более сложные задачи по определению площади колец!
Представим поле в форме кольца, внутренняя окружность которого равна 92 бю, внешняя – 122 бю, а поперечный диаметр – 5 бю. Какова площадь поля?
Вызывает сомнение, были ли в Китае поля в форме колец, и можно предположить, что такие вопросы у ученых Срединной империи носили скорее теоретический характер в целях развития геометрии. Изучение геометрических фигур в той или иной степени необычных и нестандартных и по сей день является излюбленным времяпрепровождением математиков.
Говоря о профессиях, связанных с геометрией, необходимо также упомянуть так называемых бематистов (шагомеров). В то время как землемеры и натягиватели веревок измеряли поля и здания, бематистов интересовали куда большие величины. В Греции люди этой профессии измеряли своими шагами длинные расстояния.
Иногда измеряемые расстояния были огромными. Так, в IV в до н. э. Александр Македонский взял с собой несколько бематистов в кампанию по Азии и дошел с ними до границ современной Индии. Длина этого маршрута составила тысячи километров, которые были шаг за шагом измерены бематистами.
Попробуйте мысленно воспарить и представить, как странно выглядело с высоты птичьего полета это ритмичное движение людей, пересекающих обширные пейзажи Ближнего Востока, равнины Верхней Месопотамии, засушливые желтые пески Синайского полуострова, плодородные берега Нила, а затем, уже в другом направлении, храбро покоряющих горы Персидской империи и пустыни территории современного Афганистана. Невозмутимо шагали они, в монотонном ритме двигаясь через гигантские горы Гиндукуш навстречу Индийскому океану, и неутомимо считали шаги.
Представленная картина поражает, а несоразмерность этого замысла кажется безумием. Как это ни странно, полученные измерения были достаточно точными и отклоняются от современных данных не более чем на 5 %! Благодаря работе, проделанной бематистами Александра Великого, стало возможно впервые в истории создать карту империи такого масштаба.
Двумя веками позже в Египте ученый греческого происхождения Эратосфен реализовал значительно более сложный проект, а именно измерил окружность Земли. Вот это да! Разумеется, не было и речи о том, чтобы бедные бематисты прошагали всю планету. Между тем, благодаря своим наблюдениям разницы в отклонении солнечных лучей между Сиеной (современный Асуан) и Александрией, Эратосфену удалось подсчитать, что расстояние между двумя городами составляет одну пятидесятую окружности Земли.
Вполне естественно, что ученый обратился за помощью бематистов для того, чтобы сделать измерения. В отличие от своих товарищей по профессии из Греции, бематисты из Египта использовали для измерений сопровождавших их в пути верблюдов и их шаги, соответственно. Эти животные известны равномерностью своих шагов. После длительного перехода вдоль Нила удалось подсчитать, что расстояние между городами составляет 5000 стадий (мера длины в Античности), а длина окружности всей планеты – 250 000 стадий, или 39 375 км. Еще раз хочется отметить, с какой потрясающей точностью были сделаны эти расчеты, т. к. по самым точным современным измерениям длина окружности Земли равна 40 008 км. Таким образом, подсчеты Эратосфена отличаются менее чем на 2 %!
Быть может, более всех других цивилизаций Античности греки особенно выделяли геометрию в своей культуре. Эта наука известна своей строгостью и способностью формировать сознание. Платон считал, что изучение геометрии – это обязательное условие для того, чтобы стать философом. Легенда гласит, что на входе в Академию, возглавляемую Платоном, был высечен девиз: «Не геометр да не войдет».
Геометрия становится все более и более популярной еще и за счет своего междисциплинарного положения. Так, арифметические свойства чисел могут интерпретироваться на языке геометрии. Вот, например, определение Евклида из седьмой книги его главного труда «Начала», датируемого III в. до н. э.
При умножении двух чисел получаемое значение называется «планом», а длины сторон, образующих данную фигуру, соответствуют по значению перемножаемым числам.
Если умножить 5 на 3, числа 5 и 3 будут называться в терминологии Евклида «сторонами» произведения. Почему так? Все потому, что произведение может быть изображено как площадь прямоугольника. Если его ширина будет равна 3, а длина – 5, то площадь поверхности будет равна 5 × 3. Так, числа 3 и 5 являются сторонами прямоугольника. Результат перемножения, 15, называется «планом», поскольку соответствует по своим размерам площади фигуры.
Подобные конструкции применимы и для других геометрических фигур. Так, число называется треугольным, если оно может быть представлено в виде… треугольника. Первые треугольные числа: 1, 3, 6 и 10.
Последний из изображенных треугольник, состоящий из десяти точек, есть не что иное, как тетрактис, который Пифагор и его последователи считали символом космической гармонии. Аналогичным образом выделяются квадратные числа, среди которых первыми являются 1, 4, 9, 16.
Можно продолжать выделять соответствие между числами и фигурами. Геометрические изображения чисел позволили сделать наглядными определенные их свойства, которые ранее казались непостижимыми.
Например, вы никогда не пробовали сложить подряд идущие нечетные числа, один за другим: 1 + 3 + 5 + 7 + 9 + 11 + …? Нет? Тогда попробуйте, и вы заметите удивительную закономерность:
Вы обратили внимание на особенность получившегося ряда чисел? Последовательно идущие числа: 1, 4, 9, 16… Это же квадратные числа!
И вы можете еще долго выстраивать этот ряд – закономерность будет всегда верной. Попробуйте сложить нечетные числа от 1 до 19, и, если у вас хватит терпения, вы обнаружите, что получившееся число 100 – это десятое по счету квадратное число:
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 10 × 10 = 100.
Удивительно, не правда ли? Но почему это именно так? Как удивительным образом получается именно такая закономерность? Можно доказать ее, используя только числа. Но есть способ еще проще. С помощью геометрического рисунка достаточно изобразить квадратные числа, как это показано ниже, и все становится очевидным.
Каждая последующая линия добавляет нечетное число шаров и тем самым увеличивает на одну единицу сторону получившегося квадрата. Доказательство просто и ясно.
Таким образом, геометрия занимала главенствующее положение в математике, и ни одна гипотеза не могла быть подтверждена без соответствующего геометрического доказательства. Гегемония геометрии продлилась намного дольше, чем сама эпоха Античности и существование греческой цивилизации. Пройдет почти две тысячи лет, прежде чем в эпоху Возрождения ученые начнут активно развивать новое направление математики, в результате чего геометрия уступит свое место новому языку: языку алгебры.