Вы здесь

Большое космическое путешествие. Часть 1. Звезды, планеты, жизнь (Д. Р. Готт, 2016)

Часть 1

Звезды, планеты, жизнь

Глава 1

Размер и масштабы Вселенной

Автор: Нил Деграсс Тайсон


Сначала мы поговорим о звездах, затем поднимемся на уровень Галактики, далее окинем взглядом Вселенную и заглянем за ее пределы. Помните, как говаривал Базз Лайтер из «Истории игрушек»? – «Бесконечность – не предел!».

Наша Вселенная велика. Позвольте рассказать вам о размерах и масштабах нашего Космоса, который гораздо больше, чем вам кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно невероятнее. Давайте сперва проведем небольшую инвентаризацию. Хотел бы сориентировать вас по некоторым числам, большим и малым, так, чтобы разговор получился более предметным, чтобы стало понятнее, что во Вселенной какой размер имеет. Начнем с единицы. Вы, конечно, уже видели эту цифру раньше. Она – палочка без нулей. Если бы я записал ее в виде степени, то получилось бы 100. Справа от единицы нулей нет, поэтому 1 = 100. Разумеется, 10 можно записать как 10 в первой степени, то есть 101. Дойдем до тысячи, 103. Какой префикс в метрической системе означает «тысяча»? Кило. В килограмме тысяча граммов, в километре – тысяча метров. Добавим еще три нуля, получится миллион, 106. Миллиону соответствует приставка «мега». Возможно, только до миллиона люди и умели считать, когда изобретали мегафон; наверное, они не задумывались о миллиарде, в котором еще на три нуля больше, всего 109. Тогда, может быть, назвали бы громкоговоритель «гигафоном». Если вы обращали внимание на размеры файлов у вас в компьютере, то наверняка знаете слова «мегабайт» и «гигабайт». В гигабайте миллиард байт[1]. Не уверен, что вы вполне представляете себе величину «миллиард». Давайте осмотримся и вспомним, что считают миллиардами.

Во-первых, на Земле живет семь миллиардов человек.

Билл Гейтс – знаете такого? Когда я в последний раз уточнял его состояние, оно тянуло на 80 миллиардов долларов. Билл Гейтс – покровитель гиков; в кои-то веки гики правят миром. В истории такого еще не бывало. Но времена меняются. А 100 миллиардов видели? Ну ладно, почти 100 – знаете где? В Макдоналдсе. «Мы обслужили более 99 миллиардов гостей». Это самое большое число, которое можно увидеть на улице. Помню, когда они включили этот счетчик; в моем детстве у них на рекламе красовалось: «Мы обслужили более 8 миллиардов гостей». На табло в Макдоналдсе никогда не отображается 100 миллиардов, потому что бургер-счетчик имеет всего два разряда, так что они остановились на 99 миллиардах. Потом они воззвали к Карлу Сагану и с тех пор пишут: «Мы обслужили миллиарды и миллиарды».

Возьмите 100 миллиардов гамбургеров и уложите их в ряд. Начинайте от Нью-Йорка и двигайтесь на запад. Как думаете, до Чикаго доберетесь? Естественно. А до Калифорнии? Несомненно. Далее на гамбургеры придется цеплять поплавки. Расчеты делаются, исходя из диаметра булочки (10 сантиметров), сам-то гамбургер немного поменьше. Итак, считаем булочками. Выкладываем из булочек мост через океан по дуге большого круга. Так мы минуем Тихий океан, Австралию, Африку, пересечем Атлантику и вновь вернемся в город Нью-Йорк. Да, гамбургеров потребуется много, но ведь от 100 миллиардов гамбургеров что-то еще останется. Вы успеете выложить вокруг Земли еще 215 гамбургерных колец, а гамбургеры-то все не кончаются. Итак, после 216 кругосветных гамбургерных путешествий вы берете остальные булочки и начинаете укладывать их друг на друга. Высота булочки – 5 сантиметров. Вы сделаете гамбургерную башню до Луны и еще одну от Луны до Земли – и только тогда израсходуете все 100 миллиардов гамбургеров. Вот почему коровы так боятся Макдоналдса. Для сравнения: в галактике Млечный Путь около 300 миллиардов звезд. Макдоналдсу пора начинать космическую экспансию.

Когда вам стукнет 31 год, 7 месяцев, 9 часов, 4 минуты и 20 секунд, вы как раз проживете свою миллиардную секунду. Я отметил этот возраст, откупорив бутылку шампанского. Бутылочка была небольшая. Да, нечасто отмечаешь миллиард секунд.

Идем дальше. Какое большое число впереди? Триллион, 1012. В метрической системе и для него есть префикс, «тера». Досчитать до триллиона невозможно. Если хотите – попробуйте, конечно. Но если называть по числу в секунду, то у вас ушла бы на это 31 тысяча лет, так что не рекомендую проделывать такой опыт даже дома. Триллион секунд назад пещерные люди – троглодиты – начали рисовать на стенах родных гротов.

В Роуз-центре Земли и Космоса в Нью-Йорке мы изобразили хронологию Вселенной в виде спирали, которая начинается с Большого взрыва и раскручивается на протяжении 13,8 миллиарда лет. В развернутом виде эта спираль протянулась бы через целое футбольное поле. Каждый шаг вдоль нее равен 50 миллионов лет. Вы проходите ее целиком и спрашиваете: а где же мы? Вся наша история, которая началась триллион секунд назад и заканчивается сегодня, в каменных джунглях, населенных троглодитами-граффитистами, на этой шкале сравнима с толщиной пряди человеческих волос. Вы думаете, что мы живем долго, что цивилизации существуют веками? Но только не в масштабах космоса.

Что дальше? 1015. Это квадриллион, в метрической системе имеет префикс «пета». Это одно из моих любимых чисел. На (и в) Земле обитают от 1 до 10 квадриллионов муравьев, как считает эксперт-мирмеколог Э.О. Уилсон.

Что дальше? 1018, квинтиллион, приставка в метрической системе – «экса». Примерно столько песчинок лежит на 10 больших пляжах. Самый известный пляж в мире – Копакабана в Рио-де-Жанейро. Он протянулся на 4,2 километра и имел 55 метров в ширину, пока его не раздвинули до 140 метров, досыпав туда 3,5 миллиона кубических метров песка. Средний размер песчинки на Копакабане на уровне моря составляет треть миллиметра. То есть в кубическом миллиметре 27 песчинок, а в 3,5 миллиона кубических метрах такого песка – около 1017 песчинок. Итак, примерно на 10 пляжах размером с Копакабану должен набраться квинтиллион песчинок.

Умножив это число еще на тысячу, получаем 1021, секстиллион. Мы начинали с километров, потом дошли до мегафонов, гамбургеров из Макдоналдса, пещерных художников-кроманьонцев, муравьев, песчинок и, наконец, прибыли сюда.

10 секстиллионов – это


количество звезд в наблюдаемой части Вселенной.


Есть люди, которые ежедневно заявляют, что мы одиноки в этом космосе. Они просто понятия не имеют о больших числах и о космосе. Позже мы подробнее расскажем, что такое наблюдаемая Вселенная, то есть часть Вселенной, которую мы можем видеть.

А теперь позвольте перейти к значительно более крупным числам, гораздо больше секстиллиона – как насчет 1081? Насколько мне известно, у этого числа нет названия. Это количество атомов в наблюдаемой части Вселенной. Зачем вообще может понадобиться число еще крупнее? Что «на Земле» можно было бы им сосчитать? Поговорим о 10100, симпатичном круглом числе. Это гугол. Не путать с Google – интернет-компанией, основатели которой специально написали слово googol с ошибками.

В наблюдаемой части Вселенной нет таких объектов, которых бы насчитывался целый гугол. Это просто забавное число. Его можно записать как 10100 либо, если ваш компьютер не ставит верхних индексов, вот так:10^100. Но в некоторых ситуациях большие числа все-таки могут пригодиться: например, если считать не предметы, а варианты событий, которые могут произойти. Сколько можно сыграть шахматных партий? Например, в партии можно объявить ничью в одном из следующих случаев: либо при троекратном повторении позиции одним из игроков, либо после 50 ходов без взятия и движения пешек, либо когда исчерпан материал для дальнейшей борьбы и ни одна из сторон не может поставить мат сопернику. Если предположить, что как только такая ситуация складывается в партии, игрок должен воспользоваться правом свести все на ничью, то можно подсчитать количество возможных шахматных партий. Рич Готт так и сделал, и у него получилось несколько меньше 10^(10^4,4). Это число значительно превосходит гугол, который можно записать как 10^(10^2). Если считать не предметы, а варианты развития событий, то можно получить очень большие числа.

Но есть и число гораздо больше гугола. Если гугол – это единица со ста нулями, то сколько будет 10 в степени гугол? У этого числа также есть название: гуголплекс. Это единица, за которой следует гугол нулей. Можно ли хотя бы записать такое число? Нетушки. Ведь в нем гугол нулей, а во Вселенной менее одного гугола атомов. Придется удовлетвориться записью10googol, или1010^100, или 10^(10^100). Если, конечно, есть охота, можете записать 1019 нулей на каждом атоме во Вселенной[2]… Но вы наверняка найдете занятие поинтереснее.

Я рассказываю обо всем этом не для того, чтобы убить ваше время. Просто я знаю число еще больше, чем гуголплекс. Яаков Бекенштейн изобрел формулу, позволяющую оценить максимальное количество различных квантовых состояний, которые были бы сравнимы по массе с наблюдаемой частью Вселенной. Учитывая известное явление квантовой размытости, таким же будет и максимально возможное число наблюдаемых вселенных, подобных нашей. Это число 10^(10^124), в нем 1024 гуголплексов нулей. Среди этих 10^(10^124) вселенных попадаются самые разные – есть жуткие, переполненные черными дырами, а есть и почти такие же, как наша, только в такой вселенной в некоторый момент у вашего двойника в носу может оказаться на одну молекулу кислорода меньше, чем здесь у вас, а у какого-то инопланетянина в космосе – на одну молекулу больше.

Так что очень большие числа и в самом деле не лишены практической пользы. Я не представляю, для чего могут понадобиться числа еще больше вышеописанного, но математики, конечно же, представляют. В одной теореме упоминается умопомрачительное число 10^(10^(10^34)), которое называется «число Скьюза». Математики упиваются размышлениями, страшно далекими от физической реальности.

Давайте побеседуем и о других вселенских крайностях.

Например, о плотности. Вы, конечно, интуитивно понимаете, что такое плотность, но давайте поговорим о космической плотности. Для начала исследуем воздух, которым дышим. C каждым кубическим сантиметром воздуха мы вдыхаем 2,5 х 1019 молекул – 78 % азота и 21 % кислорода.

Пожалуй, плотность 2,5 × 1019 молекул на кубический сантиметр выше, чем вы думали. Но давайте обсудим максимально чистый вакуум, который можно получить в лаборатории. Сегодня вполне удается снизить плотность до 100 молекул на кубический сантиметр. А межпланетное пространство? В солнечном ветре в районе земной орбиты содержится примерно 10 протонов на кубический сантиметр. Рассуждая здесь о плотности, я говорю о количестве молекул, атомов или свободных частиц, из которых состоит газ. Что насчет межзвездного пространства? Его плотность колеблется в зависимости от того, где вы очутились, но нередко встречаются области, где на кубический сантиметр приходится примерно один атом. Межгалактическое пространство гораздо разреженнее: там всего один атом на кубический метр.

Даже в лучших современных лабораториях невозможно получить столь чистые вакуумы. Существует старинная поговорка: «Природа не терпит пустоты». Люди, которые ее придумали, всю жизнь провели на поверхности Земли. На самом деле природа любит пустоту, поскольку большая часть Вселенной – это именно пустота. Говоря «природа», многие имеют в виду всего лишь нашу окружающую среду, укрытую одеялом атмосферы. Атмосфера действительно сразу заполняет любые доступные пустоты.

Допустим, я швырну куском мела в классную доску и подберу кусочек. Мел рассыпался в мельчайшую крошку. Предположим, каждая крошка имеет миллиметр в поперечнике. А теперь вообразим, что крошка – это протон. Знаете, какой атом устроен проще всех? Правильно, водород. У него в ядре один протон, и в обычном атоме водорода один электрон, вращающийся вокруг ядра по единственной орбитали. Если крошка мела – это протон, то какого размера будет атом водорода? Как пляжный мяч? Нет, он будет куда больше – примерно 100 метров в поперечнике, примерно как 30-этажное здание. А что происходит в атоме? Атомы практически пустые. Между ядром и единственным электроном нет никаких частиц, электрон носится по своей единственной орбитали, которая, как известно из квантовой механики, является шарообразной и со всех сторон окружает ядро. Углубимся дальше и дальше в микромир, пока не достигнем следующего предела – сущностей настолько мелких, что их невозможно измерить. Мы до сих пор не знаем диаметр электрона, измерить его мы не в состоянии. Однако теория суперструн предполагает, что электрон может напоминать вибрирующую струну длиной 1,6 × 10–35 метра.

Диаметр атома – около 10–10 (одной десятимиллиардной) метра. А что насчет 10–12 или 10–13 метра? Известны некоторые объекты такого размера – например, уран всего с одним электроном или экзотическая разновидность водорода, по орбитали которого вращается не электрон, а мюон – родственная электрону тяжелая частица. Такой объект, примерно в 200 раз меньше обычного атома водорода, имеет период полураспада около 2,2 микросекунды, поскольку спонтанно распадается сам мюон. Величины 10–14 или 10–15 м уже сопоставимы с размером атомного ядра.

Пойдем в другую крайность, поговорим о более высоких плотностях. Например, Солнце – оно плотное или не очень? Да, в недрах Солнце довольно плотное (и чертовски горячее), но по краям оно гораздо более разреженное. В среднем Солнце примерно в 1,4 раза плотнее воды. Плотность воды нам известна – один грамм на кубический сантиметр. В центре Солнца плотность вещества составляет примерно 160 граммов на кубический сантиметр. Но в этом отношении Солнце довольно заурядно. Мир звезд очень разнообразен. Некоторые из них чрезвычайно разбухают и становятся очень разреженными, другие коллапсируют, превращаясь в компактные и сверхплотные объекты. Давайте вновь поговорим о крошке мела (которую мы сравнили с протоном) и окружающей ее пустоте. Во Вселенной могут происходить процессы, при которых материя коллапсирует, плющится и сгущается, пока не достигает плотности атомного ядра. Получаются звезды, в которых атомные ядра тесно лежат бок о бок. Объекты с такими экзотическими свойствами состоят преимущественно из нейтронов – это и есть верхний предел плотности, известный во Вселенной.

Мы, астрономы, привыкли называть объекты описательно – такими, какими мы их видим. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Когда звезда состоит из нейтронов, она называется нейтронной. Если звезда пульсирует, она называется пульсаром. В биологии, например, обычны длинные латинские названия. Доктор пишет рецепт какими-то закорючками, которые пациент не в состоянии разобрать, отправляет пациента к аптекарю, который понимает такую клинопись. Потом мы глотаем какое-то вещество с причудливой химической формулой. Самая известная биохимическая молекула называется двумя словами, в одном из которых одиннадцать слогов – дезоксирибонуклеиновая кислота! Однако начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой взрыв. Наша наука немного сложная, ведь Вселенная довольно сурова. Нет никакого смысла плодить заковыристые названия – из-за них одна путаница.

Дальше рассказывать? Во Вселенной есть места с такой сильной гравитацией, что даже свет не в состоянии оттуда улететь. Падаете туда и обратно не возвращаетесь: это черная дыра. Опять же, два коротких слова – и все понятно. Извините, надо было выговориться.

Какова плотность нейтронной звезды? Возьмем наперсток такого вещества. Раньше швея работала только вручную и надевала наперсток, чтобы не исколоть пальцы иголкой. Чтобы получить такую же плотность, как в нейтронной звезде, наловим 100 миллионов слонов и запихнем в этот наперсток. Иными словами, если положить на одну чашу весов 100 миллионов слонов, а на другую – наперсток вещества из нейтронной звезды, то они уравновесятся. Вот такое плотное вещество. Тяготение нейтронной звезды также очень велико. Насколько? Давайте призвездимся и проверим.

Один из способов измерить силу гравитации – проверить, сколько энергии нужно, чтобы поднять что-либо. Чем сильнее гравитация, тем больше нужно энергии. Например, я трачу определенное количество энергии, чтобы подняться по лестнице, моих энергетических резервов на это вполне хватает. Но вообразите себе отвесную скалу высотой 20 тысяч километров на гипотетической гигантской планете, чья гравитация сравнима с земной. Представьте, сколько бы энергии вы потратили, чтобы вскарабкаться от подножия до вершины, преодолевая привычную земную силу тяжести. Нужно много энергии. Гораздо больше, чем имеется у вас в организме, когда вы стоите там, у подножия. Карабкаясь вверх, вам придется лопать энергетические батончики или другую высококалорийную пищу, которая быстро усваивается. Хорошо. Если вы полезете вверх с огромной скоростью – сто метров в час, – то окажетесь на вершине через 22 года, это если лезть круглосуточно. Столько же энергии вам бы понадобилось, чтобы поднять лист бумаги с поверхности нейтронной звезды. Вероятно, никакой жизни на нейтронных звездах нет.

От одного протона на кубический сантиметр мы дошли до 100 миллионов слонов в наперстке. Что я еще забыл? Осталась температура. Обсудим, что такое «жарко». Начнем с поверхности Солнца. Там примерно 6000 кельвинов – 6000 K. При такой температуре любое вещество испарится. Поэтому Солнце состоит из газов. (Для сравнения: средняя температура на поверхности Земли – всего 287 К).

Что насчет температуры в центре Солнца? Вы, вероятно, догадываетесь, что в недрах Солнца жарче, чем на поверхности, – и на то есть веские причины, о чем будет рассказано далее в этой книге. Температура в центре Солнца – около 15 миллионов кельвинов. При такой жаре происходят удивительные вещи. Протоны носятся быстро. Как угорелые. Обычно два протона отталкиваются, поскольку обладают одинаковым (положительным) зарядом. Но на достаточно высоких скоростях такое отталкивание преодолевается. Они могут достаточно сильно сблизиться, и тогда между ними возникает совершенно новое взаимодействие – не отталкивающая электростатическая сила, а сила притяжения, правда, исключительно короткодействующая. Если сблизить два протона на такое минимальное расстояние, то они прилепятся друг к другу. Мы называем такую силу сильным взаимодействием. Да, это официальный термин. Сильное ядерное взаимодействие может сцеплять протоны друг с другом, порождая таким образом новые элементы, например гелий, идущий в периодической системе сразу за водородом. Работа звезд – варить более тяжелые элементы, нежели те, из которых они родились. Этот процесс творится глубоко в звездных недрах. Подробнее мы поговорим об этом в главе 7.

Теперь охладимся. Какова температура Вселенной? Да, у Вселенной есть остаточная температура, сохранившаяся со времен Большого взрыва. Тогда, 13,8 миллиарда лет назад, все пространство, время, материя и энергия, которые мы наблюдаем в пределах 13,8 миллиарда световых лет вокруг, были скомканы вместе в одной точке. Новорожденная Вселенная была жарким, кипучим котлом с материей и энергией. С тех пор в результате космического расширения Вселенная остыла примерно до 2,7 K.

Сегодня она продолжает расширяться и остывать. Конечно, я вас не обрадую, но факты свидетельствуют о том, что Вселенная катится к финалу. Она родилась при Большом взрыве и обречена на вечное расширение. Температура так и будет падать, достигнет сначала двух кельвинов, потом кельвина, потом полкельвина и будет асимптотически стремиться к абсолютному нулю. В конце концов температура может остановиться на отметке около 7 × 10–31 K – в силу эффекта, открытого Стивеном Хокингом, – об этом Рич расскажет в главе 24. Но этот факт ничуть не успокаивает. Звезды сожгут все свое ядерное топливо, угаснут одна за другой и исчезнут с небес. Естественно, в газопылевых облаках рождаются новые звезды, но запасы газа при этом истощаются. В начале был газ, из него родились звезды, прошли свой жизненный цикл и превратились в огарки, конечные продукты звездной эволюции: в черные дыры, нейтронные звезды или белые карлики. Этот процесс продолжится, пока все огни в галактике не погаснут, один за другим. Во Вселенной стемнеет. Останутся лишь черные дыры, теплящиеся едва заметным светом – этот эффект, опять же, спрогнозировал Стивен Хокинг.

Так и закончится космос. Не взрыв, но всхлип.

Задолго до этого Солнце станет расти. Вас к тому времени уже не будет, можете мне поверить. Когда Солнце станет умирать, в его недрах развернутся сложные теплофизические процессы, и в результате внешние слои Солнца начнут расширяться. Оно будет становиться все больше, больше, больше, больше, займет полнеба. Расширится до орбиты Меркурия, а затем до орбиты Венеры. Через 5 миллиардов лет Земля станет оплавленной головешкой, вращающейся почти около самой поверхности Солнца. Океаны превратятся в крутой кипяток, пока, наконец, полностью не испарятся. Атмосфера разогреется настолько, что вся до единой молекулы улетучится в космос. Известная нам жизнь исчезнет, а затем, спустя 7,6 миллиарда лет, под действием других сил прокаленная Земля по спирали устремится на Солнце и там испарится.

Доброго дня!

В этой главе я попытался помочь вам ощутить масштабы и величие тем, затрагиваемых в книге. Все, что я только что обозначил, в следующих главах будет описано гораздо подробнее. Добро пожаловать во Вселенную.

Глава 2

От дневного и ночного неба к орбитам планет

Автор: Нил Деграсс Тайсон


В этой главе мы обсудим три тысячи лет из истории астрономии. Все, что происходило с древнейших времен (эпоха Вавилона) примерно до XVII века н. э. Это не будет уроком истории, поскольку я не собираюсь подробно описывать, кто что первым придумал и кто что открыл. Я хочу, чтобы вы составили впечатление о том, что мы успели узнать за этот период. Все началось с того, что люди пытались постичь ночное небо.

Вот Солнце (рис. 2.1). Нарисуем рядом с ним Землю; масштаб не соблюдается ни в размерах двух тел, ни в расстоянии, здесь я просто хочу проиллюстрировать некоторые свойства системы Солнце – Земля. Вдали, конечно, изображены звезды на небе. Предположу, что на небе есть только звезды – светящиеся точки, расположенные на внутренней поверхности большой сферы; в таком случае будет проще описать некоторые другие вещи.

Вероятно, вам известно, что Земля вращается вокруг своей оси и земная ось расположена под углом к околосолнечной орбите Земли. Угол наклона 23,5°. Сколько времени уходит на один оборот Земли? Один день. А на оборот вокруг Солнца? Один год. Тридцать процентов опрошенных в США ответили на второй вопрос неверно.

На самом деле, вращающийся объект в космосе достаточно стабилен, так что при орбитальном вращении его ориентация в пространстве не изменяется. Если переместить Землю вокруг Солнца из точки, соответствующей 21 июня, в точку, соответствующую 21 декабря, когда она окажется по другую сторону от Солнца (эта ситуация показана на рис. 2.1 справа), то ориентация земной оси не изменится. На протяжении всего пути вокруг Солнца земная ось направлена в одну и ту же точку.

Поэтому существуют некоторые интересные особенности. Например, 21 июня вертикальная линия, перпендикулярная плоскости земной орбиты, делит на рисунке Землю на дневную и ночную часть. Что можно сказать о той части Земли, что расположена слева от этой линии, в тени? Там ночь. Но 21 декабря Земля будет в противоположной точке орбиты, и ночь также переместится в диаметрально противоположную правую часть рисунка.


Рис. 2.1. Земля вращается вокруг Солнца, поэтому ночное небо выглядит по-разному в зависимости от времени года. Поскольку земная ось наклонена, 21 июня лучи Солнца освещают Северное полушарие напрямую, а по всему Южному полушарию словно скользят. 21 декабря люди, живущие за Южным полярным кругом, видят солнце круглые сутки. Предоставлено Дж. Ричардом Готтом


Все люди, которые ночью смотрят на звезды, могут видеть лишь часть неба, противоположную Солнцу. Ночное небо 21 июня (звезды, показанные в левой части рисунка) отличается от ночного неба 21 декабря (это звезды, показанные в правой части рисунка). Летней ночью видны «летние» созвездия, например Лебедь и Лира, а зимней ночью – «зимние» созвездия, например Орион и Телец.

Рассмотрим другой аспект. Допустим, 21 декабря справа от вертикальной линии у нас ночь, Земля вращается вокруг своей оси, – и что в таком случае будут видеть люди, находящиеся в Антарктике, за Южным полярным кругом, и глядящие в ночное небо? Они нарисованы у Южного полюса. Будут ли они в таком случае видеть темноту? Нет. Двадцать первого декабря в Антарктиде круглые сутки не заходит солнце, хотя Земля там вращается точно так же как и везде. В этот день никто из людей, находящихся за Южным полярным кругом, не увидит ночи. Это касается всех, кто находится между Южным полярным кругом и Южным полюсом. Следуя этой логике, если отправиться на Северный полюс и посмотреть в небо вместе с теми, кто живет за Северным полярным кругом – а там живут Санта-Клаус и его друзья, – то они в этот день так и не попадут на дневную половину. Для них 21 декабря будет круглосуточная ночь. Вы уже догадываетесь, что 21 июня там происходит обратное: для жителей Южного полюса наступает круглосуточная ночь, а в Арктике в этот день не заходит солнце.

Давайте посмотрим, что в эти дни происходит в Принстоне, штат Нью-Джерси. Этот город расположен недалеко от Нью-Йорка, но там нет небоскребов и ярких огней, которые могли бы помешать обзору. Город расположен примерно на 40° с.ш. На заре 21 июня Нью-Джерси со всем Северным полушарием переходит на дневную сторону. На эту территорию начинает отвесно литься солнечный свет, тогда как в Южном полушарии солнечный свет словно стелется по поверхности Земли.

Полдень – это момент, когда Солнце достигает в небе высшей точки. А вы знали, что нигде в континентальной части США Солнце никогда не бывает прямо над головой (в зените), независимо от месяца и времени суток? Звучит странно, потому что если остановить человека на улице и спросить: «Где находится Солнце в двенадцать часов дня?», большинство ответит: «Прямо над головой». В этом случае, как и во многих других, люди просто повторяют заученные, казалось бы, верные вещи – и тем самым выдают, что сами никогда на Солнце в полдень не смотрели. Даже не замечали. Не пытались экспериментально проверить. В мире полно таких вещей. Например, что происходит со световым днем зимой? «Зимой день укорачивается, летом удлиняется». Подумаем над этим. Какой самый короткий день в году? Это 21 декабря, день зимнего солнцестояния, а также первый день зимы в Северном полушарии. Если в первый день зимы наступает кратчайший световой день в году, то что происходит во все следующие зимние дни? Световой день должен удлиняться. В самом деле, зимой дни удлиняются, а не укорачиваются. Чтобы это понять, не нужна научная степень или академический грант. Световой день удлиняется зимой и укорачивается летом.

Какая звезда на ночном небе самая яркая? Многие скажут – Полярная. А сами-то смотрели? Большинство – нет. Полярная звезда не входит в топ-10. И в топ-20. И в топ-30. И даже в топ-40. Австралия, например, расположена слишком далеко на юге, поэтому оттуда Полярная звезда просто не видна. Над Южным полюсом нет такой же яркой звезды. А если поговорить о полушариях небесной сферы – и не думайте завидовать тому, «какие яркие созвездия в Южном полушарии». Взять хотя бы Южный Крест; многие о нем слышали. О нем пишут песни. Но знали ли вы, что Южный Крест – самое маленькое из всех 88 созвездий? Если вытянуть перед собой руку, сжатую в кулак, то он закроет это созвездие. Кстати, четыре ярчайшие звезды Южного Креста образуют скособоченный четырехугольник. В середине нет никакой звезды, которая отмечала бы центр четырехугольника. Поэтому правильнее было бы назвать это созвездие «Южный Ромб». Для сравнения: астеризм Северный Крест (шесть хорошо заметных звезд созвездия Лебедя) занимает в небе почти вдесятеро большую площадь, чем Южный, и выглядит он действительно как крест со звездой в середине. У нас на Севере есть несколько великолепных созвездий.

Полярная звезда занимает 45-е место по яркости в Северном полушарии. Поэтому сделайте мне одолжение – остановите на улице человека, задайте ему этот вопрос, а затем поправьте его. Если хотите знать, ярчайшая звезда на ночном небе – Сириус, что в созвездии Большого Пса.

Теперь сравним, что происходит с солнечным светом в двух точках на Земле. Посмотрите под ноги в Принстоне в полдень 21 июня. Солнечные лучи падают под очень высоким углом (см. рис. 2.1). Два параллельных луча, прилетающих от Солнца в Принстон, попадут в землю на минимальном расстоянии друг от друга. Земля в Сиднее в полдень также примет два подобных солнечных луча, но они придут под гораздо более меньшим углом и, соответственно, упадут намного дальше друг от друга. Что в данном случае происходит? Какое место нагревается эффективнее? Принстон, естественно. Энергия, вливающаяся в принстонскую почву, более концентрированная, поскольку несущие ее лучи достигают поверхности Земли, и в Принстоне становится жарче. В Принстоне 21 июня – лето. В тот же день в австралийском городе Сидней – зима. Спустя шесть месяцев, 21 декабря, сложится обратная ситуация.

Солнце греет землю, земля греет воздух. Солнце как таковое почти не нагревает воздух, почти вся поступающая от Солнца энергия свободно через него проходит. Пик солнечной энергии приходится на видимую часть спектра, как известно, Солнце легко увидеть сквозь атмосферу. Отсюда следует очевидный факт: видимый солнечный свет не поглощается атмосферой – иначе мы бы просто не заметили Солнце. Если вы сидите в комнате без окон, то Солнце видеть не можете, поскольку крыша здания поглощает весь видимый солнечный свет. Чтобы увидеть Солнце, потребуется либо посмотреть в прозрачное окно, либо выйти на улицу. Следовательно, солнечный свет проникает через прозрачный воздух и попадает на землю. Земля поглощает солнечный свет, а затем возвращает эту энергию в форме невидимого инфракрасного излучения, которое атмосфера уже способна поглощать – и поглощает. Мы подробнее обсудим невидимые части спектра в главе 4.

Земля поглощает видимый свет, идущий от Солнца, разогревается, а затем обогревает воздух тем инфракрасным излучением, которое отдает. Это происходит не мгновенно, а требует времени. Сколько времени? Какие часы дня самые жаркие? Земля нагревается сильнее всего не в полдень. В силу описанного эффекта самая жара всегда наступает на несколько часов позже – в два, в три часа дня, а кое-где даже в четыре.

Итак, в Северном полушарии – лето. Летом земная ось со стороны Северного полушария направлена к Солнцу, и, естественно, в Южном полушарии в эту пору зима. По той же причине, по которой самая жара устанавливается позже полудня, наиболее знойный сезон в Северном полушарии наступает после 21 июня. Поэтому лето начинается 21 июня, после чего погода становится все жарче и жарче. Аналогично, 21 декабря в Северном полушарии начинается зима, и после этого холодает.

Спустя три месяца, 21 марта, начинается весна. В первый день весны (21 марта) каждая точка Земли за счет вращения оказывается и на солнечной, и на темной стороне планеты, то же самое происходит и в первый день северной осени (21 сентября). В каждый из этих дней ночь и день занимают ровно по половине суток, поэтому дни называются весенним и осенним равноденствием.

Северный полюс Земли указывает на Полярную звезду. Что это – космическое совпадение? На самом деле нет, поскольку Полярная звезда расположена не совсем точно над полюсом. Между Полярной звездой и той точкой, в которую направлена земная ось (Северным полюсом мира), можно уложить 1,3 полные Луны.

Вернемся в Принстон, то есть к рис. 2.2. Оказавшись там ночью, вы увидите над собой звездное небо. На рисунке оно обозначено как «звезды, видимые над горизонтом Принстона». Там же нарисован принстонский горизонт – это линия, касательная поверхности Земли. Взглянув на небо, вы увидите, что звезды словно вращаются вокруг Полярной звезды по мере вращения Земли (рис. 2.2). (Полярная звезда расположена так близко к Северному полюсу мира, что сама она почти не движется.) Итак, на небе есть «вершина», звезды с которой оборачиваются вокруг Полярной звезды, но сами за горизонт никогда не заходят. Эти звезды называются незаходящими.


Рис. 2.2. Схема ночного неба в Принстоне (40° с. ш). Полярная звезда неподвижна, располагается на высоте 40° над северной стороной горизонта. Большой Ковш вращается вокруг нее против часовой стрелки. Предоставлено Дж. Ричардом Готтом


Теперь рассмотрим какую-нибудь звезду, которая сильнее удалена от Полярной. Такая звезда заходит за горизонт, а затем снова восходит. Вот как выглядит с Земли знакомое нам звездное небо. Один из самых известных астеризмов (элементов созвездий) – Большой Ковш. Его образуют яркие звезды созвездия Большой Медведицы. Вращаясь вокруг Полярной (см. рис. 2.2), он то опускается, слегка касаясь горизонта (если смотреть из Принстона), то вновь поднимается. Все звезды, расположенные от Полярной дальше, чем Большой Ковш, заходят за горизонт. Какова будет угловая высота Полярной звезды, если смотреть из Принстона? Это можно определить. Для начала допустим, что мы отправились на Северный полюс – навестить Санта-Клауса. Где будет Полярная звезда? Когда окажетесь в гостях у Санта-Клауса, Полярная звезда будет светить (почти) прямо у вас над головой. На севере так всегда. Звезда, расположенная между Северным полюсом мира и горизонтом, вращается вокруг Полярной по мере вращения Земли и всегда остается над горизонтом. Звезда, расположенная прямо на горизонте, вращается по линии горизонта, так что все звезды, которые вы видите, всегда остаются над горизонтом. Ни одна звезда не восходит, ни одна не заходит; все они вращаются вокруг Полярной звезды, которая расположена прямо у вас над головой, и вы видите все Северное полушарие небесной сферы. Так это выглядит на крайнем севере, у Санта-Клауса.

Какова широта Северного полюса? Девяносто градусов. Какова высота Полярной звезды над горизонтом, если смотреть с Северного полюса? Опять же 90°. Это не совпадение, а закономерность. Вы находитесь на девяностой широте, а высота Полярной звезды над горизонтом – 90°. Теперь отправимся на экватор. Какова широта экватора? Ноль градусов. Здесь Полярная звезда находится прямо на горизонте, ее высота – 0°. На какой широте я нахожусь в Принстоне? Сорок градусов северной широты. Поэтому в Принстоне Полярная звезда находится на высоте 40° над горизонтом.

Те, кто умеет ориентироваться по звездам, знают, что высота Полярной звезды над горизонтом соответствует широте, на которой вы находитесь. Христофор Колумб отправился в плавание по строго определенной широте, которой придерживался на всем пути через Атлантический океан. Давайте обратимся к его картам. Вот как шли его корабли: они оставались на одной и той же широте, высота Полярной звезды над горизонтом не изменялась во время его путешествия.

Вспомните, когда в детстве вы играли с юлой, вы видели, как ее ось покачивается, описывая конус? Земная ось тоже покачивается. Она испытывает гравитационное воздействие со стороны Солнца и Луны. Период такого покачивания длится 26 тысяч лет. Земля совершает полный оборот вокруг своей оси за сутки и одно качание оси за 26 тысяч лет. У этого факта есть интересное следствие. Во-первых, обратимся к звездной сфере, которую я нарисовал вокруг Солнечной системы. По мере движения Земли вокруг Солнца место самого Солнца на фоне звезд тоже меняется. Двадцать первого июня (см. рис. 2.1) Солнце находится между нами и звездами, показанными по правому краю, – таким образом, 21 июня мы видим, как оно проходит на фоне этих звезд. Но 21 декабря Солнце расположено между нами и звездами, показанными по левому краю. В промежутке между этими датами Солнце занимает то или иное место на фоне других совокупностей звезд, постепенно двигаясь по небу. Давным-давно, когда большинство людей были неграмотны, не было никакого вечернего телеэфира, книг или интернета, люди воплощали свою культуру на небесах. Изображали там то, что их волновало. Человеческое воображение превосходно улавливает закономерности там, где их на самом деле нет. Возьмите любой произвольный набор точек, и мозг подскажет вам – «я вижу узор». Если умеете программировать, попробуйте провести такой эксперимент: возьмите множество точек и начните произвольно ставить их на странице. Когда точек наберется около тысячи, вам уже может почудиться: «Э… а я тут вижу Авраама Линкольна!» Вы что-то видите. Аналогичным образом древние люди экстраполировали свои идеи на звездное небо, поскольку понятия не имели, почему оно именно такое. Они не знали, как движутся планеты, не понимали законов физики. Они полагали: «Хм… небо большое, я маленький, значит, небо непременно должно на меня влиять». Далее они могли рассуждать так: «Вон там сверху группа звезд, напоминающая по форме рака, и это созвездие особенное: Солнце было как раз в этом созвездии, когда ты родился. Наверное, поэтому ты такой чудной. А вот там – две рыбы, а там – близнецы. Жаль, что у нас нет телика, тогда давайте сами придумывать истории и передавать их из уст в уста». Так древние люди придумали зодиакальный круг – созвездия, через которые Солнце словно проходит в течение года.

Было двенадцать зодиакальных созвездий, и все их прекрасно знают – это Весы, Скорпион, Овен и так далее. Они известны, поскольку практически ежедневно упоминаются в новостях. Человек, которого вы, возможно, никогда и не встречали, зарабатывает деньги, предсказывая вам будущее. Давайте попытаемся с этим разобраться. Во-первых, в течение года Солнце проходит не через двенадцать, а через тринадцать созвездий. Астролог вам этого не рассказывает, потому что в таком случае ничего он не заработает. Знаете тринадцатое зодиакальное созвездие? Это Змееносец. На самом деле большинство Скорпионов – Змееносцы, но в гороскопах об этом умалчивают.

Давайте остановимся на этом поподробнее. Когда составляли зодиак? Около 2000 лет назад Клавдий Птолемей опубликовал карты с зодиаком. 2000 – это 1/13 от 26 000. Почти 1/12. Теперь понимаете, что из-за покачивания земной оси (научное название этого явления – прецессия) месяц, в котором Солнце оказывается в определенном зодиакальном созвездии, за это время сместился? Все созвездия, которые в газетах соответствуют хорошо известным датам, на самом деле уже сдвинулись по зодиаку на целый месяц. Поэтому Скорпионы и Змееносцы уже стали Весами.

Вот почему так ценится образование. Вы приобретаете объективные знания об устройстве Вселенной. Если вы недостаточно сведущи в предмете, чтобы разобраться, а понимает ли ваш собеседник, о чем говорит, – это может влететь вам в копеечку. Социальные антропологи говорят, что лотерея – это налог на бедных. На самом деле не совсем так. Это налог на всех, кто плохо учил математику, так как, если разбираешься в математике, то сразу понимаешь, что вероятности не в твою пользу и не стоит тратить свои кровные на лотерейные билеты.

Эта книга прежде всего об образовании. И немного о космическом просвещении.

Далее давайте поговорим о Луне, затем сразу об Иоганне Кеплере, а после этого – о моем кумире Исааке Ньютоне, в чьем доме мне довелось побывать во время съемок фильма «Космос: одиссея в пространстве и времени».

Начнем с того, что Земля обращается вокруг Солнца, а Луна, естественно, обращается вокруг Земли. Это показано на рис. 2.3. Солнце расположено далеко справа, за пределами рисунка, а Земля показана в центре рисунка. Здесь Луна вращается вокруг Земли, на рисунке мы видим различные фазы Луны. Мы смотрим на северный полюс лунной орбиты, при этом солнечный свет падает справа.

Солнце всегда освещает как Землю, так и Луну. Если вы стоите на Земле и смотрите на Луну, расположенную против Солнца, то что вы видите? Какую фазу? Полнолуние. На крупных картинках с рис. 2.3 показано, как Луна выглядит с Земли в каждой точке лунной орбиты.

Почему не бывает ежемесячных лунных затмений, когда Земля оказывается между Солнцем и Луной? Дело в том, что лунная орбита примерно на 5° наклонена к околосолнечной орбите Земли. Поэтому, как правило, Луна проходит в пространстве севернее или южнее земной тени, и мы видим привычное полнолуние. Время от времени полная Луна пересекает плоскость земной орбиты; при этом она попадает в тень Земли, и наступает лунное затмение.

Итак, посмотрим, что далее происходит с Луной, когда она под углом 90° движется по своей орбите против часовой стрелки. Луна входит в последнюю четверть. В таком случае освещена половина Луны. Переместим Луну еще на 90° по орбите (против часовой стрелки) – и она пройдет между Землей и Солнцем. Освещена сторона Луны, невидимая с Земли. Поэтому, стоя на Земле, вы вообще не видите Луну. Это новолуние. Обычно в этой фазе Луна проходит севернее или южнее Солнца.


Рис. 2.3. Фазы Луны при вращении ее вокруг Земли. Солнце (расположено справа, за пределами рисунка) всегда освещает половину Земли и половину Луны. На схеме (против часовой стрелки) показано, как Луна движется по орбите вокруг Земли. Мы смотрим на орбиту с севера. Луна всегда обращена к Земле одной и той же стороной. Обратите внимание: при новолунии Солнце освещает обратную сторону Луны, которая с Земли не видна. На больших снимках показано, как каждая из фаз Луны выглядит с Земли. Предоставлено Робертом Дж. Вандербеем


Иногда, когда она проходит прямо перед Солнцем, наступает солнечное затмение.

Итак, мы рассмотрели полнолуние, последнюю четверть и новолуние. Сдвинемся еще на 90° – и увидим первую четверть, где Луна вновь наполовину освещена. Еще есть промежуточные фазы Луны. Что мы видим между новолунием и первой четвертью? Тонюсенький серпик. Он называется растущий серп, поскольку каждый день становится шире. А прямо перед новолунием мы видим убывающий серп[3]. Серпы направлены в противоположные стороны; в этих фазах Луна сначала убывает, а затем вновь начинает расти.

Между первой четвертью и полнолунием наступает фаза, иногда именуемая «растущая выпуклая Луна»[4]. Термин достаточно неуклюжий, да и саму эту фазу почти никогда не рисуют, хотя половину времени мы видим Луну именно в выпуклой фазе – не полнолуние, но и не четверть. Если бы художник живописал небо в произвольно выбранные дни на протяжении года, то на половине работ была бы выпуклая Луна, но художники предпочитают изображать полумесяц либо полнолуние. Они упускают часть реальности, которая их окружает.

Естественно, каждый такой цикл длится один месяц – кстати, и лунный серп тоже называется «месяц». Когда полная Луна находится напротив Солнца, в какой час она восходит? Если она напротив Солнца, то логично заключить, что Луна восходит на закате. А на восходе полная Луна садится.

В другие дни месяца все иначе. Если Луна в последней четверти, то на восходе Солнца она высоко в небе. Обратите внимание на схему, где Земля вращается против часовой стрелки; в таком случае утро наступит, когда Луна (последняя четверть) высоко в небе. Рассмотрите рисунок внимательно, включите воображение, представьте, что вы внутри картины. Затем возвращайтесь в реальный мир и сравните результат.

У меня на компьютере есть такое приложение: всякий раз, когда я открываю «Рабочий стол», программа отображает текущую фазу Луны, день за днем. Это мои лунные часы. Они связывают меня со Вселенной, даже когда я сижу, уставившись в монитор.

Давайте поговорим о Солнечной системе, какой ее видели в середине и конце XVI века. Тогда в Дании жил богатый астроном Тихо Браге. На Луне есть кратер Тихо, названный в его честь.

Как-то раз я битый час промаялся с одним датчанином, который учил меня правильно произносить: [Ти’ко Браэ]. Я старался. Но, разумеется, по-английски его имя звучит привычнее.

Тихо Браге всерьез интересовался планетами, по крайней мере внимательно за ними наблюдал. Он соорудил самые совершенные для своего времени астрономические инструменты и точнее, чем кто бы то ни было ранее, измерил положения планет. Телескоп изобрели только в 1608 году, поэтому Тихо пользовался визирными инструментами, записывая положения звезд и планет на небе как функцию времени. Тихо собрал колоссальный массив данных; вдобавок у него был блестящий ассистент – немецкий математик Иоганн Кеплер.

Кеплер взял данные Тихо и проник в их суть. Он сказал себе: «Я понял, как ведут себя планеты. На самом деле, можно сформулировать законы, в точности описывающие их движения». До Кеплера устройство Вселенной казалось самоочевидным. «Глядите-ка, звезды вращаются вокруг нас. Солнце восходит и заходит. Луна восходит и заходит. Должно быть, мы – центр Вселенной». В это не только было удобно верить, все так и выглядело. Человеку такая картина льстила, она подтверждалась фактами, и никто в ней не сомневался – пока не явился польский астроном Николай Коперник. Если Земля – в центре Вселенной, то что делают планеты? Смотрим на небо в разные дни и видим, что Марс движется на фоне звезд. Хм. А вот прямо сейчас он замедляется. Ох, остановился. Нет, дал задний ход (это называется «попятное движение»), а потом снова пошел вперед. Интересно почему?

Коперник задумался: а если в центре находится Солнце, а Земля вращается вокруг Солнца, что тогда? Тогда мы запросто объясняем и ход, и противоход Марса. Солнце – в центре, Земля вращается вокруг Солнца по орбите, носится как гоночный автомобиль по трассе. Марс, следующая от Солнца планета, вращается медленнее, словно это болид, который идет по крайнему треку. Когда Земля обходит Марс на повороте, кажется, что в течение некоторого времени Марс движется назад. Если вы едете по скоростной полосе на автобане и обгоняете автомобиль, идущий по соседней полосе медленнее вашего, то может показаться, что в какой-то момент эта машина движется задом в противоположную от вас сторону. Если поставить Солнце в центре и предположить, что Земля и Марс вращаются вокруг него по бесхитростным круговым орбитам, то мы сразу объясним попятное движение; поймем, что происходит на ночном небе. Чем дальше планета от Солнца, тем медленнее она вращается. Все эти соображения Коперник изложил в фолианте «О вращениях небесных сфер». Если вы попытаетесь купить первое издание этой книги на аукционе, то потребуется раскошелиться на два с лишним миллиона долларов – еще бы, ведь это одна из важнейших книг в истории человечества.

Она вышла в 1543 году и заставила людей задуматься. Поначалу Коперник опасался публиковать книгу и без огласки демонстрировал ее коллегам. Нельзя просто так взять и объявить, что Земля – больше не центр Вселенной. У могучей католической церкви было иное мнение на этот счет, духовенство продолжало утверждать, что Земля – центр.

Так говорил Аристотель. Древнегреческий философ Аристарх пришел к верному выводу, что Земля вращается вокруг Солнца, но аристотелевская точка зрения возобладала, и церковь упорно поддерживала ее, так как мнение Аристотеля согласовывалось с Писанием. Когда же Коперник опубликовал свою книгу? Он успел подержать ее в руках, лежа на смертном одре. Мертвых не репрессируют. Он возродил представление о Вселенной, выстроенной вокруг Солнца, так называемую гелиоцентрическую модель.

«Гелио» означает «Солнце». Ранее в науке были приняты геоцентрические модели. Их сформулировали Аристотель, Птолемей, а далее закрепили церковные эдикты.

Затем настал черед Кеплера. Кеплер поддерживал мнение Коперника, но с оговорками. Коперниковские орбиты имели форму идеальных окружностей. Но поскольку такая модель не соответствовала наблюдаемому движению планет, Коперник откорректировал ее, добавив небольшие круги-эпициклы (как и Птолемей в свое время). Все-таки модель не вполне точно описывала положения планет на небе. Кеплер понял, что модель Коперника нужно доработать. У него была информация – таблицы движения планет, составленные Тихо Браге, – и по этим таблицам он вывел три закона движения планет. Сегодня они именуются законами Кеплера.

Первый закон гласит: «Планеты движутся вокруг Солнца по эллиптическим, а не по круговым орбитам» (рис. 2.4). Что такое эллипс? С математической точки зрения у круга всего один центр, а у эллипса, можно сказать, два – они называются фокусами. Все точки окружности равноудалены от центра, а у всех точек на линии эллипса – одинаковая сумма расстояний до двух фокусов. Фактически круг – частный случай эллипса, где оба фокуса находятся в одной и той же точке. В продолговатом эллипсе фокусы значительно удалены друг от друга. Чем сильнее мы сблизим фокусы, тем ближе к идеальной окружности будет полученная фигура.

По Кеплеру, планетная орбита представляет собой эллипс, в одном из фокусов которого находится Солнце. Это утверждение уже было революционным. Древние греки считали, что поскольку Вселенная божественна, она должна быть совершенной, причем в греческой философии была конкретная концепция «совершенства». Круг – совершенная фигура; все точки окружности находятся на одинаковом расстоянии от центра; это и есть совершенство. Звезды движутся кругами, полагали древние греки. Эта философия сохранялась в течение тысячелетий.




Рис. 2.4. Законы Кеплера. Величина a называется большой полуосью, она равна половине диаметра эллиптической орбиты. В случае круговой орбиты с нулевым эксцентриситетом большая полуось будет равна радиусу. Предоставлено Дж. Ричардом Готтом


А затем появляется Кеплер и говорит: «Люди, орбиты – это не окружности. Я взял таблицы Тихо и пришел к выводу, что орбиты – это эллипсы».

Далее он показал, что при вращении планеты скорость ее изменяется в зависимости от того, насколько она приближается к Солнцу. Представьте себе идеально круглую орбиту. Нет никаких причин на то, чтобы скорость движения планеты в разных точках окружности отличалась; планета всегда должна вращаться с одной и той же скоростью. Но с эллипсом все иначе. Когда скорость планеты будет максимальной? Тогда, когда планета будет ближе всего к Солнцу. Кеплер обнаружил, что планета движется наиболее быстро, будучи ближе всего к Солнцу, а чем дальше – тем медленнее она летит.

Кеплер обдумал эту задачу с геометрической точки зрения и решил: «Давайте измерим, как далеко планета успевает уйти, скажем, за месяц». Если планета расположена близко от Солнца и вращается быстро, то она будет заметать определенную площадь орбиты, так что получается вот такой неаккуратный широкий веер (см. рис. 2.4). Обозначим эту область A1. Проделаем такой же эксперимент в другой части орбиты, когда планета будет дальше от Солнца. Кеплер заметил, что чем дальше от Солнца планета, тем медленнее она движется и, соответственно, за то же время покрывает меньшее расстояние. Поскольку преодолеваемое расстояние меньше, планета пройдет за месяц область A2, напоминающую по форме длинный лепесток. Кеплеру хватило смекалки уловить, что область, заметаемая за месяц, всегда одинакова, независимо от того, каково расстояние от планеты до Солнца: A1 = A2. Так он сформулировал второй закон: «Отрезок прямой, соединяющий Солнце и планету, заметает равные площади за равные промежутки времени».

Из этого следует фундаментальный вывод, обусловленный сохранением углового момента. Если ранее вы этого термина не слышали, то, надеюсь, догадаетесь о его значении.

Угловым моментом пользуются фигуристы. Обратите внимание: когда фигурист начинает вращение, его руки вытянуты. А что потом? Спортсмен прижимает руки к телу, сокращая расстояние между руками и осью вращения, и, соответственно, ускоряется. Когда планета, движущаяся по эллиптической орбите, приближается к Солнцу, расстояние между ней и Солнцем уменьшается – соответственно, сама планета ускоряется.

Это явление именуется сохранением углового момента. Во времена Кеплера такого термина еще не существовало, но фактически он открыл именно угловой момент.

Третий закон Кеплера – гениален, просто гениален (вновь см. рис. 2.4). Он додумался до него не скоро. Первые два закона он дал практически экспромтом, считай за один вечер. На формулировку третьего ушло десять лет. Он пытался вывести взаимосвязь между расстоянием планеты от Солнца и тем, за какое время она проходит весь путь по околосолнечной орбите, ее период обращения. Внешним планетам требуется больше времени, чтобы сделать оборот вокруг Солнца, чем внутренним.

Сколько планет было тогда известно? Меркурий, Венера, Земля, Марс, Юпитер и самая популярная планета – Сатурн.

Многие третьекурсники говорили, что их любимая планета – Плутон. Поэтому они меня и недолюбливают. Как-то раз в «Роуз-центре Земли и Космоса» в Нью-Йорке мы собрались с коллегами и разжаловали Плутон из планеты в один из плутоидов – ледяных шаров, вращающихся на задворках Солнечной системы.

Греческое слово «планетос» означает «скиталец». Древние греки не считали Землю планетой, поскольку располагали ее в центре Вселенной. Причем древние греки выделяли еще две планеты, которые я не назвал, – какие? Это тела, также движущиеся на фоне звезд: Солнце и Луна. Таким образом, древние греки насчитывали семь планет. А названия семи дней недели в английском языке связаны с планетами или богами, которые с этими планетами ассоциировались. Так, Sunday (воскресенье) – день Солнца, Monday (понедельник) – день Луны. Суббота (Saturday) посвящалась Сатурну. Чтобы понять остальные названия, нужно обратиться к другим языкам. Так, пятница (Friday) названа в честь Фригг (Фрейи), норвежской богини любви, которая ассоциировалась с Венерой.

Наконец, Кеплер сформулировал одно уравнение. Первое космическое уравнение.

Он стал измерять все расстояния в отрезках, равных расстоянию от Земли до Солнца.

Мы называем такой отрезок «астрономическая единица» (а. е.). Расстояние от планеты до Солнца меняется в зависимости от положения ее на орбите. Эллипс похож на вытянутый круг, у него есть длинная и короткая оси, которые называются соответственно большой и малой. Кеплер (блестяще) заключил, что мерой расстояния от планеты до Солнца следует взять половину большой оси ее орбиты. Мы называем его «большая полуось». Это арифметическое среднее максимального и минимального расстояния планеты от Солнца.

А при измерении времени в земных годах получается уравнение, в котором забрезжили первые признаки грядущего постижения космоса. Если обозначить буквой P период, равный одному планетному году (выраженный в земных годах), и обозначить буквой a среднюю величину максимального и минимального расстояния планеты от Солнца (в астрономических единицах), то получится:


P2 = a3,


третий закон Кеплера. Рассмотрим случай с Землей. Период вращения Земли равен 1. Среднее расстояние между афелием и перигелием равно 1. 12 = 13. Работает. Хорошо.

Если этот закон действует в пределах всей Солнечной системы, то он должен соблюдаться для любой планеты (или другого объекта, вращающегося по околосолнечной орбите), независимо от того, был ли этот объект известен при Кеплере или открыт позднее. Как насчет Плутона? Кеплер о Плутоне не знал. Проверим Плутон. Среднее расстояние между ним и Солнцем равно 39,264 а.е. Итак, по закону Кеплера, P2 = 39,2643. Получается 60 381,8. Можете проверить на калькуляторе. Период орбитального вращения P должен быть равен квадратному корню из 60 381,8, что составляет 246. Сколько времени длится год на Плутоне? 246 земных лет.

Кеплер был нереально крут.

Когда Исаак Ньютон формулировал закон всемирного тяготения, он опирался на P2 = a3, чтобы описать, как гравитационное притяжение ослабевает с увеличением расстояния. Оно убывало обратно пропорционально квадрату расстояния. Чтобы получить такой ответ, Ньютон воспользовался дифференциальным исчислением, которое, кстати, незадолго до того сам и изобрел. Ньютон обобщил закон Кеплера и сформулировал другой закон, применявшийся уже не к Солнцу и планетам, а к любым двум телам во Вселенной. В основе этого закона лежала сила взаимного гравитационного притяжения двух этих тел, описываемая по формуле


F = Gmamb/r2,


где G – константа, ma и mb – массы двух тел, r – расстояние между центрами этих тел.

Из этого уравнения можно вывести третий закон Кеплера P2 = a3 как частный случай. Также можно вывести первый и второй законы Кеплера; доказать, что орбита планеты – это эллипс, в одном из фокусов которого находится Солнце, а также что планета заметает равные площади орбиты за равное время. Вот какова сила ньютоновского закона тяготения, и он этим даже не исчерпывается. Он полностью описывает гравитационное притяжение между двумя телами во Вселенной, независимо от того, по каким орбитам они обращаются. Ньютон расширил наши представления о космосе и дал такое описание планет, о котором Кеплер и помыслить не мог. Ньютон вывел эту формулу в неполные 26 лет. Он открыл законы оптики, выделил цвета спектра и выяснил, что, если объединить цвета радуги, вместе они дают белый. Он изобрел телескоп-рефлектор. Изобрел дифференциальное исчисление. Все это сделал Ньютон.

Следующая глава – о нем.

Глава 3

Законы Ньютона

Автор: Майкл Стросс


Коперник совершил революционное открытие, объяснив движения планет в контексте гелиоцентрической Вселенной и поместив Солнце в центре Солнечной системы. Различные планеты, и Земля в том числе, движутся по околосолнечным орбитам. Мы сидим на движущейся платформе. Чтобы определить, как быстро движется Земля, мы должны определить, какое расстояние она проходит за конкретный интервал времени. В таком случае скорость будет равна расстоянию, деленному на время.

Как было рассказано в главе 2, Кеплер показал, что орбита Земли имеет форму эллипса. На самом деле орбиты большинства планет в нашей Солнечной системе близки к круговым, так что пока приблизительно условимся, что Земля движется по кругу и один такой круг проходит за год. Радиус этого круга, то есть расстояние от Солнца до Земли, постоянно используется в астрономии. Как было сказано в предыдущей главе, оно официально называется «астрономическая единица», сокращенно а.е. Одна а.е. равна примерно 150 миллионам километров, или 1,5 × 108 км.

Итак, за год Земля описывает окружность с радиусом 150 миллионов километров. Длина окружности равна 2π радиуса. Все знают, что число π примерно равно 3. Примерно такими грубыми приближениями оперируют астрономы. Длину окружности нужно разделить на время, то есть на 1 год.

Пересчитаем год в секундах, впоследствии нам это пригодится. Количество секунд в году равно: 60 секунд в минуте умножить на 60 минут в часе, умножить на 24 часа в сутках, умножить на 365 дней в году. Можно посчитать на калькуляторе, но, как вы помните из главы 1, Нил отметил свою миллиардную секунду бутылкой шампанского, а было ему тогда около 31 года. Соответственно в году примерно 1/30 миллиарда, то есть около 30 миллионов секунд. Возьмем приблизительно 3,0 × 107 секунд в году.

Резюмируя, можно сказать, что Земля вращается вокруг Солнца со скоростью 2πr/(1 год) = 2 × 3 × (1,5 × 108 км)/(3 × 107 с) = 30 км/с. Вот с такой скоростью мы движемся вокруг Солнца прямо сейчас. Просто несемся! Но нам кажется, что мы спокойно сидим на месте, – возможно, именно поэтому древним казалось естественным ставить себя в центр Вселенной. Это представлялось столь очевидным. Но на самом деле можно заметить активное движение. За сутки Земля совершает полный оборот вокруг своей оси. За год она обходит полный путь вокруг Солнца со скоростью 30 км/с. Во второй части книги мы расскажем, что Солнце также движется (увлекая за собой Землю и другие планеты).

Коперник говорил, что планеты вращаются вокруг Солнца. Кеплер воспользовался расчетами Тихо Браге, определив с их помощью орбиты разных планет и изучив их свойства. Как упоминалось в главе 2, он вывел из этого три закона. Исаак Ньютон, один из героев нашей истории, смог вывести из третьего закона Кеплера такое следствие: притяжение – это радиальная сила между двумя объектами, обратно пропорциональная квадрату расстояния между ними.

Пожалуй, Ньютон был величайшим физиком, возможно, самым великим из когда-либо живших ученых. Он совершил множество фундаментальных открытий. Ньютон хотел понять, как движется все на свете: не только планеты вокруг Солнца, но и мяч, подброшенный в воздух, или камень, катящийся по склону.

В науке требуется сделать множество измерений, а потом попытаться вывести из них небольшое количество законов, которые обобщают и объясняют эти наблюдения. Ньютон сформулировал три закона движения. Первый закон Ньютона – это закон инерции. Что такое инерция? Есть такое выражение «плыть по течению»; оно означает, что вам совершенно не хочется противиться инерции. Лежишь себе на диване и не рыпаешься. Вас кто-то должен подтолкнуть, чтобы вы встали с дивана. Объект в состоянии покоя (например, лежебока) так и останется в покое, пока на него не подействует внешняя сила.

Обсудим, что такое сила. Закон Ньютона об инерции состоит из двух частей. Первая часть: «всякое тело сохраняет состояние покоя до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние». Это логично. Допустим, лежит на столе яблоко. На него не действует никакая сила, поэтому оно остается в покое.

Вторая часть ньютоновского закона об инерции формулируется не столь очевидно: «объект, равномерно движущийся с определенной скоростью, продолжит двигаться с той же скоростью, пока на него не подействует внешняя сила». «Равномерно» означает с одной и той же скоростью, в одном и том же направлении. Если запустить мячик по полу, то он не будет двигаться в этом направлении вечно и с постоянной скоростью, а замедлится и остановится. Ведь на него действует третья сила – трение между мячиком и полом. В обыденной жизни трение встречается повсеместно. Допустим, вы пустили по воздуху лист бумаги; он замедлится, а затем спланирует на пол. В полете на него действуют две силы: 1) сила гравитации, о которой мы вскоре подробно поговорим, и 2) сила сопротивления воздуха. Площадь листа бумаги велика, поэтому и сопротивление воздуха получается значительным.

Идея о том, что движущееся тело так и будет двигаться с постоянной скоростью, если на него не действуют внешние силы, не очевидна, так как мы повсюду сталкиваемся с трением. Сложно вообразить обыденную ситуацию, в которой отсутствует всякое трение и, соответственно, нет воздействия внешних сил. Фигуристка почти не испытывает трения между коньками и льдом, поэтому она может сравнительно легко прокатываться по льду на большие расстояния. Когда трение стремится к нулю, объект достаточно подтолкнуть – и он станет двигаться с постоянной скоростью. Галилей это понял. Открытый космос предлагает самые яркие примеры отсутствия какого-либо трения. В космосе действительно можно запустить объект и не сомневаться, что он так и полетит равномерно с этой скоростью, поскольку ничто не встретится ему на пути. Ньютон сформулировал все эти принципы в виде базового закона.

Второй закон движения Ньютона описывает, что происходит с объектом, на который воздействует сила. На объект могут действовать разнообразные силы, но, независимо от конкретных сил, именно их сумма дает отклонение от равномерной скорости. Чтобы количественно выразить такое отклонение, используется термин «ускорение»: ускорение – это изменение скорости за единицу времени. Следовательно, второй закон соотносит ускорение объекта с силой, действующей на него. Если подтолкнуть объект с некоторой силой, то объект ускорится. Если объект обладает небольшой массой, то ускорение будет велико; с другой стороны, приложив ту же силу к более массивному объекту, мы сообщим ему меньшее ускорение. Данное отношение описывается самым знаменитым уравнением Ньютона F= ma: сила равна произведению массы на ускорение.

Третий закон Ньютона можно «запросто» сформулировать так: «Ты толкаешь меня – я толкаю тебя». Таким образом, если одно тело с силой воздействует на другое, то второе тело воздействует на первое с равной, но противоположно направленной силой. Если хлопнуть рукой по столешнице, то ощущается отдача: сопротивление стола. Сила действия равна силе противодействия.

Допустим, у вас на ладони лежит яблоко. Определенно оно находится в покое. Действуют ли на него какие-либо силы? Да, земная гравитация. Яблоко должно с ускорением лететь вниз, но этого не происходит. Дело в том, что вы удерживаете его рукой, словно подталкиваете вверх (на это затрачивается ваша мышечная сила). По третьему закону Ньютона, яблоко давит на ладонь – так ощущается вес яблока. Сила притяжения Земли действует на яблоко вниз, а сила вашей руки толкает яблоко вверх. Две эти силы компенсируют друг друга, их сумма равна нулю. Нулевая сила означает нулевое ускорение по второму закону Ньютона. Поэтому яблоко остается в покое и никуда не катится.

На самом деле все еще интереснее. Выше мы вычислили, что Земля облетает Солнце по кругу со скоростью 30 км/с, а значит, и яблоко движется с той же скоростью. Чтобы разобраться с этим, давайте сделаем отступление и поговорим о природе кругового движения.

При движении Земли по кругу со скоростью 30 км/с ее скорость является постоянной, но не является равномерной, так как направление движения Земли постоянно изменяется. Если бы направление не менялось, то Земля бы просто улетела по прямой, а не вращалась по кругу. Ускорение, возникающее при движении по кругу, встречается и в повседневной жизни. В развлекательных парках есть разнообразные аттракционы-горки, и на них такое ускорение пробирает вас насквозь.

Чтобы определить ускорение, испытываемое объектом, который движется с постоянной скоростью v по кругу радиусом r, Ньютон воспользовался собственноручно изобретенным дифференциальным исчислением. Такое ускорение равно v2/r, оно направлено к центру круга. Яблоко у вас на ладони, которое кажется неподвижным, на самом деле летит со скоростью 30 км/с по этому колоссальному кругу, причем с ускорением. По второму закону Ньютона на яблоко должна действовать какая-то сила, и эта сила – гравитационное притяжение Солнца. Солнце тащит Землю по орбите со скоростью 30 км/c, а вместе с ней тащит и яблоко. Яблоко испытывает силу солнечной гравитации, точно как вы и я.

Мы летим вокруг Солнца со скоростью 30 км/c. Учитывая, как велика эта скорость, кажется, что результирующее ускорение также должно быть огромным, но ускорение на самом деле невелико, поскольку радиус круга огромен. Давайте посчитаем. Скорость Земли равна 30 км/c или 30 000 м/c, а радиус земной орбиты – 150 000 000 000 м. По формуле v2/r ускорение a равно (30 000 м/c)2/150 000 000 000 м = 0,006 м/с2, или 0,006 метра в секунду за секунду. Таким образом, скорость Земли ежесекундно меняется на 6 миллиметров в секунду. Величина крошечная. Галилей открыл, что тела падают на Землю под действием земного притяжения с ускорением примерно 9,8 метра в секунду за секунду, это значение гораздо больше. Следовательно, пусть мы и летим вокруг Солнца с огромной скоростью, Земля при этом ускоряется совершенно незначительно. Напротив, на американских горках наша скорость куда ниже 30 км/c, но радиус круга, по которому мы движемся, крохотный; подставив это меньшее значение r в формулу v2/r, получаем довольно большое ускорение, которое весьма ощутимо. (Так, если радиус горок – 10 метров, а вы летите по ним со скоростью 10 м/c, то получается ускорение 10 метров в секунду за секунду).

Если попытаться проследить гравитационное воздействие Солнца, то складывается более тонкая ситуация. Солнечная гравитация сообщает одинаковое ускорение всем телам на Земле – вам, книге, которую вы держите, яблоку на ладони. Все мы вращаемся по околосолнечной орбите свободного падения. Нам только кажется, что мы неподвижны; просто мы не замечаем этого движения, равно как не замечаем и ускорения.

Но факт остается фактом: Земля вращается вокруг Солнца с ускорением, и это ускорение вычисляется по формуле v2/r. Далее Ньютон применил третий закон Кеплера, чтобы определить, как сообщаемое Солнцем ускорение изменяется в зависимости от радиуса. Период орбитального вращения планеты (P) равен


P = (2πr/v);


следовательно, орбитальный период вычисляется как расстояние, проходимое планетой по орбите (2πr), деленное на скорость (v). Таким образом:

P пропорционально r/v и

P2 пропорционально r2/v2.

Кеплер установил, что P2 пропорционально a3, где a — большая полуось планетной орбиты. В данном случае земная орбита почти круговая, поэтому можно приблизительно взять r = a. В таком случае, подставив r вместо a, находим:

P2 пропорционально r3.

ПосколькуP2 также пропорционально r2/v2,

r2/v2 пропорционально r3.

Разделив на r, получаем:

r/v2 пропорционально r2.

Обратив это выражение, находим, что

v2/r (ускорение) пропорционально 1/r2.

При помощи таких рассуждений, третьего закона Кеплера и элементарной алгебры мы показали, что гравитационное ускорение, сообщаемое Солнцем другому телу, удаленному от него на расстояние r, обратно пропорционально квадрату этого расстояния; это и есть ньютоновский «закон обратных квадратов». Вот как его сформулировал сам Ньютон:

…в это время я был в расцвете моих изобретательских сил и думал о математике и философии больше, чем когда-либо после. Из правила Кеплера о том, что периоды планет находятся в полуторной пропорции к расстоянию от центров их орбит, я вывел, что силы, удерживающие планеты на их орбитах, должны быть в обратном отношении квадратов их расстояний от центров, вокруг коих они вращаются.

Такие представления о гравитации Ньютон также применил к Земле и Луне. Вспомните знаменитое упавшее яблоко, вдохновившее Ньютона. Оно расположено на расстоянии одного земного радиуса от центра Земли и падает на Землю с ускорением 9,8 м/с2. Луна расположена на расстоянии 60 земных радиусов от центра Земли. Если сила тяготения Земли убывает в пропорции 1/r2 (как и у Солнца), то на лунной орбите земное притяжение должно давать ускорение в (60)2 раз меньше тех 9,8 м/с2, которым равно ускорение свободного падения на поверхности Земли, то есть около 0,00272 метра в секунду за секунду.

Точно как и в случае с вращением Земли вокруг Солнца, можно рассчитать ускорение Луны, вращающейся вокруг Земли, взяв период вращения (27,3 дня) и радиус лунной орбиты (384 000 километров). Подставив эти числа в формулу v2/r, получаем ускорение 0,00272 метра в секунду за секунду. Эврика! Как красиво все согласуется с моделью, где расчет велся от яблока. По словам самого Ньютона, два этих результата показались ему «весьма близко совпадающими». Одна и та же сила притягивает к Земле и яблоко, и Луну, причем траектория Луны искривляется и становится не прямолинейной, а круговой, что позволяет ей удерживаться на приблизительно концентрической околоземной орбите. Сила земного притяжения, под действием которой падает яблоко, распространяется и на орбиту Луны. Ньютон совершил это открытие, когда жил в доме бабушки, – Кембриджский университет в те годы был закрыт из-за чумы. Но он не опубликовал результаты своей работы. Вероятно, он был раздосадован, что наблюдения не вполне согласовывались с прогнозом – небольшое расхождение могло быть связано с тем, что Ньютон пользовался неточным значением земного радиуса. Как бы то ни было, опубликовать эти расчеты лишь много лет спустя уговорил Ньютона Эдмунд Галлей (в честь которого названа комета).

Ньютон сформулировал закономерность, которую часто называют пафосным выражением «Закон всемирного тяготения» – с ним вы познакомились в главе 2. Рассмотрим два объекта – например, Землю и Солнце. Расстояние между ними (1 а.е., или 1,5 × 108 км) примерно в 100 раз превосходит диаметр самого Солнца (1,4 × 106 км). Эти тела обладают соответственно массами MЗЕМЛ и МСОЛН.

Ньютон обнаружил, что сила притяжения между двумя этими телами пропорциональна массе каждого из них и обратному квадрату расстояния r между ними (как я уже говорил, он пришел к такому выводу, опираясь на третий закон Кеплера). «Пропорциональна» в данном случае означает, что сила будет включать константу, характеризующую пропорциональность, – она называется G, или «постоянная Ньютона», в честь сэра Исаака. Вот формула Ньютона, описывающая тяготение между Солнцем и Землей:


F = GMЗЕМЛМСОЛН/r2.


Речь идет о силе притяжения; два тела притягиваются друг к другу, и, следовательно, эта сила направлена от первого тела ко второму и от второго к первому.

По третьему закону Ньютона эта формула охватывает как силу притяжения Земли к Солнцу, так и силу притяжения Солнца к Земле. Но Солнце неизмеримо массивнее Земли. По второму закону Ньютона ускорение есть сила, деленная на массу. Следовательно, ускорение Земли гораздо, гораздо больше ускорения Солнца, и скорость, сообщаемая Солнцу из-за такого ускорения, крошечная по сравнению со скоростью Земли (Солнце и Земля вращаются вокруг общего центра масс, но он находится под поверхностью Солнца. Солнце минимально колышется вокруг этого центра, тогда как Земля описывает вокруг Солнца большой круг).


Рис. 3.1. Ускорение Луны и ньютоновского яблока, падающего с дерева. Обратите внимание: в обоих случаях вектор ускорения (изменения скорости) направлен к центру Земли. Предоставлено Дж. Ричардом Готтом


Рассмотрим еще одно удивительное следствие из формулы Ньютона. По второму закону Ньютона сила гравитации, формулу которой мы записали чуть выше, равна произведению массы Земли (MЗЕМЛ) на ее ускорение, а при движении по кругу ускорение равно v2/r. Таким образом, формулу F = ma можно переписать:


GMЗЕМЛМСОЛН/r2= MЗЕМЛv2/r.


Обратите внимание: масса Земли присутствует и в левой, и в правой части тождества, поэтому ее можно сократить, и останется:


СОЛН/r2= v2/r.


Это означает, что ускорение Земли (СОЛН /r2= v2/r) не зависит от массы Земли. Это примечательный факт. Ускорение силы тяжести не зависит от массы ускоряющегося объекта, это касается и околосолнечных орбит, и тел, падающих на Землю в ее гравитационном поле, – все потому, что масса тела оказывается и в левой, и в правой части уравнения и, соответственно, сокращается. Если я брошу книгу и лист бумаги, то они будут испытывать одно и то же ускорение и должны падать с одинаковой скоростью, хотя книга гораздо массивнее. Галилей утверждал, что именно так и должно быть в вакууме. Так ли это на практике? Нет, книга и лист падают с разной скоростью из-за сопротивления воздуха. Сопротивление воздуха воздействует как на книгу, так и на лист, но поскольку книга гораздо массивнее, сопротивление воздуха ускорению книги будет невелико – в сущности, пренебрежимо. Однако если я положу лист бумаги на толстую книгу, так чтобы книга исключала соприкосновение листа бумаги с воздухом, и брошу их как одно целое, то они упадут вместе. Можете сами проверить!

Когда астронавты экипажа «Аполлона-15» прибыли на Луну, они захватили с собой молоток и перо, чтобы экспериментально проверить этот принцип. На Луне практически нет атмосферы; у ее поверхности – самый настоящий вакуум, соответственно никакого сопротивления воздуха там не будет. Когда астронавты одновременно бросали молоток и перо, те падали абсолютно синхронно, точно как прогнозировал Ньютон (и Галилей). В Интернете можно посмотреть видеозапись этого эксперимента.

Возможно, вам известно, что Аристотель в данном случае ошибался. Он считал, что более массивные тела должны падать быстрее и с большим ускорением. Это казалось ему логичным, но на самом деле он ни разу не поставил эксперимент, чтобы проверить, а верна ли эта идея. Он мог бы взять камень побольше и камень поменьше (ни на один камень сопротивление воздуха практически не действует), бросить их и убедиться, что оба камня упадут практически одновременно. Вывод: в науке исключительно важно экспериментально проверять любые интуитивные догадки!

Рассмотрим смежную проблему. Сила тяготения Земли воздействует на яблоко, которое вы держите в поднятой руке. В формуле Ньютона есть величина r – расстояние от яблока до Земли. Можно было бы подумать, что здесь имеется в виду расстояние от яблока до пола, около 2 метров. Оказывается, это неверно. Ньютон осознал, что нужно учитывать притяжение каждого грамма земной массы; не только той, что у вас под ногами, но и всей остальной, вплоть до противоположного полушария. Ему потребовалось около 20 лет, чтобы выполнить такие вычисления. Пришлось сложить силы притяжения каждого отдельного кусочка Земли, у каждого из которых – свое расстояние и направление от яблока. Для сложения всех этих сил потребовалось изобрести совершенно новую область математики, сегодня именуемую интегральным исчислением. Результат такого вычисления показывает, что гравитация шарообразного тела (например, Земли) действует так, как будто вся масса сконцентрирована в центре этого тела, – интуитивно совершенно не очевидно. Чтобы вычислить силу тяготения, действующую на яблоко, нужно представить, что вся масса Земли локализована в одной точке на глубине 6371 километров – таково расстояние от поверхности до центра Земли. Мы уже пользовались таким методом, когда сравнивали падающее яблоко и вращающуюся на орбите Луну.

Но вертикальное падение яблока (прямо вниз) определенно не похоже на орбитальное вращение Луны. Почему Луна летает кругами, а яблоко просто падает на землю? Чтобы забросить яблоко на орбиту, мне бы пришлось горизонтально швырнуть его по прямой так сильно, чтобы оно могло облететь всю Землю. Есть, например, космический телескоп «Хаббл», летающий всего в нескольких сотнях километров над поверхностью Земли. Примерно за полтора часа он облетает околоземную орбиту, окружность длиной около 40 тысяч километров. Можно вычислить его скорость – где-то 8 километров в секунду. Итак, чтобы забросить яблоко на орбиту, нужно швырнуть его строго по горизонтали со скоростью восемь 8 в секунду.

Предположим, вы стоите на вершине высокой горы (где эффект трения атмосферы уже можно не учитывать) и бросаете объекты по горизонтали на все более высокой скорости. Бросьте яблоко так сильно, как сможете, – и оно почти сразу упадет на землю. Пригласите для броска бейсболиста-профессионала – он кинет яблоко немного дальше, но оно все равно упадет. Теперь пусть яблоко бросит Супермен. Он будет бросать все сильнее и сильнее, яблоко будет долетать все дальше, пока криволинейная траектория яблока не упрется в землю. Но поверхность Земли не плоская; на больших расстояниях становится заметно, что она также изгибается книзу. Супермен действительно может швырнуть яблоко так, чтобы оно летело со скоростью 8 километров в секунду. Такой объект также будет падать под действием гравитации, но его криволинейная траектория будет повторять кривизну Земли. Поэтому этот объект так и не упадет, а окажется на круговой околоземной орбите. Объект на орбите все время падает и при этом не попадает на Землю. Когда вы бросаете яблоко, оно падает под действием земного тяготения. Благодаря все тому же тяготению Земли, и космический телескоп «Хаббл», и Луна вращаются вокруг Земли (орбита Луны гораздо выше, поэтому Луна движется намного медленнее). На низкой околоземной орбите вы падаете со скоростью вращения Земли, поэтому так и не можете упасть. Ньютон понимал это и теоретически описал искусственный спутник Земли – за 270 лет до того, как спутник был сконструирован!

Если вам доводилось ехать на лифте, который вдруг резко уходил вниз, то в течение какого-то мига вы ощущали, что падаете и все вокруг падает вместе с вами. Если бросить яблоко, то оно упадет, а вы нет, так как вас держит земля под ногами. Вы остаетесь в покое относительно окружающих предметов, а яблоко падает под действием гравитационного ускорения. Если бы вы держали в руке яблоко, а вас при этом сшибли с ног, то вы бы увидели, как падаете вместе с яблоком (пока не очутились бы на полу).

Вероятно, вы видели снимки астронавтов, работающих на Международной космической станции на околоземной орбите. Земное притяжение действует как на астронавтов, так и на МКС. Но все тела в пределах МКС падают с одинаковой скоростью – вспомните наши расчеты, демонстрирующие, что гравитационное ускорение не зависит от массы объекта, находящегося на орбите. Когда все падает с одинаковой скоростью, астронавты ощущают невесомость. «Вес» фиксируется на обычных напольных весах, когда вы на них стоите (или, что эквивалентно, фиксируется отдача весов по третьему закону Ньютона). Но если вы падаете вместе с весами, то не давите на них – они покажут «0». Вы будете невесомы.

Это, однако, не означает, что ваша масса равна нулю. Масса и вес не одно и то же! Масса, по Ньютону, – это величина, учитываемая во втором законе движения (где соотносятся силы, массы и ускорение); именно благодаря этой величине возникает и тяготение. Когда кто-то говорит, что «хочет избавиться от лишнего веса», на самом деле он хочет сбавить собственную массу. Жир имеет массу, именно от жира человек и избавляется. Тогда, прилагая прежние усилия, человек легче ускоряется и начинает свободнее двигаться.

Давайте подытожим достижения Ньютона. Изучая движения планет, известных на то время, Кеплер вывел три закона, описывающих планетные орбиты. Затем явился Ньютон и совершенно переосмыслил открытия Кеплера; сформулировав три своих закона движения, он пытался понять, как движется все на свете, а не только шесть планет, вращающихся вокруг Солнца. Кроме того, он подвел физическую базу под силу тяготения – важнейшую силу в астрономии. Воспользовавшись третьим законом Кеплера, он показал, что сила тяготения должна ослабевать по формуле 1/r2. Он обнаружил, что два тела, пребывающие в гравитационном взаимодействии, притягиваются друг к другу; так, гравитационное взаимодействие Солнца и любой планеты вычисляется по формуле F = СОЛНMПЛАН/r2. Резюмируя все это, видим, что третий закон Кеплера можно выразить на уровне ньютоновских законов движения и закона тяготения. Ньютон предложил гораздо более обширное понимание физики, лежащей в основе третьего закона Кеплера, нежели сам Кеплер.

Окончательный триумф Ньютона наступил, когда подтвердилось, что по третьему закону движения планета должна двигаться по идеально эллиптической орбите, причем в одном из фокусов эллипса находится Солнце, а также что линия, проведенная между планетой и Солнцем, будет заметать равные площади за равные промежутки времени. Теперь все три закона Кеплера можно было напрямую вывести из единственного закона гравитационного притяжения, сформулированного Ньютоном, плюс трех его законов движения.

Ньютоновские законы тяготения были первыми физическими законами, которые мы поняли. Важно, что на их основе можно было делать проверяемые прогнозы. Галлей воспользовался законами Ньютона и открыл, что несколько комет, прилетавших в течение веков (в том числе комета 1066 года, изображенная на гобелене из Байё), – это в действительности одна и та же комета, вращающаяся по очень вытянутой эллиптической орбите. Она прилетает примерно раз в 76 лет. На ее движение влияют Юпитер и Сатурн, так как комета пересекает их орбиты, и слегка варьирующиеся сроки прибытия этой кометы можно предсказать при помощи законов Ньютона, тогда как, по законам Кеплера, вращение этой кометы должно быть строго периодическим. Галлей указал, что комета должна вернуться в 1758 году. Он умер в 1742 году, не дождавшись этого события, но комета действительно явилась в 1758 году и уже в следующем году была названа кометой Галлея. Приближение кометы к Солнцу на минимальное расстояние с точностью до месяца смогли спрогнозировать Алекси Клеро, Жером Лаланд и Николь-Рейн Лепот, воспользовавшиеся законами Ньютона. Это было блестящее подтверждение ньютоновских законов тяготения.

Законы Ньютона помогли совершить еще одно выдающееся открытие. Планета Уран не вполне им подчиняется; ее орбита кажется немного искривленной. Урбен Леверье обнаружил, что эти отклонения можно объяснить, если Уран испытывает тяготение некоей невидимой планеты, расположенной еще дальше от Солнца. Он спрогнозировал, где может находиться эта планета, и в 1846 году Иоганн Готфрид Галле и Генрих Луи д’Арре, воспользовавшись расчетами Леверье, нашли эту планету лишь в 1° небесной сферы от указанной им точки. Законы Ньютона помогли открыть новую планету – Нептун. Репутация Ньютона достигла запредельных высот.

Читая эту книгу и пытаясь постичь Вселенную, мы будем вновь и вновь обращаться к этим базовым понятиям, описывающим силу и тяготение.

Глава 4

Как звезды излучают энергию (I)

Автор: Нил Деграсс Тайсон


Теперь давайте попытаемся осмыслить расстояния до звезд. Как мы уже знаем, расстояние от Земли до Солнца, равное 150 миллионам километров (или 1 а.е.), примерно в 100 раз превышает диаметр самого Солнца. Если уменьшить расстояние от Земли до Солнца до одного метра, то поперечник Солнца составит 1 сантиметр. Ближайшие звезды удалены от нас примерно на 200 000 а.е., поэтому, при описываемом уменьшении, они окажутся в 200 километрах. Межзвездное пространство несравнимо объемнее самих звезд. Такие расстояния удобно пересчитывать не в километрах или сантиметрах, а с учетом времени, за которое их преодолевает свет.

Скорость света, обозначаемая буквой c, равна 3 × 108 метров в секунду – еще одно число, которое стоит запомнить. В главе 17 мы подробно рассмотрим, почему эта скорость является абсолютно предельной. Ничто не может двигаться быстрее света. Поскольку мы отслеживаем звезды именно по их свету, кажется естественным измерять расстояние именно в таких единицах. Одна световая секунда – это расстояние, преодолеваемое лучом света за секунду, то есть 3 × 108 метров, или 300 000 километров, – примерно всемеро больше земного экватора. Луна удалена от нас на 384 000 километров, свет проходит это расстояние за 1,3 секунды. Можно сказать, что расстояние до Луны – 1,3 световой секунды. Расстояние от Земли до Солнца (1 а.е.) равно примерно 8 световым минутам; свет преодолевает его за 8 минут. Ближайшие звезды расположены в 4 световых годах от нас. Итак, световой год – это не мера времени, а мера длины: он равен расстоянию, которое свет преодолевает за год. Один световой год равен примерно 10 триллионам километров. Свет ближайших звезд, который мы видим сегодня, покинул их 4 года назад. Во Вселенной мы постоянно смотрим в прошлое. Эти ближайшие звезды мы видим не такими, каковы они сейчас, а такими, каковы они были 4 года назад.

Нечто подобное наблюдается и в повседневной жизни. Можно сказать, что скорость света равна примерно 30 сантиметрам в наносекунду, поэтому два человека, сидящих по разные стороны стола, видят друг друга с запаздыванием в пару наносекунд. Разумеется, такой крошечной погрешности мы просто не замечаем, но такое запаздывание неотделимо от зрительного контакта.

Как измерить расстояние до ближайших звезд? Четыре световых года – это чрезвычайно много. Нам просто не хватит никакой рулетки, чтобы дотянуться до звезды. Поэтому давайте рассмотрим, что такое параллакс. Земля вращается вокруг Солнца (рис. 4.1). В январе Земля находится по одну сторону от Солнца, а полгода спустя, в июле, – по другую. Справа от Земли, в центре рисунка, изображена звезда, расположенная относительно недалеко, а еще правее показаны далекие звезды. Они настолько отдалены от нас, что я просто поставлю их на край страницы в линию. Теперь допустим, что я сфотографировал близлежащую звезду 1 января. В таком случае я увижу на снимке все звезды, которые были на небе, в том числе интересующую нас (на схеме она закрашена). На рис. 4.1 показано, как звездное небо выглядит с Земли 1 января. Сама по себе эта картинка, конечно, ни о чем не говорит. Помните, я не знаю, какие звезды далеко, а какие близко, – пока мне об этом ничего не известно. Но мы выждем полгода и вновь сделаем такую фотографию в июле, когда Земля будет на противоположной стороне орбиты, в совершенно новой точке. Теперь мы увидим точно такой же звездный фон, но интересующая нас звезда (закрашена) словно передвинется со своего прежнего места в точку, соответствующую июльскому положению Земли. Звезда сместится. Все остальные, в принципе, останутся на своих местах. Что произойдет за следующие 6 месяцев? Она вернется на прежнее место, туда, где была в январе. Звезда так и смещается между двумя точками в зависимости от того, в какой день года мы ее наблюдаем.

Промотайте две фотографии одну за другой, как в мультфильме, вперед, потом назад. Если при этом обе фотографии идентичны, за исключением одной звезды, которая смещается, то именно эта звезда расположена к вам ближе всех остальных. Если бы эта звезда была еще ближе, то смещение на снимке получилось бы еще заметнее. Ближние звезды сильнее «смещаются». Я пишу это слово в кавычках, поскольку звезда, конечно, никуда не движется – это мы постоянно вращаемся вокруг Солнца; все смещение связано с изменением нашей точки обзора.


Рис. 4.1. Параллакс. Когда Земля вращается вокруг Солнца, расположенная поблизости звезда смещается на фоне более удаленных звезд. Предоставлено Дж. Ричардом Готтом


Хотите – убедитесь сами. Закройте левый глаз, вытяните руку и оттопырьте большой палец. Смотрите только правым глазом, и постарайтесь найти такой предмет, который просматривается на одной линии с большим пальцем. Затем приоткройте второй глаз. Что произойдет? Большой палец словно сдвинется. Теперь отставьте палец на половину длины руки и повторите опыт. Палец сдвинется еще значительнее. Открыв этот эффект, люди осознали, что он работает и со звездами. Ближняя звезда подобна большому пальцу, а диаметр земной орбиты – промежутку между двумя глазами. Естественно, если вы попытаетесь определить расстояние до звезды на глаз, это будет неэффективно, ведь несколько сантиметров между зрачками – слишком малое расстояние, чтобы можно было увидеть звезду под явственно разными углами. Но диаметр земной орбиты – 300 миллионов километров. Вполне достаточное расстояние, чтобы подмигнуть Вселенной и измерить, как далеко от тебя расположена та или иная звезда.

Как смотреть стереоскопические трехмерные картинки

Человеческое зрение таково, что мы видим окружающий мир в перспективе, – и все потому, что точки обзора у обоих глаз немного отличаются. Именно поэтому мы можем «обманываться» и видеть изображение в перспективе даже на плоской книжной странице. Все, что для этого требуется, – рассмотреть бок о бок расположенные картинки, одна из которых изображена «с точки зрения» правого глаза, а другая – левого. В стереопаре с рис. 4.2 изображение для правого глаза расположено слева, а для левого – справа, поэтому линии обзора должны пересекаться. Взглянуть на картинку таким образом проще, чем кажется. Одной рукой держите картинку на расстоянии около 40 сантиметров перед глазами. Указательный палец другой руки поставьте ровно на половине пути от глаз до страницы. Посмотрите на страницу. Вы увидите два нечетких прозрачных изображения пальца (при этом одно фиксируется левым глазом, а другое – правым). Поводите указательным пальцем вперед-назад, пока два «пальца» не сойдутся воедино посередине нижней части картинки. Может быть, придется слегка наклонять голову влево и вправо, пока два изображения пальца не выровняются друг с другом. Теперь внимательно смотрите на палец. Перед вами должен четко вырисовываться палец, а за ним – три расплывчатые копии картинки со страницы. Переключите внимание на среднюю картинку, не меняя положения глаз. Должно получиться красивое объемное изображение, где на звездном фоне просто сияет яркая звезда Вега! Вы заметите, что разные звезды – на разных расстояниях. Мозг автоматически измеряет их смещения и высчитывает параллакс. Разумеется, именно так и можно увидеть трехмерное изображение. Мозг постоянно высчитывает параллаксы, измеряя расстояние до всех видимых объектов. Если просто посмотреть на палец, то глаза сами собой на нем сойдутся. За пальцем окажутся три расплывчатые картинки. Сфокусируйтесь на центральном – и оно станет объемным. Потренируйтесь, здесь нужно немного напрактиковаться. Не каждый в состоянии такое увидеть, но если вы умеете – вас ждет потрясающее зрелище, и такой навык стоит освоить. Мы еще воспользуемся таким искусством на страницах этой книги, когда будем рассматривать рис. 18.1.

На рис. 4.2 показан подобный пример, с созвездием Лиры. Звезды на двух картинках показаны смещенными пропорционально их наблюдаемому параллаксу, как будто перед нами – два снимка, сделанных с земной орбиты с интервалом 6 месяцев. Мы немного увеличили смещение, чтобы оно было хорошо заметно.

Самая яркая звезда на снимке называется Вега, от нас до нее всего 25 световых лет. Она гораздо ближе к нам, чем соседствующие с ней звезды из центра Лиры. Если внимательно сравнить две картинки и поискать отличия, то будет заметно, что Вега сместилась сильнее других звезд.

Чем дальше звезда, тем меньше такое смещение. Но таким способом можно измерить расстояние до очень многих относительно близких звезд. Для этого придется воспользоваться простейшими геометрическими фактами.


Рис. 4.2. Параллакс Веги. Две смоделированные фотографии созвездия Лиры выглядят так, как будто они сделаны с земной орбиты с интервалом 6 месяцев, пока Земля вращается вокруг Солнца. Параллакс каждой звезды на картинках обратно пропорционален расстоянию до нее. (Смещения параллаксов значительно увеличены, чтобы они были легко заметны.) Вега (самая яркая звезда в созвездии Лира) находится на переднем плане, до нее всего 25 световых лет, она сдвигается сильнее всего. Чтобы оценить смещение параллакса Веги, достаточно сравнить ее положение на двух картинках. Эту картинку также можно смотреть в трехмерном виде – о том, как это делается, рассказано во врезке на с. 58. Постарайтесь, и увидите оба изображения как в стереоочках. Предоставлено Робертом Дж. Вандербеем и Дж. Ричардом Готтом


На рис. 4.1 мы видели, что в январе ближайшая звезда находится на фоне одной совокупности звезд, а в июле – уже на фоне другой. Половину такого смещения принято называть углом параллакса, он соответствует сдвигу, который можно было бы увидеть, если передвинуться всего на 1 а.е., а не на 2 а.е. Мы знаем, чему равен радиус земной орбиты (1 а.е.) в километрах. Можем измерить угол параллакса. Представьте себе треугольник, в вершинах которого расположены Земля, Солнце и звезда. Это будет прямоугольный треугольник, причем в вершине с углом 90° находится Солнце. Смещение угла, фиксируемое в течение года при наблюдении за близлежащей звездой, в точности соответствует тому смещению, которое заметил бы наблюдатель с той звезды, глядящий в вашу сторону. Таким образом, наблюдаемый вами угол параллакса (половина общего смещения) будет равен углу между Солнцем и Землей (в июле), который измерил бы наблюдатель с близлежащей звезды (вновь см. рис. 4.1). Следовательно, построенный нами треугольник имеет угол в 90° у вершины с Солнцем, угол, равный углу параллакса, у вершины с близлежащей звездой, а угол у вершины с Землей равен 90° минус угол параллакса. Это так, поскольку, согласно евклидовой геометрии, сумма углов треугольника равна 180°.

Нам известна длина одного из катетов треугольника (расстояние от Солнца до Земли), и если знать градусные меры всех углов треугольника, то можно измерить и длину катета, соединяющего Солнце и близлежащую звезду. Таким образом мы напрямую измеряем расстояние до звезды. Теперь давайте изобретем новую меру расстояния. Возьмем в качестве данной меры такое расстояние, чтобы удаленная на это расстояние звезда имела параллакс в одну угловую секунду. Естественно, 1 угловая секунда равна 1/60 угловой минуты, а угловая минута равна 1/60 градуса. Таким образом, угловая секунда равна 1/3600 градуса. Известно, каково может быть расстояние до звезды, параллакс которой составляет 1 угловую секунду. Такое расстояние называется 1 парсек. Нравится такое название? Угол параллакса в 1 угловую секунду равен 1/(360 × 60 × 60) полной окружности. Если звезда расположена на расстоянии d, то длина такой окружности будет равна C = 2πd. Отрезок между Землей и Солнцем r = 1 а.е. противолежит 1/(360 × 60 × 60) данной окружности, таким образом, 1 а.е./2πd = 1/(360 × 60 × 60). Следовательно, для параллакса в 1 угловую секунду d = 206 265 а.е. = = 1 парсек. Все это – просто евклидова геометрия.

В сериале «Звездный путь» эта единица длины используется довольно часто. Сколько это в световых годах? 3,26 светового года. Парсек – классная и интересная единица, но в этой книге мы будем оперировать прежде всего световыми годами. Если вам когда-нибудь встретится термин «парсек», то знайте его этимологию. Астрономы составили это слово из фрагментов двух других терминов: «параллакс» и «угловая секунда». Звезда с параллаксом 1/2 угловой секунды удалена от нас на 2 парсека, звезда с параллаксом 1/10 угловой секунды – на 10 парсеков. Все просто. В астрономии встречаются некоторые очень емкие термины, например «квазар». Дословно он означает «квазизвездный радиоисточник». «Пульсар» – это пульсирующая звезда. Мы придумали, а людям нравится. Есть часы Pulsar.

Какая звезда самая близкая к Земле? Это Солнце. Если вы ответили «альфа Центавра» – значит, я вас провел. Альфа Центавра – это ближайшая к Солнцу звездная система. Альфа – это самая яркая звезда конкретного созвездия, в данном случае речь идет о созвездии Центавр, что на Южном полушарии неба. На самом деле, альфа Центавра – это система из трех звезд, и одна из этих звезд расположена ближе всего к Солнцу. Тройная звездная система – это очень круто. В нее входят альфа Центавра А, звезда, схожая по типу с Солнцем, ее диаметр – 123 % солнечного; альфа Центавра B, ее диаметр – 86,5 % солнечного, и Проксима Центавра – тусклая красная звезда, диаметр которой – всего 14 % солнечного. Из трех этих звезд ближе всего к Солнцу расположена Проксима Центавра. Поэтому она и называется «Проксима» – в переводе с латыни «ближайшая». До нее примерно 4,1 светового года, ее параллакс – 0,8 угловой секунды.

Одна угловая секунда – это очень, очень мало. Вспомните практически любую фотографию ночного неба, которую вам доводилось видеть, сделанную с Земли при помощи профессионального телескопа, – видимый размер звезды на таком снимке обычно составляет около одной угловой секунды. Это типичный показатель для наземных телескопов. Качество фотографий с космического телескопа «Хаббл» в десять раз лучше. Когда мы работаем с наземными телескопами, нам страшно мешает атмосфера, из-за которой все звезды выглядят размытыми. Звездный свет прилетает к нам в виде идеально очерченной точки, строго следуя выбранному курсу. Затем он врезается в атмосферу, рассеивается, переливается и размазывается – вот и получается такое пятнышко. Мы на Земле говорим: «Как красиво! Звездочка мерцает». Но мерцание – просто погибель для астронома, рассматривающего звезду, а типичная ширина такого мерцания – 1 угловая секунда.

Обратите внимание: расстояние в 1 парсек меньше, чем до ближайшей звезды. Вот почему прошли тысячи лет, прежде чем удалось измерить параллакс. Первый звездный параллакс лишь в 1838 году измерил немецкий математик Фридрих Бессель. (Если атмосфера искажает звезду более чем на 1 угловую секунду в ширину, то астроном должен сделать при помощи телескопа множество замеров, чтобы достичь точности выше 1 угловой секунды.) На самом деле аргументы в пользу вращения Земли вокруг Солнца, выдвинутые Аристархом более 2000 лет назад, опровергались именно потому, что в те времена не удавалось наблюдать параллакс. Древние греки были смышленые ребята. «Ладно, – говорили они, – вам не нравится наша геоцентрическая Вселенная, где Солнце вращается вокруг Земли?» Они знали, что если бы Земля действительно вращалась вокруг Солнца, то ближайшие звезды просматривались бы под разными углами, в зависимости от того, с какой стороны от Солнца находится Земля. То есть они считали, что мы должны были бы замечать такой эффект параллакса. До изобретения телескопа было еще далеко, поэтому они просто внимательно смотрели на небо и продолжали смотреть. Как бы внимательно они ни вглядывались, ровно никакой разницы они заметить не могли. На самом деле, поскольку такой эффект невозможно измерить без телескопа, отсутствие параллакса использовалось в качестве мощного аргумента против гелиоцентрической Вселенной. Но отсутствие доказательств далеко не всегда равноценно доказательству отсутствия.

Даже рассмотрев все эти звезды в ночном небе и заметив, что среди них попадаются размытые объекты, напоминающие облака тумана, мы еще не вполне представляли себе Вселенную вплоть до начала XX века. К тому времени звездный свет уже пропустили через призму, разложили и посмотрели, какими характеристиками он обладает. Тогда стало известно, что некоторые звезды можно использовать в качестве «эталонных источников света». Давайте об этом подумаем. Если бы все звезды в небе были совершенно одинаковы – например, нарезаны формочкой для печенья и заброшены на небо, – то сравнительно тусклые обязательно находились бы дальше сравнительно ярких. Все было бы просто. Все яркие звезды – близко. Все тусклые звезды – далеко. Но на деле все иначе. Среди всего этого звездного многообразия, независимо от того, где какие звезды расположены, мы ищем и находим звезды одной и той же категории. Итак, если найдется звезда, для спектра которой характерна какая-то специфическая особенность, и эта звезда находится достаточно близко, чтобы можно было измерить ее параллакс, – нам повезло. Теперь мы можем взять ее светимость в качестве отсчетной и определить яркость других подобных ей звезд как «вчетверо меньше» или «вдевятеро меньше», а затем вычислить, как далеко они находятся. Но сперва надо найти такой эталонный источник, мерило. Вплоть до 1920-х годов таких мерил не было. До тех пор мы совершенно не представляли, насколько удалены от нас те или иные тела во Вселенной. На самом деле, в книгах того времени Вселенная описывается просто как «область, заполненная звездами», о более крупной Вселенной за пределами этой области ничего не было известно.

Когда пытаешься понять звезды, непременно нужны дополнительные математические инструменты. Один из них – функции распределения. В них заложены мощные и полезные математические идеи. Я хотел бы рассказать о них на простом примере, поэтому давайте начнем с так называемой гистограммы. Например, на такой диаграмме можно распределить количество человек в типичной аудитории американского колледжа в зависимости от их возраста (рис. 4.3).

Чтобы построить такой график, нужно спросить присутствующих, есть ли в аудитории кто-либо в возрасте 16 лет или моложе. Если никто не отзовется, то на графике этим возрастам будут соответствовать нулевые значения. Далее спросим, сколько 17–18-летних. Допустим, наберется 20 человек. Отметим этот возраст планкой, высота которой – ровно 20 единиц. А сколько тех, кому 19–20 лет? Тридцать пять человек. Так и продолжим, пока не учтем всех присутствующих.

Теперь давайте вернемся к рис. 4.3. Гистограмма позволяет кое-что сказать о распределении слушателей по возрасту в типичной аудитории. Например, большинству из них около 20 лет – из графика сразу ясно, что речь идет о группе из колледжа. Затем следует пробел, несколько одиночных значений и еще один всплеск, в районе 75 лет. На этом графике два всплеска, они называются модами. Такое распределение называется бимодальным. Большинство представителей «старшей» группы – никакие не студенты; вероятно, это вольнослушатели. Если человек может в дневное время посещать лекции в колледже, это значит, что он не обязан работать с девяти до шести, то есть это пенсионер. Можно представить себе демографическую картину, просто взглянув на такое распределение. Если бы мы построили такую гистограмму сразу для всего колледжа, то, вероятно, некоторые пробелы заполнились бы, но я готов поспорить, что общая картина осталась бы почти такой же: в основном младшие студенты, небольшое количество пожилых. Чисто случайно могут попадаться подростки-вундеркинды – может быть, один на тысячу, – поскольку, кажется, на каждом новом потоке хоть один да попадется. На такой гистограмме картинка будет повторяться с интервалом в 2 года. Думаю, если бы удалось достаточно увеличить размер выборки и включить в график всех студентов колледжей в США, интервал удалось бы уменьшить до 1 дня. Я мог бы собрать такое количество данных, что столбики на диаграмме вообще перестали бы просматриваться. При таком объеме данных интервалы на диаграмме стали бы слишком узки, и мне пришлось бы перерисовать эту диаграмму в виде сплошной кривой. Если вы переходите от гистограммы к плавной кривой и можете представить ее в математической форме, то гистограмма превращается в функцию распределения.


Рис. 4.3. Гистограмма, демонстрирующая распределение слушателей в аудитории по возрасту. Предоставлено Дж. Ричардом Готтом


Сколько всего человек в этой группе? Это легко узнать – идем по шкале слева направо и складываем цифры. В данном случае получается 109. При работе с гладкими функциями можно пользоваться интегральным исчислением, суммировать площадь под кривой и узнавать, сколько всего элементов на ней представлено. Исаак Ньютон изобрел интегральное исчисление в возрасте 26 лет, – я считаю, он вообще был умнейшим человеком, когда-либо жившим на Земле!

Какое отношение все это имеет к звездам? Возьмем, к примеру, Солнце. Я скажу ему: «Солнце, поведай мне, сколько частиц света ты излучаешь?» Еще я мог бы добавить, что Исаак Ньютон задолго до Эйнштейна высказал идею, что свет состоит из частиц (корпускул). Эти частицы называются «фотоны» – не протоны, а именно фотоны. Корень «фото» тот же самый, что и в слове «фотография», еще можно вспомнить «фотонные торпеды», – фанаты сериала «Звездный путь» знают, что это такое.

Фотоны бывают самыми разными. Исаак Ньютон пропустил белый свет через призму и перечислил те цвета радуги, которые увидел: красный, оранжевый, желтый, зеленый, голубой, индиго (так называется синий краситель, популярный во времена Ньютона) и фиолетовый. Вы можете запомнить эту последовательность с помощью мнемонической фразы для запоминания цветов радуги: «Каждый охотник желает знать, где сидит фазан».

Английский астроном Уильям Гершель открыл совершенно иную часть спектра, которая сегодня называется инфракрасным излучением. Человеческий глаз его не воспринимает. С энергетической точки зрения он находится «ниже» красного. Гершель пропускал солнечный свет через призму и заметил, что термометр нагревается, если поместить его у красного конца спектра. В некоторых ресторанах используются инфракрасные лампы; под ними держат картофель-фри, поэтому гость всегда получает его теплым. Можно выйти за пределы видимого спектра и с другой стороны, тогда мы попадем в область ультрафиолетового (УФ) излучения. Об этих областях спектра вы слышали ранее, поскольку они упоминаются повсюду. Ультрафиолетовое излучение – причина загара и солнечных ожогов.

Таким образом, спектр гораздо шире видимой части. За ультрафиолетовым спектром расположен рентгеновский. В нем – свои фотоны. За рентгеновским – гамма-излучение. Об этих частях спектра вы тоже слышали. Отправимся в противоположную часть спектра – за инфракрасный. Что там? Микроволны. А за ними? Радиоволны. Раньше микроволны считались подмножеством радиоволн, но теперь классифицируются как самостоятельная часть спектра. Вот и все области спектра, для которых есть названия. За гамма-излучением ничего нет, только гамма-излучение, и за радиоволнами тоже ничего нет, только радиоволны.

Фотон – это частица. Но его можно трактовать как волну, это свойство называется «корпускулярно-волновой дуализм». Что же это значит, спросите вы, фотон – это волна или частица? Этот вопрос не имеет смысла. Скорее можно спросить о том, почему наш мозг не может изловчиться и представить себе объект, которому присуща такая двойственная природа. Это проблема. Можно изобрести новое слово, например «волница». Такой термин уже предлагали, но он так и не прижился, поскольку вопрос «что это такое?» по-прежнему актуален. Все зависит от того, как измерять свет. Можно считать его волной, а у волны есть длина. Длина волны обозначается греческой буквой «лямбда». Мы пользуемся строчной буквой, именно ею обычно обозначается длина волны.

Какова длина радиоволны? Представьте себе: давным-давно, если вы хотели переключить телевизионный канал, нужно было встать с дивана, подойти к телевизору и повернуть ручку. Да, были времена. На таких телевизорах стояла «рогатая» антенна – с двумя телескопическими уловителями, которые выдвигались из нее в форме буквы V. Если сигнал был плохой, нужно было потрогать эти рога. Они имели строго определенную длину, около метра. На самом деле, длина волн, обеспечивающих телесигнал, – тоже около метра. Антенна принимала телевизионные волны прямо из воздуха. Да, сегодня телесигнал обычно идет по кабелю, но вообще любые фотоны (в том числе радиоволны) совершенно свободно распространяются и в вакууме.

Поговорим о сотовых телефонах. У них большие антенны? Нет, совсем маленькие. Они работают в диапазоне микроволн, длина которых – около сантиметра. Сегодня антенну встраивают в сам телефон, но раньше, если вы собирались позвонить по сотовому, из него нужно было выдвинуть короткую толстую антенну.

Какой величины отверстия в переднем щитке вашей микроволновки? Да, там есть отверстия, поэтому вы и видите пищу, подогреваемую внутри. Может быть, вы и не обращали внимания, но они совсем маленькие – всего пара миллиметров в диаметре, гораздо меньше тех самых микроволн, что разогревают вам еду. Поэтому микроволны просто не могут вырваться из печки наружу. А знаете, где еще используются микроволны? В полицейских радарах, при помощи которых отслеживается превышение скорости. Микроволны отражаются от металлического корпуса автомобиля. Есть способ от них защититься: знаете такие плотные черные чехлы от насекомых («мухобойки»), которые любят надевать на передок своих машин некоторые водители, обычно владельцы спортивных автомобилей? Такой чехол отлично поглощает микроволны, поэтому если он попадет под радар, то сигнал получится настолько слабым, что полиция его просто не заметит. Естественно, автомобильное ветровое стекло прозрачно для микроволн. Откуда известно, что микроволны свободно сквозь него проникают? А где водитель ставит антирадар? Обычно – в салоне машины, прямо на приборном щитке. Итак, очевидно, что микроволны проникают сквозь стекло. Именно поэтому вполне можно готовить в микроволновке блюда в стеклянной посуде – стекло прозрачно для микроволн. Полиция, фиксируя вашу скорость, пользуется так называемым доплеровским смещением, это явление мы обсудим чуть ниже. Пока сформулируем так: в данном случае доплеровское смещение – это степень изменения длины волны при отражении сигнала от движущегося тела. Смещение можно измерить максимально точно, если измерительное устройство расположено прямо на пути движущегося объекта. На практике радар измеряет скорость машины лишь приблизительно – чтобы измерить ее точно, полицейский должен был бы стоять прямо посреди трассы, а они так обычно не делают. Они стоят на обочине, поэтому (к сожалению) их радары всегда фиксируют заниженную скорость. Поэтому если вас остановят за превышение, то вам нечем крыть. Платите штраф и поезжайте дальше.

Полицейский радар испускает сигнал, отражающийся от автомобиля. Допустим, вы взглянули на собственное отражение в зеркале. В этот момент зеркало находилось в 3 метрах от вас, но оно движется в вашу сторону со скоростью 30 сантиметров в секунду. Ваше отражение появляется в 6 метрах от вас (свет успевает пройти 3 метра от вас до зеркала, а потом – 3 метра от зеркала до вас). Но всего через секунду зеркало уже на 30 сантиметров ближе к вам, и вы видите свое отражение на расстоянии всего 5,5 метра. Ваше отражение мчится к вам со скоростью 60 сантиметров в секунду. Аналогично, полицейский, который фиксирует у себя на радаре скорость вашего автомобиля, получает показатель, вдвое превышающий вашу скорость. Попробуйте объяснить это судье! Разумеется, радары откалиброваны так, что показывают вдвое уменьшенный показатель доплеровского смещения и, соответственно, точную скорость «зеркала» – вашего автомобиля. Кстати, слово «радар» в английском языке – это аббревиатура, означающая «радиообнаружение и измерение дальности», ведь радары появились еще в те времена, когда микроволны считались подмножеством радиоволн.

Поскольку мы говорим о микроволнах, упомяну, что молекула воды H2O очень к ним чувствительна; волны в вашей микроволновой печи переворачивают эту молекулу с частотой самой волны. Если у нас есть капелька воды, то это будет происходить со всеми молекулами в ней. С миллиардами триллионов молекул. Вскоре вода нагреется – из-за трения, возникающего между этими молекулами. Также нагреются любые попадающие в микроволновку продукты, в которых есть вода. Все, что мы едим (кроме соли), содержит воду. Вот почему в микроволновке так удобно разогревать и готовить, и по этой же причине она не нагревает стеклянные тарелки, на которых нет еды.

Человеческое тело реагирует на инфракрасное излучение. Кожа поглощает его, преобразует в тепло, и мы это чувствуем. Видимый свет нам хорошо известен. Люди с разным цветом кожи обладают разной восприимчивостью к ультрафиолету. Ультрафиолет может повредить глубокие слои кожи и вызвать рак. Атмосферный озон поглощает большую часть солнечного ультрафиолета. В атмосфере содержится обычный молекулярный кислород (O2) плюс небольшое количество озона (O3) – это молекулы, состоящие из двух и трех атомов кислорода соответственно. Озон находится в верхних слоях атмосферы, он постоянно «готов к распаду». Прилетает фотон ультрафиолета, молекула озона «впитывает» его и распадается. Ультрафиолета не осталось – озон просто поглотил его. Если убрать озон, то солнечный ультрафиолет будет беспрепятственно достигать поверхности Земли, и заболеваемость раком кожи резко повысится. На Марсе нет озона, и его поверхность постоянно купается в потоках солнечного ультрафиолета. Именно поэтому мы полагаем (и, думаю, не ошибаемся), что на поверхности Марса нет никакой жизни, хотя под поверхностью она и может существовать. Любой биоматериал, подвергшийся такому ультрафиолетовому воздействию, быстро бы разложился.

Практически каждый из нас подвергался рентгеновскому облучению. Помните, что делает рентгенолог, прежде чем сделать снимок? Он ставит вас в правильную позу, говорит «Вдохнуть – не дышать!», а затем выходит за свинцовую дверь и только после этого включает аппарат. Врач не хочет попасть под рентгеновское излучение. Логично предположить, что это вредная процедура. Но обычно рентгеновское облучение – меньшее зло, чем отказ от него. Например, оно может понадобиться для диагностики; если у вас сломана рука, то рентген это покажет. Рентгеновские лучи проникают не только под кожу, но и гораздо глубже; они могут вызывать рак внутренних органов. Но если вы получаете небольшую дозу такого излучения, то риск невелик.

Гамма-лучи еще хуже. Они бьют прямо по ДНК и могут устроить там хаос. Даже в комиксах пишут, что гамма-лучи – это плохо. Помните Невероятного Халка? Как он стал Халком? Что с ним случилось? Помните, был эксперимент, в ходе которого он получил большую дозу гамма-излучения. Теперь, когда Халк злится, он превращается в огромного уродливого зеленого монстра. Поэтому берегитесь гамма-лучей – не хотелось бы, чтобы с вами произошло нечто подобное. По мере движения в коротковолновую часть спектра – от ультрафиолетовых лучей к рентгеновским и далее к гамма-излучению – энергия каждого отдельного фотона возрастает, равно как и его вредоносность.

Сегодня нас повсюду окружают радиоволны. Постоянно. Чтобы в этом убедиться, достаточно поставить простой эксперимент. Включите радио и настройтесь на станцию. На любую, в любое время. Радиосигнал ловится везде, станции вещают круглосуточно. Как убедиться, что вокруг нас – постоянные потоки микроволн? Ваш мобильник может позвонить в любой момент, например прямо сейчас. Если вы не станете засовывать голову в мощное поле работающей микроволновой печи, то микроволны совершенно безопасны по сравнению с тем, что творится в высокоэнергетической части спектра.

Все эти фотоны перемещаются в вакууме со скоростью света. Это не просто хорошая идея, а закон. Видимый (для нас) свет находится в средней части электромагнитного спектра, но все фотоны летят со скоростью 300 тысяч километров в секунду (если быть точным – 299 792 458 метров в секунду). Это одна из наиболее важных фундаментальных констант, которые нам известны.

Скорость фотонов во всех диапазонах спектра одинакова, но длина волны у них разная. Если я встану и буду смотреть, как мимо меня пролетают электромагнитные волны, то частоту волны можно определить как количество гребней этой волны в секунду. Чем короче волна – тем больше гребней в секунду. Поэтому короткие волны обладают высокой частотой и, наоборот, длинные волны обладают низкой частотой. Отличная ситуация, чтобы вывести тождество: скорость света (c) равна частоте, умноженной на длину волны (λ). Частота обозначается греческой буквой ню: ν. Получается уравнение:


c = νλ.


Допустим, мы имеем дело с радиоволнами, длина которых – 1 метр. Скорость света приблизительно равна 300 000 000 метров в секунду, что равно ν раз на метр. Таким образом, частота составляет 300 000 000 гребней (или циклов) в секунду (или 300 мегациклов).

На самом деле, есть еще одно уравнение, связывающее частоту и энергию фотона. Энергия E фотона равна h:


E = .


Это уравнение открыл Эйнштейн. В уравнении используется постоянная Планка h, названная в честь немецкого физика Макса Планка. В этом уравнении она служит константой пропорциональности, описывая, как взаимосвязаны частота и энергия фотона. Чем выше частота – тем больше будет энергия отдельно взятого фотона. В рентгеновских фотонах содержится огромное количество энергии, а в фотонах радиоволн – малая толика.

Теперь спросим Солнце: сколько фотонов каждой конкретной частоты ты нам даешь? Сколько зеленых фотонов прилетает с твоей поверхности, сколько красных, инфракрасных, микроволновых, радиоволновых и гамма-лучевых? Хочу знать. От Солнца мы получаем столько фотонов, что можно построить гораздо более точную картину, нежели простую гистограмму, – ведь данные поступают сплошным потоком. Я могу сделать гладкую кривую, и на этом графике я отложу интенсивность как функцию длины волны. В данном случае интенсивность, обозначаемая по оси ординат, соответствует количеству фотонов, за секунду поступающих с каждого квадратного метра поверхности Солнца, на единичный интервал длин волн, умноженному на энергию, которой обладает каждый фотон. Мы могли бы просто подсчитать фотоны, но, в конечном счете, нас интересует именно энергия, которую они несут. По оси ординат можно оценить мощность (количество энергии в единицу времени), поступающую с солнечной поверхности на единицу площади на единичный интервал длин волн. По оси абсцисс откладывается длина волны, возрастающая слева направо. Итак, давайте изобразим на графике рентгеновские лучи, ультрафиолетовые лучи, видимый спектр (цвета радуги), инфракрасные волны (ИК) и микроволны (обозначим их μ-волны). На рис. 4.4 показана функция распределения интенсивности солнечного излучения.

Жаркое Солнце излучает энергию с температурой около 5800 К. Распределение было построено Максом Планком. Пиковая часть графиков приходится на видимую часть спектра, и это не случайно: наши глаза развивались таким образом, чтобы улавливать максимальное количество солнечного света. Для сравнения с другими звездами давайте выберем «средний» квадратный метр и воспользуемся им в качестве примера. Не так важно, на какой именно мере площади мы остановимся, – главное пользоваться ею во всех примерах. Иногда мы говорим, что Солнце желтое, но оно не желтое. Нам нравится называть его желтым, поскольку пик светимости лежит в районе желтого цвета, однако с тем же успехом можно считать, что пик находится в районе зеленого; но никто же не скажет, что у нас в небе – зеленая звезда. Кроме желтого в солнечном


Рис. 4.4. Излучение, испускаемое звездами и людьми. По оси ординат откладывается энергия в единицу времени (то есть мощность), излучаемая различными объектами на единицу поверхностной площади на единичный интервал длин волн. По оси абсцисс откладывается длина волны. Показана звезда с температурой поверхности 30 000 К, Солнце (5800 К), коричневый карлик (1000 К) и человек (310 К). Показаны длины волн, соответствующие рентгеновским лучам, ультрафиолету, видимому свету (полоса, окрашенная в цвета радуги), инфракрасному и микроволновому диапазонам.

Предоставлено Майклом Строссом


свете необходимо в равной степени учесть фиолетовый, синий, голубой, зеленый и красный, об этом свидетельствует график. Сложите их все – и у вас получится смесь, где все эти цвета присутствуют практически в равных долях. Вспомним Исаака Ньютона. Что это за смесь? Это белый цвет. Если пропустить обратно через призму все цвета спектра в равных долях, то на выходе получим белый свет. Кстати, Ньютон ставил такой эксперимент. Неважно, каким Солнце рисуют в книгах, неважно, что говорят люди, – на практике у нас в небе светит белая звезда, вот так все просто. Кстати, если бы Солнце действительно было желтым, то в совершенно ясную погоду все белые предметы, в том числе снег, казались бы желтыми.

Температура поверхности Солнца – около 5800 К. Чтобы узнать температуру в кельвинах, нужно взять величину в градусах Цельсия (C) и прибавить к ней 273. Вода замерзает при 0 °C (или 273 К). Вода кипит при 100 °C (или 373 К). Значения по Цельсию и по Кельвину отличаются всего на 273 единицы, и чем более высокие температуры мы рассматриваем, тем менее существенной становится эта разница. В любом случае, 5800 К – очень жарко. При такой температуре вы просто испаритесь. Для полноты картины расскажу, что такое 0 К (возможно, вы слышали выражение «абсолютный ноль»). Это минимальная возможная температура. При 0 К любое движение молекул прекращается.

Рассмотрим другую звезду. Вот сравнительно «холодная», поверхностная температура которой – всего 1000 К (см. рис. 4.4). Где пик излучения такой звезды? В инфракрасном спектре. Так что, эта звезда невидима? Нет. Небольшая часть ее излучения приходится на видимый спектр. Интенсивность ее излучения в видимой части спектра стремительно падает, то есть она излучает гораздо больше красного, чем голубого. Нам такая звезда покажется красной. Теперь рассмотрим звезду с поверхностной температурой 30 000 К. Напоминаю: о распределении света я задаю тот же вопрос, что и о распределении слушателей в аудитории по возрасту. Где пик излучения этой звезды? В ультрафиолетовой области. Она излучает в ультрафиолетовой части спектра больше энергии, чем в какой-либо другой. Мы не видим ультрафиолет, но сможем ли увидеть такую звезду? Да, естественно. Она отдает огромное количество энергии и в видимой части спектра, гораздо больше, чем отдает поверхность Солнца. Но, в отличие от Солнца, смесь цветов в данном случае не равномерна, а выраженно смещена к голубой части спектра. Если сложить всю цветовую гамму такой звезды, получится голубой цвет. Любой астрофизик знает, что самый холодный свет – красный, а самый жаркий – голубой.

Пик излучения нашей звезды с поверхностной температурой 30 000 К приходится на ультрафиолетовую часть спектра. Если бы я выбрал еще более горячую звезду, она также казалась бы нам голубой. Когда мы видим голубой цвет, это означает, что рецепторы голубого на сетчатке просто получают больше энергии, чем рецепторы зеленого и красного. Звезда с поверхностной температурой 30 000 К голубая, с поверхностной температурой 5800 К – белая, а с поверхностной температурой 1000 К – красная.

Что насчет человеческого тела? Какая у вас температура? Если не повышенная, то примерно 36,6 °C, или 310 К. Пик нашего излучения приходится на инфракрасную часть спектра. Сколько видимого спектра обычно отражает человек? Мы видим других людей именно потому, что их тела отражают свет в видимом спектре. Но если выключить свет, все в комнате становится черным. На диаграмме видно, что при выключенном свете тела с температурой 310 К практически не излучают свет в видимом спектре. Но при этом они все равно излучают инфракрасный. Если вооружиться тепловизором или инфракрасными очками ночного видения, то вы легко увидите в темноте людей, которые «ярко светят» в инфракрасном спектре. В следующей главе мы изобразим на подобной диаграмме целую Вселенную.

Глава 5

Как звезды излучают энергию (II)

Автор: Нил Деграсс Тайсон


Теперь давайте отправимся в большую Вселенную. В главе 4 мы рассмотрели графики теплового излучения звезд. На рис. 5.1 изображена очень похожая диаграмма, но с некоторыми дополнениями. По оси ординат откладывается интенсивность (мощность на единицу площади на единичный интервал длин волн), а по оси абсцисс – длина волны (увеличивается слева направо). Часть спектра, которую мы именуем «видимый свет», как и выше, обозначена радужной полосой.

На рисунке показаны кривые теплового излучения для Солнца (температура 5800 К), горячей звезды (температура 15 000 К), холодной звезды (3000 К) и человека (310 К). Пик кривой теплового излучения человека находится на уровне около 0,001 см. Гораздо ниже и правее этой кривой находим новую кривую – график, соответствующий средней температуре примерно 2,7 К. Это температура всей Вселенной! Именно такой температурой обладает знаменитое реликтовое излучение, льющееся на нас со всего неба. Поскольку его пик относится к микроволновой части спектра, его также называют «космический микроволновый фон». Реликтовое излучение было открыто в штате Нью-Джерси, в Bell Laboratories в середине 1960-х годов. Арно Пензиас и Роберт Вильсон работали с радиотелескопом, который называли «микроволновая рупорная антенна». Направив радиотелескоп в небо, они обнаружили, что отовсюду поступает микроволновый сигнал, и температура такого излучения должна составлять около 3 К (по современным уточненным данным, эта величина равна 2,725 К). Это тепловое излучение, сохранившееся после Большого взрыва. Мы гораздо подробнее поговорим об этом в главе 15.

Как и в предыдущем случае, эти графики можно рассматривать по-разному. Где пик каждой кривой? Эти пики расположены в разных местах. Сколько всего энергии излучается в секунду? Нужен способ просуммировать площадь под каждой кривой и определить, сколько всего энергии в секунду излучается в данном случае. Во-первых, давайте определимся с терминами.


Рис. 5.1. Тепловое излучение Вселенной. Спектры абсолютно черных тел, имеющих разную температуру, показаны как функции длины волны. По оси ординат откладывается энергия в единицу времени (то есть мощность), излучаемая различными объектами на единицу поверхностной площади при заданной температуре; единицы выбраны произвольно. Кривые соответствуют звездам с поверхностной температурой около 15 000 К (такая звезда покажется голубовато-белой), 5800 К (таково Солнце, которое покажется белым) и 3000 К (такая звезда покажется красной). Видимая часть спектра обозначена как радужная полоса. Также приведены графики излучения человеческого тела (310 К) и реликтового излучения (РИ, 2,7 К). О реликтовом излучении мы подробнее поговорим в главе 15. Предоставлено Майклом Строссом


Абсолютно черное тело – это объект, поглощающий все входящее излучение. Абсолютно черное тело, имеющее определенную температуру, будет испускать так называемое «излучение черного тела», повторяющее контуры рассматриваемых кривых. Термин «абсолютно черное тело» может показаться неудачным, но это не так. Никто не спорит, что звезды – не черные; одна звезда сияет голубым, другая – белым, третья – красным. Но все они считаются абсолютно черными телами, как я и показал на рисунке. Абсолютно черное тело устроено просто: оно поглощает всю энергию, которую получает. Оно всеядно. Ему по вкусу и гамма-лучи, и радиоволны. Черные предметы поглощают всю попадающую на них энергию. Вот почему летом не стоит наряжаться в черное. Затем абсолютно черные тела переизлучают эти кривые – вот и всё. Контур и положение кривой зависят лишь от температуры абсолютно черного тела.

Можно нагреть предмет, повысить его температуру, а затем останется определить: какова новая температура? Затем мы возвращаемся к нашим кривым и смотрим, какой график соответствует новой температуре. Есть чудесное уравнение, описывающее эти кривые. Они являются функциями распределения и также именуются планковскими функциями в честь Макса Планка, который первым вывел уравнения для них. В правой части уравнения имеем энергию в единицу времени на единицу площади на единичный интервал длин волн при конкретной длине волны; эта величина называется «интенсивность» () и зависит только от температуры T абсолютно черного тела:


Iλ (T) = (2hc2/ λ5)/(ehc/ λkT – 1).


Давайте разберемся, какие элементы входят в это эпохальное уравнение. Во-первых, здесь есть λ (лямбда), это длина волны, с ней все понятно. Постоянная e – это основание натуральных логарифмов, под нее выделена специальная клавиша на любом инженерном калькуляторе, на которой обычно написано «ex» (e в степени x). Значение числа e равно 2,71828…; как и в числе π, в нем бесконечное количество десятичных знаков. Это просто число. Буква c означает скорость света, с ней мы уже встречались. Буква k – это постоянная Больцмана. Буква T – это просто температура, а буква h означает постоянную Планка, с которой мы познакомились в главе 4. Если присвоить объекту температуру T, то единственным неизвестным в уравнении остается λ – длина волны. Так, постепенно присваивая λ разные значения, от очень малых до очень больших, мы получаем значение Iλ. Это будет функция от длины волны, строго повторяющая показанные кривые. Макс Планк предложил это уравнение в 1900 году, и оно произвело революцию в физике.

Предложив свою постоянную, Планк положил начало квантовой физике; в то же время Макс Планк является и отцом-основателем квантовой механики. Обратите внимание на первый член в скобках: 2hc25. Что происходит с энергией по мере увеличения длины волны? Она падает. С ростом λ член 1/λ5 стремится к нулю. При больших λ член hckT уменьшается. Математик сказал бы, что exпо мере уменьшения x становится примерно равен 1 + x.Так, при больших λ член hckT уменьшается, а член ehckTстановится примерно равен 1 + hckT, и, если вычесть отсюда 1, член (ehckT–1) становится равен hckT. Соответственно в пределе, когда λ становится большим, все выражение приобретает вид Iλ(T) = (2hc25)/(hckT)= 2ckT4. Это тождество было известно и до Планка. Оно называлось «Закон Рэлея – Джинса» в честь открывших его лорда Рэлея и сэра Джеймса Джинса. По мере роста λ интенсивность Iλ начинает падать в строгом соответствии с формулой 1/λ4.Что происходит, когда мы двигаемся в сторону все более коротких волн? По мере уменьшения λ4 1/λ4 возрастает, в результате чего уравнение рушится (перестает согласовываться с экспериментами). В свое время это явление было названо «ультрафиолетовая катастрофа». Здесь явно была какая-то ошибка. Вильгельм Вин сформулировал закон, объяснявший экспоненциальный спад при малых длинах волн и согласовывавшийся с данными в коротковолновом диапазоне, но не согласовывавшийся в длинноволновом. Мы не имели четкого представления об этих температурных кривых абсолютно черного тела вплоть до 1900 года, когда Макс Планк вывел формулу, согласовывавшуюся с данными и в коротковолновом, и в длинноволновом пределе спектра, а также везде между ними. Формула содержит постоянную h, которая позволяет квантовать энергию так, что любая энергия учитывается в виде дискретных пучков. Если трактовать энергию как дискретные пучки, то по мере перехода ко все более коротким волнам формула Планка начинает возрастать по экспоненте и член 1/λ5 превращается в ничто. Когда λ мала, hckT возрастает, а число e, возведенное в такую степень (ehckT), очень быстро становится очень большим. Оно настолько больше –1, что этот член можно игнорировать, а при ehckTв знаменателе ответ получается маленьким. Две эти части уравнения, член 1/λ5 и член 1/ehckT, словно состязаются друг с другом. По мере того как λ стремится к нулю, 1/ehckTстремится к нулю гораздо быстрее, чем успевает расти член 1/λ5, поэтому и вся кривая стремится к нулю. Без экспоненциального члена вся формула быстро устремилась бы к бесконечности, а длина волны – к нулю, но эксперименты показывают, что на практике это не подтверждается. Феномен кванта потребовался, чтобы понять природу теплового излучения, и уравнение Планка объясняет устройство этих кривых.

Формула Планка позволила все это учесть. Она верно показывает, где будет пик кривой. Исаак Ньютон изобрел математику, позволяющую вычислить пик функции: там, где крутизна кривой стремится к нулю при максимальном значении этой кривой. Ньютоновское дифференциальное исчисление позволяет взять производную функции и найти это место. В таком случае получим очень простой ответ: λпик = C/T, где C – новая константа, которую можно вывести из констант исходного уравнения. C = 2,898 мм, если T выражена в кельвинах. Где будет пик? Если T = 2,7 К, как в случае с РИ, то λпик будет чуть выше 1 мм или 0,1 см. Можно в этом убедиться, сверившись с кривой РИ на рис. 5.1. Человек примерно в 100 раз горячее; пик человеческого излучения приходится примерно на 0,001 см (см. рис. 5.1), в инфракрасном диапазоне.

Это красиво. С повышением температуры постоянно уменьшается длина волны, при которой кривая достигает пикового значения. Чтобы в этом убедиться, достаточно всего лишь рассмотреть свойства уравнения λпик = C/T. При T в знаменателе имеем, что вдвое более горячее тело даст пик функции при вдвое меньшей длине волны (эту зависимость обнаружил Вильгельм Вин, поэтому она называется «закон Вина»).

Как определить общую энергию на единицу времени на единицу поверхности, соответствующую площади под одной из этих кривых? Мне потребовалось бы просуммировать вклад от всех различных длин волн, то есть всю площадь под конкретной кривой. Для этого можно воспользоваться интегральным исчислением – опять же, спасибо Исааку Ньютону. Если интегрировать функцию Планка по всем длинам волн, то получится еще одно красивое уравнение.

Общая энергия, излучаемая в секунду на единицу площади = σT4, где σ = 2π5k4/(15c2h3) = 5,67 × 10–8 ватт на квадратный метр, причем T – это температура в кельвинах. Перед нами закон Стефана – Больцмана. Йозеф Стефан и Людвиг Больцман были двумя титанами физики XIX века. К сожалению, Больцман свел счеты с жизнью, когда ему было 62 года. Но сохранился этот закон. Если интегрировать функцию Планка, то получится значение постоянной (греческая буква «сигма»). Это колоссально. Как Стефану и Больцману удалось сформулировать этот закон, если Планк еще не вывел свою формулу? Стефан открыл закон экспериментально, а Больцман сформулировал, исходя из соображений о термодинамике.

Если общая энергия, излучаемая в секунду на единицу площади равна σT4, то, если удвоить температуру, поток излучаемой энергии возрастет с коэффициентом 24 = 16.Утроим температуру, и что получится? 34 = 81.Учетверим – и получится 44 = 256.Эта тенденция прослеживается на рис. 5.1, где видно, насколько увеличиваются кривые при возрастании температуры.

Вот как можно запомнить принцип работы этой формулы. Допустим, мы взяли какое-то количество теплового излучения и положили его в коробочку. Теперь будем медленно сжимать коробочку, пока она не станет вдвое меньше. Количество фотонов в коробочке останется тем же, но объем коробочки уменьшится в 8 раз и, соответственно, количество фотонов на кубический сантиметр возрастет в 8 раз. Но при сжатии коробочки длина волны каждого фотона также укорачивается вдвое. В результате тепловое излучение коробочки становится вдвое жарче, так как пиковое значение длины волны уменьшилось вдвое. Удваивается энергия каждого фотона и, соответственно, энергия коробочки. Увеличение энергии каждого фотона происходит за счет той энергии, что затрачивается на сжатие коробочки, эта энергия противодействует давлению излучения, что внутри коробочки. Таким образом, плотность энергии в коробочке будет в 8 × 2 = 16 раз выше, чем ранее, а 16 = 24. Следовательно, энергетическая плотность теплового излучения пропорциональна температуре в четвертой степени, или T4.

Давайте определимся еще с некоторыми терминами. Светимость – это общая энергия, излучаемая звездой в единицу времени. Светимость измеряется в ваттах, точно как у лампочки накаливания. Светимость 100-ваттной лампочки равна 100 ватт. Светимость Солнца равна 3,8 × 1026 ватт. Мощная такая лампочка.

Теперь предложу задачку. Допустим, Солнце обладает такой же светимостью, что и другая звезда, чья поверхностная температура – 2000 К. Какова температура Солнца? В данном примере давайте округлим ее до 6000 К. Температура другой звезды всего 2000 К, то есть она гораздо прохладнее и не может излучать столько же энергии на единицу площади в единицу времени, сколько Солнце, но я заявляю, что светимость у этой звезды точно как у Солнца. Как такое может быть? Беру вторую звезду, вырезаю с нее лоскут площадью 1 см2, с температурой 2000 К, затем вырезаю с Солнца такой же лоскут площадью 1 см2, с температурой 6000 К – втрое жарче. Сколько энергии в единицу времени будет излучать такой лоскут на Солнце по сравнению с лоскутом такой же площади на звезде с температурой 2000 К? В 81 раз больше энергии. Каким же образом вторая звезда может излучать в секунду такую же суммарную энергию, как и Солнце? Если у этих звезд одинаковая светимость, то они должны отличаться чем-то еще, кроме температуры. Дело в том, что вторая звезда, сравнительно холодная, должна иметь гораздо более обширную поверхностную площадь, с которой льется излучение. Фактически ее поверхностная площадь должна быть в 81 раз больше, чем у Солнца. Это должен быть красный гигант, который за счет огромной поверхностной площади восполняет дефицит температуры. Теперь вернемся к нашим уравнениям. Чему равна площадь поверхности сферы? Она равна 4πr2, где r – радиус сферы. Возможно, вы изучали это уравнение в средней школе. Дальше начинается самое интересное. Если светимость – это энергия, излучаемая в единицу времени, а энергия, излучаемая в единицу времени на единицу площади, равна σT4, то мы получили уравнение, позволяющее вычислить светимость Солнца:


LСолн = σTСолн4 × (4πrСолн2).


Можно составить схожее уравнение и для другой звезды. Обозначим ее светимость звездочкой, L*. В таком случае уравнение для вычисления светимости этой звезды – L* = σT*4 × (4πr*2). Теперь у меня есть уравнения для обеих. Более того, я постулировал, что LСолн равна L*. Я привел именно такой пример, чтобы подчеркнуть, что мне даже не требуется знать поверхностную площадь Солнца – в данной задаче речь идет лишь о соотношениях величин. Можно удивительно много узнать о Вселенной, просто присмотревшись к соотношениям.

Давайте разделим два уравнения: LСолн/L* = σTСолн4 × (4πrСолн2)/ σT*4 × (4πr*2). Что дальше? Я сокращу равные множители в числителе и знаменателе дроби в правой части уравнения. Первым делом сокращу постоянную. Меня не интересует ее конкретное значение, поскольку мы сравниваем два объекта и эта константа присутствует в характеристиках обеих звезд. Поэтому ее можно сократить. Кроме того, сокращается число 4 и число π. Переходим в левую часть уравнения: что такое LСолн/L*? Это выражение равно 1, поскольку, как было заявлено, две звезды обладают одинаковой светимостью и их соотношение равно 1. Итак, остается значительно более простое уравнение: 1 = TСолн4 × rСолн2/T*4 × r*2. Температура Солнца равна 6000 К, а температура другой звезды – 2000 К. Естественно, 60004, деленное на 20004, равно 34, то есть 81. Получается, 1 = 81rСолн2/r*2. Умножим обе части уравнения на r*2. Имеем r*2 = 81rСолн2. Извлечем квадратный корень из обеих частей уравнения, получится r* = 9rСолн. Радиус более холодной звезды в 9 раз больше, чем у Солнца! Это ответ. Если переосмыслить его в терминах площади, то поверхностная площадь у этой звезды должна быть в 81 раз больше солнечной, а радиус – в 9 раз больше солнечного. Члены в уравнении остаются прежними, но мы подставляем разные переменные в разные части уравнения. Вот и все, чем мы здесь занимались.

Как вы помните (из главы 2), самое жаркое время суток наступает не в полдень, а несколько позже, так как земля поглощает видимый свет. Видимый свет постепенно разогревает грунт, после чего грунт начинает испускать инфракрасное излучение. Грунт ведет себя как черное тело – впитывает солнечную энергию, а затем переизлучает ее согласно функции Планка. Температура грунта – примерно 300 К (то есть 273 К + температура грунта по Цельсию, примерно 27 °C, получается ровное значение 300 К).

Возможен вопрос: а какова светимость нашего тела? Подставим в выражение температуру тела в кельвинах, 310 К, возведем ее в четвертую степень, умножим на постоянную сигма – и узнаем, сколько энергии мы излучаем в единицу времени на единицу площади. Если подставить в формулу общую площадь вашей кожи (у взрослого человека – в среднем 1,75 м2), то получится ваша светимость, ваша мощность в ваттах. Эта энергия излучается не в видимом диапазоне, а преимущественно в инфракрасном, но мощность в ваттах у вас определенно есть. Посчитаем. Постоянная Больцмана σ = 5,67 × 10–8 ватт на квадратный метр, если измерять температуру в кельвинах. Умножим на (310)4. 3104 равно 9,24 × 109. Умножим это значение на 5,67 × 10–8 и получим 523 ватта на квадратный метр. Умножим это значение на 1,75 м2 и получим 916 ватт. Это много. Однако учтите, что если вы сидите в комнате при температуре 300 К (27 °C), то по той же формуле ваша кожа поглощает 803 ватта энергии. На поддержание температуры тела уходит около 100 ватт. Эту энергию мы получаем при приеме и переваривании пищи. Теплокровные животные, чья температура тела выше температуры окружающей среды, должны есть больше, чем холоднокровные. Включая в комнате кондиционер, нужно задать два основных вопроса: 1) насколько велика комната и 2) какие еще источники энергии есть в комнате? В частности, нас интересует, сколько в комнате горит лампочек и сколько в ней находится человек, так как человека можно сравнить с лампочкой – он тоже имеет мощность в ваттах, выделяет тепло, и это также нужно учитывать при охлаждении. Чтобы определить настройки кондиционера для поддержания нужной температуры в комнате, нужно учесть, сколько человек (в ваттах) в ней соберется.

Перейду к следующему феномену под названием яркостью[5]. Наблюдаемая яркость звезды – это ее энергия на единицу площади в единицу времени, фиксируемая вашим телескопом. Яркость говорит о том, насколько яркой звезда вам кажется. Это зависит от светимости звезды, а также от того, на каком расстоянии от вас она находится. Давайте попытаемся интуитивно осмыслить яркость. Насколько ярким должен вам показаться объект? Логично, что если вы наблюдаете объект с постоянной яркостью, а потом я отодвину этот объект подальше, его яркость снизится. В свою очередь, светимость – это энергия, излучаемая объектом в единицу времени. Она никак не зависит от расстояния до вас, это просто излучаемая энергия. Она никак не зависит от измерений. Светимость 100-ваттной лампочки равна 100 ватт независимо от того, в какой точке Вселенной ее подвесить. Однако яркость зависит от расстояния между объектом и наблюдателем.

Яркость – простая штука, мне она нравится. Хотите расскажу? Опишу устройство, которое сам я не собирал, но вы можете запатентовать, если желаете. Это устройство называется масломет: заряжается куском масла. Спереди у него такой носик, откуда разбрызгивается масло (см. рис. 5.2).

Расположим ломтик хлеба в 30 см от масломета. Я откалибровал орудие так, чтобы порция масла полностью, до краешков, покрывала ломтик, расположенный на расстоянии 30 см. Если вам нравится намазывать масло на хлеб до самого края, то вы оцените такое изобретение. Теперь допустим, что я хочу сэкономить деньги, как любой хороший бизнесмен: хочу замазать тем же количеством масла несколько ломтиков хлеба. Но масло все равно должно распределяться по ломтику равномерно. Первый ломтик мы отставляли на 30 см, а эти отставим на 60 см. Масляный аэрозоль разлетится на большую площадь. На двойном расстоянии один залп поможет замаслить площадь в 2 ломтика шириной и 2 ломтика высотой. То есть масляный аэрозоль накроет решетку размером 2 × 2 хлебных ломтика, всего намажет 4 ломтика. Всего лишь удвоили расстояние – и уже смогли намазать маслом 4 ломтика. Если утроить расстояние, то можно побиться о заклад, что аэрозоля хватит, чтобы намазать 3 × 3 = 9 ломтиков хлеба. Один ломтик, четыре ломтика, девять ломтиков. Сколько масла попадает на один ломтик хлеба, расположенный на расстоянии 90 см, по сравнению с ломтиком, который был удален всего на 30 см? Одна девятая. Хлеб все равно орошается маслом, но вдевятеро слабее. Клиент будет недоволен, зато понятно, к чему я клоню.


Рис. 5.2. Масломет. Он может размазать порцию масла по одному ломтику хлеба, удаленному на расстояние 30 см, по четырем ломтикам хлеба, удаленным на 60 см, или по девяти ломтикам, удаленным на 90 см. Предоставлено Дж. Ричардом Готтом


Я хочу показать, что в работе такого масломета заложен важный закон природы. Если бы вместо масла у нас был свет, то его интенсивность уменьшалась бы ровно такими же темпами, что и количество масла на один ломтик. В конце концов, свет летит по прямой линии, как и капельки масляного аэрозоля, и распределяется по тому же принципу. На расстоянии 60 см интенсивность света 100-ваттной лампочки будет составлять всего 1/4 от ее же интенсивности на расстоянии 30 см. На расстоянии 90 см останется всего 1/9 интенсивности, на расстоянии 120 см – 1/16 интенсивности, на расстоянии 150 см – 1/25 интенсивности и так далее. Интенсивность падает пропорционально квадрату расстояния – обратно квадрату. На самом деле, мы только что вывели важный физический закон, описывающий, как с увеличением расстояния ослабевает интенсивность излучения, закон обратных квадратов. Помните ньютоновскую формулу Gmamb/r2? «Эр в квадрате» в знаменателе демонстрирует отношение по закону обратных квадратов, принцип тот же, что и в масломете. Гравитация и масломет обладают схожими свойствами.


Рис. 5.3. Солнце – это сфера. Солнечное излучение распределяется по площади 4πr2, перед этим проходя через сферу радиусом r. Предоставлено Дж. Ричардом Готтом


Представьте себе источник света, подобный Солнцу, излучающий во всех направлениях (рис. 5.3). Далее предположим, что я заключу Солнце в огромную сферу, равную по радиусу земной орбите (1 а.е.). Солнце излучает свет во всех направлениях, и часть светового потока я перекрываю. Я получаю лишь ничтожную долю того света, что проходит через сферу, в центре которой находится Солнце, причем радиус этой сферы равен расстоянию от Солнца до меня. Чему равна площадь этой большой сферы? Она равна 4πr2, где r – радиус сферы. Из всего солнечного света та доля, что попадает в мой детектор, равна площади детектора, деленной на площадь этой огромной сферы (4πr2). Если я отодвинусь на вдвое большее расстояние, то размер моего детектора не уменьшится, а радиус сферы увеличится вдвое (2 а.е.) и площадь, через которую будут проникать лучи Солнца, станет вчетверо больше. В мой детектор попадет лишь четверть фотонов от того количества, что мне удавалось поймать, когда я был на расстоянии 1 а.е. от Солнца. Яркость выражается в ваттах на квдратный метр, улавливаемых моим детектором. Чтобы вычислить яркость, которую я буду наблюдать в радиусе r от Солнца, я беру светимость Солнца (в ваттах) и делю ее на площадь сферы – 4πr2. Таким образом я узнаю, сколько ватт от Солнца получаю в пересчете «количество ватт на квадратный метр». Умножаю это значение на площадь моего детектора (скажем, телескопа) и узнаю, сколько энергии в секунду он получает. Если L – светимость Солнца, то яркость Солнца (B), которую я буду наблюдать, вычисляется по формуле B = L/4πr2, где r – расстояние от Солнца до меня. По мере увеличения этого расстояния знаменатель (4πr2) растет, и яркость снижается. На Нептуне, который расположен в 30 раз дальше от Солнца, чем Земля, Солнце кажется в 900 раз тусклее, чем у нас.

Допустим, две звезды на небе обладают одинаковой яркостью, но я знаю, что светимость у одной из них в 10 000 раз выше, чем у другой. Что можно сказать об этих звездах? Звезда с большей светимостью должна находиться дальше. Во сколько раз? В 100 раз. Как у меня получилось 100? Да, 100 в квадрате равно 10 000.

Вы только что изучили некоторые из глубочайших проблем астрофизики конца XIX – начала XX века. Так, Больцман и Планк стали героями науки, поскольку осознали материал, изложенный в двух предыдущих главах.

Глава 6

Звездные спектры

Автор: Нил Деграсс Тайсон


Что на самом деле происходит внутри звезды? Звезда – это не просто маячок, который достаточно включить, чтобы с его поверхности полился свет. Глубоко в недрах звезды протекают термоядерные процессы, в результате которых выделяется энергия, и эта энергия постепенно пробивается к поверхности звезды, где высвобождается и со скоростью света летит на Землю, а также во всю Вселенную. Давайте проанализируем, что происходит при продвижении такой тучи фотонов сквозь материю – ведь без сопротивления при этом не обходится.

Для начала нужно понять, через что пробиваются фотоны на пути к поверхности Солнца. Наша звезда и большинство остальных состоят преимущественно из водорода – самого распространенного элемента во Вселенной. 90 % всех атомных ядер – это ядра водорода, 8 % – ядра гелия, а оставшиеся 2 % приходятся на все остальные элементы Периодической системы. История всего водорода и большей части гелия прослеживается вплоть до Большого взрыва, тогда же появилось ничтожное количество лития. Остальные элементы уже позже синтезировались в звездах. Если вы – поклонник той точки зрения, что земная жизнь есть нечто уникальное, то должны считаться со следующим важным фактом: если расставить по частоте встречаемости пять важнейших элементов во Вселенной – водород, гелий, кислород, углерод и азот, то этот набор будет очень напоминать химический состав человеческого организма. Какова основная молекула в теле человека? Это вода – вы на 80 % состоите из H2O. Если расщепить воду, то выделится водород, элемент номер один в человеческом организме. В вас совершенно нет гелия – за исключением того, что вы вдыхаете из наполненного гелием шарика, чтобы изменить голос на писклявый. Но гелий химически инертен. Он расположен в крайнем правом столбце Периодической таблицы; это значит, что его внешняя электронная оболочка целиком заполнена, там нет свободных «парковочных мест», куда можно было бы вставить электроны от других атомов, поэтому гелий ни с чем не реагирует. Даже если бы у вас был гелий, вам было бы не на что его применить.

Далее в человеческом организме идет кислород – опять же, его много, так как он присутствует в молекуле воды H2O. После кислорода идет углерод – основа всей органической химии. Далее идет азот. Если не считать гелия, который ни с чем не реагирует, то в земном человеческом организме наиболее распространены те же элементы, что и в космосе. Если бы мы состояли из какого-то редкого элемента, например из изотопа висмута, то могли бы утверждать, что на этой планете произошло что-то уникальное. Но учитывая, что мы состоим как раз из тех элементов, что наиболее распространены в космосе, приходится смиренно признать, что с химической точки зрения мы ничем не примечательны. С другой стороны, есть нечто поучительное и даже вдохновляющее в осознании, что все мы действительно сотворены из звездного вещества. Как будет рассказано в нескольких следующих главах, кислород, углерод и азот синтезируются в звездах спустя миллиарды лет после Большого взрыва. Мы родились во Вселенной, живем в этой Вселенной, и Вселенная живет внутри нас.

Рассмотрим газовое облако – космическую смесь водорода, гелия и остальных элементов – и обратим внимание на то, что там происходит. В центре атома находится ядро, состоящее из протонов и нейтронов, вокруг ядра вращаются по орбитам электроны. Удобно, пусть и графически неверно, представлять себе простую классическую квантовую модель атома, которую Нильс Бор предложил около 100 лет назад. У такого атома есть основное состояние – такая орбита, на которой электрон обладает наименьшей внутренней энергией; назовем это основное состояние «энергетический уровень 1». На следующей возможной орбите электрон будет уже в возбужденном состоянии, это будет энергетический уровень 2. Давайте изобразим атом с двумя энергетическими уровнями, чтобы не усложнять картину (рис. 6.1). В атоме есть ядро и облако электронов, находящихся «на орбитах» вокруг ядра. Но эти орбиты не похожи на планетные, о которых мы говорили, обсуждая гравитацию, планеты и Ньютона. Вообще, здесь было бы правильнее говорить не об орбитах, а об орбиталях. Они называются орбиталями, поскольку похожи на орбиты, но могут принимать самые разные формы. На самом деле, это «вероятностные облака», в разных частях которых с той или иной вероятностью может находиться электрон. Электронные облака. Некоторые из них сферические, другие – продолговатые. Орбитали объединяются в семейства, для одних семейств характерны более высокие энергии, чем для других. Давайте абстрагируемся от этого и поговорим просто об энергетических уровнях, но на самом деле будем рисовать орбитали, занятые электронами, вращающимися вокруг атомных ядер.


Рис. 6.1. Энергетические уровни в атоме. Показан простой атом с двумя электронными орбиталями, n = 1 и n = 2. Если электрон переходит со второго энергетического уровня на более низкий первый энергетический уровень, он излучает фотон с энергией ΔE = , где ΔE = E2E1 – это разница в энергии между первым и вторым энергетическим уровнем. После того как электрон окажется на первом энергетическом уровне, он может поглотить фотон с энергией ΔE = и вновь подняться на энергетический уровень 2.

Предоставлено Майклом Строссом


Ядро – это точка в центре атома. Энергетический уровень n = 1 соответствует сферической орбитали, расположенной ближе всего к ядру. Энергетический уровень n = 2 – это сферическая орбиталь, расположенная чуть дальше от ядра. Электрон на энергетическом уровне n = 2 уже не так плотно связан с ядром. Электроны и протоны притягиваются; нужна энергия, чтобы отодвинуть электрон от ядра на более отдаленную орбиталь. Энергетический уровень 2 обладает более высокой энергией, чем энергетический уровень 1.

Допустим, есть электрон в основном состоянии, на энергетическом уровне 1. Он не может зависнуть где-нибудь между первым и вторым энергетическими уровнями. Там просто нет места. Это же квантовый мир. Плавных изменений там не бывает. Чтобы электрон мог перескочить на следующий уровень, ему необходимо сообщить энергию. Он должен каким-то образом поглотить энергию, и в данном случае отличным источником энергии был бы фотон. Фотон попадает в электрон, но электрону подойдет не любой фотон, а только такой, энергия которого равна энергетической разнице между двумя уровнями. Заметив такой фотон, электрон проглатывает его и перескакивает на энергетический уровень 2. Если в фотоне чуть больше или чуть меньше энергии, электрон его просто пропустит. Еще отмечу, что атомам, в отличие от людей, не нравится пребывать в возбужденном состоянии. Спустя достаточное время электрон с энергетического уровня 2 спонтанно спустится на более низкий энергетический уровень 1 (как показано прямой стрелкой на рис. 6.1).

Бывает, что достаточное время – это миллионная доля секунды. Электрон недолго пребывает в возбужденном состоянии, будучи в атоме. Итак, что должно произойти, когда электрон опускается на более низкий энергетический уровень? Он должен испустить фотон – новый, но с той же энергией, которую принял с предыдущим фотоном. При переходе на более высокий энергетический уровень фотон поглощается. При переходе на более низкий энергетический уровень фотон излучается, как показано волнистой стрелкой на рис. 6.1. Согласно знаменитому уравнению Эйнштейна, энергия E этого фотона равна hν, где h – постоянная Планка, а ν – частота фотона. Энергия излученного фотона в точности равна разнице между двумя энергетическими уровнями ΔE.(Заглавная греческая буква «дельта», Δ, часто используется для обозначения разницы или изменения величины). В результате получаем тождество ΔE = hν, позволяющее вычислить частоту того фотона, который был излучен электроном, когда тот опустился со второго на первый энергетический уровень.

Вы когда-нибудь играли с фосфоресцирующими фрисби? Чтобы они светились в темноте, их сначала нужно подержать на свету. Например, подвесить перед лампочкой. Что при этом происходит? Электроны в атомах и молекулах игрушки переходят на более высокие энергетические уровни (в таких сравнительно больших атомах много энергетических уровней) и поглощают фотоны света. Создатели игрушки подобрали такой материал, в котором эти электроны каскадируют не сразу, а постепенно, излучая при этом видимый свет. Конечно, такой процесс продолжается не вечно. Свечение прекращается после того, как все электроны вернутся в исходное состояние. Фосфоресцирующие фрисби и светящиеся костюмы скелетов, которые так нравятся детям, светятся благодаря одному и тому же принципу.

Энергия, поглощаемая электроном, может поступить от фотона, но бывают и другие источники энергии. Возможно, пролетающий мимо атом ударит по электрону, и электрон в результате такого воздействия будет заброшен на более высокий энергетический уровень. В данном случае переход осуществляется за счет кинетической энергии. Как подобный механизм работает в облаке газообразного водорода? Во-первых, нужно выяснить, а какова температура этого водородного облака? Температура в кельвинах пропорциональна средней кинетической энергии молекул или атомов в облаке. Переносное движение облака не влияет на эти измерения. Естественно, кинетическая энергия – это энергия движения, поэтому чем выше температура, тем быстрее эти частицы носятся взад-вперед. Если бы я был электроном в основном состоянии и мне дали под зад, то я мог бы проверить энергию этого пинка. Если бы такого пинка хватило, чтобы я пролетел лишь часть пути до второго энергетического уровня, то я остался бы на месте. Но если энергия пинка именно такая, какая нужна для перехода на второй энергетический уровень, то я приму эту энергию, поглощу ее и перейду на второй уровень.

При достаточной температуре можно обеспечить, чтобы вся совокупность атомов и некоторая доля их электронов находились в сравнительно высоком состоянии. Можно поддерживать такое равновесие, так, чтобы любой упавший электрон сразу выталкивался на уровень выше. Примерно так действует жонглер, удерживающий несколько мячиков в воздухе. Все это – функция температуры. При низких температурах абсолютное большинство электронов остается на энергетическом уровне n = 1 и лишь немногие электроны – на энергетическом уровне n = 2. По мере повышения температуры все больше электронов выталкивается на энергетический уровень n = 2.

Резюме. Допустим, межзвездное газовое облако подсвечивается сиянием звезды, температура которой составляет 10 000 К. У большинства атомов – множество очень сложных энергетических уровней, таково устройство природы; энергетические уровни водорода при этом сравнительно просты. Эта разнородная смесь совершенно искажает чистый тепловой спектр, излучаемый звездой с температурой 10 000 К. Посмотрим, какой же хаос получается.

Во-первых, рассмотрим полноценный атом водорода. В нем – бесконечное количество энергетических уровней, соответствующих концентрическим орбиталям, расположенным все дальше и дальше от ядра: n = 1 (основное состояние; ближайшая к ядру орбиталь), n = 2 (первый уровень возбуждения), n = 3, n = 4, n = 5, n = 6 … n = ∞. Схема энергетических уровней напоминает лестницу, поэтому называется «лестничная диаграмма». Нижние энергетические уровни, расположенные на которых электроны теснее связаны с ядром, на диаграмме также располагаются внизу (рис. 6.2).

Первое возбужденное состояние водорода – n = 2, на три четверти пути вверх, за ним следует n = 3, затем n = 4, n = 5 и так далее. Электрон с высоким n занимает очень высокую орбиталь и имеет очень слабую связь с протоном. На самом верху диаграммы энергия связи электрона равна нулю. Энергия в атомах измеряется в электрон-вольтах, эВ. Это энергия, требуемая электрону, чтобы преодолеть разность потенциалов в 1 вольт. Допустим, у вас есть фонарик, работающий от девятивольтной батарейки. Каждый электрон, проходя по проводам в фонарике, генерирует 9 эВ энергии в виде света и теплоты. По проводам фонарика может проходить 6,24 × 1018 электронов в секунду, при этом будет генерироваться энергия в 9 × (6,24 × 1018) эВ (или 9 ватт) световой и тепловой энергии в секунду. Следовательно, один электрон-вольт – очень малая энергия; просто такими единицами удобно оперировать, когда речь идет о небольших порциях энергии, обмен которыми происходит при электронных переходах. Например, –13,6 эВ на рисунке соответствует энергетическому уровню n = 1. Эта энергия показана как отрицательная. Чтобы вывести этот электрон из атома, ему нужно сообщить энергию 13,6 эВ. Говорят, что 13,6 эВ – это энергия связывания для основного состояния электрона n = 1. Что будет, если электрон в основном состоянии заметит фотон с энергией более 13,6 эВ? Он сможет поглотить этот фотон? Вот фотон с таким количеством энергии, что электрону с ним делать? Если электрон поглотит такой фотон, то ему хватит энергии, чтобы заскочить выше n = ∞. Что выше n = ∞? Свобода. Если электрон выскочит туда на уровень энергии выше нуля, то покинет атом и расстанется со своим протоном. В таком случае мы ионизируем атом – оторвем у него электрон.


Рис. 6.2. Схема энергетических уровней водорода. Горизонтальными линиями обозначены различные энергетические уровни в атоме водорода в электрон-вольтах (эВ). Стрелками обозначены переходы электрона, при которых он может перескочить с одного энергетического уровня на другой, излучая фотон, энергия которого равна разности потенциалов между этими уровнями. Показаны переходы на первый энергетический уровень (серия Лаймана, где излучаются фотоны в ультрафиолетовой части спектра), на второй энергетический уровень (серия Бальмера, где излучаются фотоны видимого света) и на третий уровень (серия Пашена, ближний инфракрасный диапазон). На схеме показано, как электроны спускаются между энергетическими уровнями и излучают фотоны. Если электрон был на энергетическом уровне n = 3 и опустился на энергетический уровень n = 2, то он испустит фотон Hα (серия Бальмера) с энергией 1,9 эВ.

Предоставлено Майклом Строссом


(Теперь у атома появился заряд, и это уже не атом, а ион.) Энергия ускользнувшего электрона выше нуля; она преобразуется в кинетическую энергию движения, при помощи которой электрон вырывается из атома. Как вы, возможно, уже догадались, атом может ионизироваться и в том случае, если в него врежется другой атом.

Теперь, имея представление об энергетических уровнях, мы понимаем, как светится звезда, имеющая температуру 10 000 К. При температуре 10 000 К она настолько горяча, что у небольшой, но значительной доли атомов водорода электроны окажутся в первом возбужденном состоянии n = 2. Вот почему я выбрал звезду именно с такой температурой – она максимально наглядно иллюстрирует ситуацию, которую я собираюсь описать. Глубоко внутри звезды складывается спектр теплового излучения, красивая кривая Планка. Она пытается проявиться во внешних слоях звезды; этот сплошной тепловой спектр в 10 000 К выдавливает атомы водорода в верхние слои, причем некоторые электроны в этих атомах находятся в первом возбужденном состоянии; это голодные электроны. Можно спросить: сколько энергии у отдельных фотонов в таком тепловом спектре? Энергии многих из этих фотонов соответствуют видимой части спектра, просто так сложилось. И в водороде, разогретом до 10 000 К, есть атомы с голодными электронами, расположеными на энергетическом уровне n = 2; эти электроны, как бешеные, глотают подходящие фотоны, а после этого поднимаются на более высокие энергетические уровни.

Но поглощаются не все фотоны, а лишь те, чья длина волны позволяет электрону подняться на строго определенный энергетический уровень. Например, электрон на уровне n = 2 (с энергией –3,4 эВ) может поглотить фотон, энергии которого как раз хватает для перехода на уровень n = 3 (это энергия –1,5 эВ; см. рис. 6.2). Разница потенциалов между двумя этими энергетическими уровнями составляет 1,9 эВ. Именно столько энергии нужно электрону для перехода со второго на третий энергетический уровень. Такой электрон поглотит фотон с энергией 1,9 эВ. Такой фотон обозначается Hα. Длина его волны составляет 6563 ангстрем, или 656,3 нанометра, а цвет его волны – темно-красный. Фотон изымается из спектра, проталкивая при этом электрон со второго на третий энергетический уровень. Поскольку это происходит сразу с множеством электронов, в планковском спектре возникает провал, соответствующий длине волны 6563 ангстрем; он называется линией поглощения H-альфа (Hα). Фотоны с длиной волны 4861 ангстрем могут поднять электрон со второго на четвертый уровень; возникает другой провал под названием линия поглощения H-бета (Hβ). Есть и другие такие линии: H-гамма (Hγ) на 4340 ангстрем, H-дельта (Hδ) на 4102 ангстрем и так далее; фотоны с такими длинами волн изымаются из спектра, поднимая электроны с энергетического уровня n = 2 на уровни n = 5, n = 6,… Получается сплошной спектр, так называемый спектр поглощения, в котором выбиты узкие линии на уровне тех фотонов, что поглощаются наиболее активно. Такие глубокие расщелины в спектре именуются линиями поглощения. Вся группа этих линий называется серией Бальмера: Hα, Hβ, Hγ, Hδ, Hε, далее H6, H7, H8 (никто не собирается запоминать столько греческих букв). Пространство между этими линиями соответствует различиям в разнице потенциалов на лестничной диаграмме. На рис 6.3 показан спектр звезды с поверхностной температурой 10 000 К. На вставке крупным планом показана коротковолновая часть спектра.


Рис. 6.3. Звездный спектр, в котором показаны линии поглощения серии Бальмера. Спектр звезды A, зафиксированной проектом «Слоановский цифровой обзор неба», содержит линии поглощения водорода из серии Бальмера; они называются Hα, Hβ, Hγ и так далее. Линии наиболее густо расположены в районе самых коротких волн; во вставке крупным планом показан спектр, в котором обозначены линии вплоть до H10 (после Hε принято использовать цифры, а не греческие буквы). Есть еще одна линия, связанная с присутствием слегка ионизированного кальция; она обозначена «Ca».

Материал лаборатории Слоановский цифровой обзор неба», предоставлено Майклом Строссом


Если рассмотреть звезду, поверхность которой немного жарче, скажем 15 000 К, то ситуация драматически меняется: при пинке электрон получает такое количество энергии, что вообще улетает из атома водорода. Электроны и протоны летают по отдельности друг от друга, атомы становятся ионизированными. В ионизированном водороде нет дискретных энергетических уровней, поэтому он перестает поглощать фотоны из серии Бальмера. Вот почему серия Бальмера четко просматривается в звездах с температурой 10 000 К, но не в более горячих звездах.

До сих пор мы обсуждали лишь водород. Однако свои роли в этом процессе играют и кальций, и углерод, и кислород, и другие элементы. Обращусь к моей любимой аналогии – к дереву. Внешний уровень звезды можно уподобить дереву. Знаете, что летит к этому дереву (из недр звезды)? Ореховая смесь. В недрах звезды установлена пушка, стреляющая в дерево разными орешками (фотонами, имеющими разную частоту), а на дереве живут белки. Моим белкам нравятся желуди (фотоны Hα). Они видят этот шквал орехов, но выбирают из них только желуди; поэтому из звезды вылетает ореховая смесь, но без желудей (тепловое излучение минус фотоны Hα). Допустим, на дереве живут и другие грызуны: бурундуки, которые любят орех-макадамию. Что мы имеем на выходе? Ореховую смесь без желудей и макадамии. Если на дереве будет обитать множество разных грызунов и каждый вид предпочитает конкретный вид орехов, то можно логически догадаться, кто живет на дереве, если изучить, каких орехов не хватает на выходе, то есть какие орехи поедаются на этапе пролета через крону (если знать, кто чем питается).

Именно с такой проблемой мы сталкиваемся в астрофизике. Поскольку мы не можем проникнуть в звезду (там слишком жарко), мы анализируем ее издалека, наблюдая, какой свет изымается из сплошного теплового спектра. Мы рассматриваем этот спектр и спрашиваем: совпадает ли он с линиями водорода? В основном да, но там есть и другие элементы. Идем в лабораторию, исследуем кальций, другие элементы, проверяем, свет с какими частотами они поглощают в лабораторных условиях. Затем проверяем каждый элемент – укладывается ли он в систему спектральных линий данной звезды; ведь каждый элемент оставляет характерные именно для него «отпечатки пальцев». Такие энергетические уровни, лестничные диаграммы, уникальны для каждого элемента и молекулы. (Например, на рис. 6.3 показана линия поглощения, присущая кальцию, дополнительно к линиям поглощения водорода.)

Чтобы пример получился более универсальным, давайте рассмотрим не звезду, а газовое облако в межзвездном пространстве. Это облако из водорода, обладающее сплошным энергетическим спектром благодаря тому, что его освещает расположенная поблизости яркая звезда. Свет звезды попадает в облако и выходит из него с другой стороны, поэтому в облаке складывается спектр поглощения, в котором не хватает некоторых линий. Теперь нужно каким-то образом учесть энергию. Поглощается свет, волны которого имеют такую длину, и электроны поднимаются на более высокие энергетические уровни. Эти электроны также могут падать на более низкие энергетические уровни, излучая при этом фотоны. Следовательно, между электроном и фотоном возникает краткосрочная связь. Когда электрон возвращается на исходный энергетический уровень, в случайном направлении улетает точно такой фотон, как и тот, который ранее был поглощен этим электроном. Представьте себе, что у белок и бурундуков несварение желудка, и они отрыгивают во все стороны только что проглоченные орехи. Если газовое облако находится в равновесии и среднее количество электронов на втором энергетическом уровне со временем не изменяется, то количество съеденных и отрыгнутых орехов должно быть равным. Если вы стоите на линии огня ореховой пушки (смотрите на звезду вдоль луча зрения), то заметите, как на вас летит густой поток разнообразных орехов, в которых, однако, нет желудей и макадамии. Однако если бы вы стояли в произвольной точке и смотрели на дерево, а не на линию огня (то есть располагались относительно звезды не вдоль луча зрения), то увидели бы, как с дерева вылетают желуди и макадамия. Это были бы яркие линии эмиссионного спектра как раз на тех длинах волн, которые в предыдущем примере поглощались. Из этого следует вывод, что на дереве живут белки и бурундуки. Аналогично, по линиям эмиссионного спектра, выходящим из газового облака, можно отчасти узнать, из каких элементов оно состоит. На рис. 6.4 показан снимок туманности Розетка – видно, что эта туманность красная. Газ лучится светом на эмиссионной линии водорода-альфа (Hα) с длиной волны 6563 ангстрем. Итак, в этом облаке содержится водород. Астрономы получают превосходные снимки таких эмиссионных туманностей, как Розетка, используя фильтр, пропускающий свет только с длиной волны Hα. Такой фильтр практически полностью блокирует засветку – свет, возникающий в результате рассеяния в земной атмосфере. Свет молодых и ярких голубых звезд, расположенных в центре туманности Розетка (они хорошо заметны на рисунке), закидывает атомы водорода на энергетический уровень n = 3, и при падении обратно на уровень n = 2 они во всех направлениях излучают фотоны с длиной волны Hα. Поэтому туманность сияет красным светом Hα. По тому же принципу некоторые неоновые рекламы сияют оранжевым.


Рис. 6.4. Туманность Розетка – газовое облако, в котором образуются звезды. Красный цвет обусловлен излучением водорода, в частности, переходом c n = 3 на n = 2 (Hα). Предоставлено Робертом Дж. Вандербеем


Мы обсуждаем совокупность переходов водорода Hα, Hβ, Hγ, Hδ, так называемую серию Бальмера. Эта серия переходов была открыта в 1885 году и названа в честь исследовавшего их Иоганна Якоба Бальмера. Неважно, в какую сторону нарисовать острие стрелки на схеме энергетических уровней, – речь идет об одном и том же фотоне, входящем или исходящем. Он может быть поглощен (вверх) или излучен (вниз), но у всех переходов в серии Бальмера первое возбужденное состояние (основание) – это n = 2, и соответствующие фотоны относятся к видимой части спектра (см. рис. 6.2 – там показана эмиссия фотонов при переходе электронов на нижние энергетические уровни). Именно потому, что эти фотоны находятся в видимой части спектра, серия Бальмера была открыта раньше других. Но есть еще две подобные серии. Одна из них называется серией Пашена, ее основное состояние – n = 3. В ней масштаб энергетических переходов меньше, поэтому энергия у всех фотонов этой серии ниже, чем у фотонов видимого спектра (см. рис. 6.2). Серия Пашена целиком относится к инфракрасному спектру. После того как появились хорошие детекторы для надежного измерения инфракрасного излучения, обнаружилась и серия Пашена. Следует учитывать, что есть и другие подобные семейства, но я упомяну всего три серии: Пашена, Бальмера и еще одну, серию Лаймана (как и выше, в соответствии с греческой номенклатурой выделяются Лайман-альфа, Лайман-бета и так далее). Основное состояние этой серии – n = 1, все эти переходы относятся к ультрафиолетовому спектру. Самый низкоэнергетический переход в серии Лаймана обладает большей энергией, чем самый высокоэнергетический в серии Бальмера (вновь отсылаю вас к рис. 6.2).

Соответственно когда мы рассматриваем такие переходы, серия Бальмера обособлена от остальных серий, серия Лаймана обособлена от остальных и серия Пашена также обособлена от остальных, поэтому их легко изолировать и понять. Я мог бы нарисовать атом, в котором все было бы не так просто. Я мог бы «сконструировать» атом – в мире немало странных атомов, – в котором энергетические переходы и три серии, Лаймана, Бальмера и Пашена, были бы похожи, три эти семейства в спектре перекрывались бы. Размышляя об этих линиях и о том, как определять их для еще не открытых элементов, возможность существования такого атома нельзя сбрасывать со счетов.

На протяжении нескольких тысяч лет мы могли измерить лишь яркость звезды, ее положение в небе и, может быть, отметить ее цвет. Такова была классическая астрономия. Она превратилась в современную астрофизику, когда мы начали определять звездные спектры, ведь спектры позволяют понять химический состав звезд, а точная интерпретация спектра возможна благодаря квантовой механике. Я хотел бы подчеркнуть, насколько это важно. Мы не понимали спектров до того, как была разработана квантовая механика. Планк ввел свою постоянную в 1900 году, а в 1913 году Бор предложил свою модель атома водорода, положение электронов и орбиталей в которой было объяснено при помощи квантовой механики. Это позволило объяснить серию Бальмера. На самом деле, современная астрофизика началась только после этого события, в 1920-е годы. Подумайте, насколько недавно это было. Сегодня еще живы старики, родившиеся на заре существования астрофизики. Тысячелетиями люди, в сущности, не имели никакого понятия о звездах, но за срок всего одной человеческой жизни мы исследовали звезды достаточно хорошо. У меня есть книга по астрономии, вышедшая в 1900 году, и материал в ней изложен на уровне «вот созвездие», «вот красивая звезда», «там много звезд», «а здесь звезд меньше». Там есть целая глава о фазах Луны, глава о солнечных затмениях – вот и все, о чем могли рассуждать астрономы. Однако в научных книгах, написанных после 1920-х годов, уже идет речь о химическом составе Солнца, источниках ядерной энергии, судьбе Вселенной. В 1926 году Эдвин Хаббл открыл, что Вселенная обширнее, чем кто-либо мог подумать, – ведь он обнаружил, что другие галактики находятся гораздо дальше, чем звезды нашего Млечного Пути. В 1929 году он же открыл, что Вселенная расширяется. Эти эпохальные открытия произошли при жизни людей, некоторые из которых живы еще сегодня. Потрясающе. Иногда я задаюсь вопросом: а какие революции ждут нас в следующие несколько десятилетий? Свидетелями каких космологических открытий окажетесь вы – и сможете рассказать о них своим потомкам?

Учитывая такие уроки истории, просто старайтесь не делать таких идиотских прогнозов, как французский философ Огюст Конт, который в своей книге «Положительная философия», вышедшей в 1842 году, заявил о звездах следующее: «Мы никогда не сможем определить ни их химический состав, ни, в случае некоторых из них, как теплота поглощается их атмосферой».

Глава 7

Жизнь и смерть звезд (I)

Автор: Нил Деграсс Тайсон


Два астронома, работавших независимо друг от друга, Генри Норрис Расселл и Эйнар Герцшпрунг, решили схематически расположить все звезды так, чтобы диаграмма позволяла соотнести их светимость и цвет (рис. 7.1). Неудивительно, что эта схема называется «диаграмма Герцшпрунга – Рассела». Можно количественно выразить цвет звезд, если знать их спектры. Сегодня известно (а Герцшпрунг и Расселл знали это и в свое время), что цвет позволяет измерить температуру (по функции Планка). По оси ординат на диаграмме Герцшпрунга – Рассела откладывается светимость, а по оси абсцисс – цвет или температура. Самые горячие звезды (голубые) расположены слева, а наиболее прохладные (красные) – справа.

Генри Норрис Расселл был деканом факультета астрофизики в Принстонском университете. Многие считают его первым американским астрофизиком. В его раннем варианте диаграммы температура звезд возрастала справа налево, мы придерживаемся такой же традиции и сегодня. Он располагал данными по тысячам и тысячам звезд. Эту информацию собрали прежде всего сотрудницы обсерватории Гарвардского колледжа. Они занимались работой, считавшейся слишком непрестижной для мужчин, – классифицировали спектры всех этих звезд. Это были времена, когда словом «компьютер» называли людей-вычислителей. Люди были компьютерами. Были такие большие залы, в которых сидели эти женщины. В начале XX века у женщин не было ученых степеней, и они попросту не могли рассчитывать на работу, которая считалась желанной для мужчин. Но в таких вычислительных залах попадались умные и мотивированные женщины, которые, занимаясь анализом этих спектров, чисто логически обнаружили важные свойства Вселенной, о которых мы поговорим в следующих главах. Среди этих женщин была Генриетта Ливитт. Сесилия Пейн также проработала в Гарварде около десяти лет ассистентом Харлоу Шепли, занимаясь исследованием звездных спектров, пока, наконец, не получила профессорскую должность. Она была одной из тех, кому удалось открыть, что Солнце состоит в основном из водорода. Удивительная история, и вклад женщин в развитие астрономии действительно очень интересен.


Рис. 7.1. Звездная диаграмма Герцшпрунга – Расселла. Светимость звезд показана в зависимости от температуры их поверхности. Обратите внимание: по традиции, поверхностная температура на этой диаграмме уменьшается слева направо. Сравнительно прохладные звезды красные, а самые горячие – голубые, как показано здесь. Звезды, расположенные вдоль конкретной диагональной линии, имеют примерно одинаковый радиус. Иллюстрация сделана по материалам статьи J. Richard Gott, Robert J. Vanderbei, Sizing Up the Universe, National Geographic, 2011


Вооружившись каталогами звезд с данными об их светимости и температуре, Герцшпрунг и Расселл принялись заполнять диаграмму. Они обнаружили, что звезды располагаются на схеме не в произвольном порядке. В некоторых областях звезд не было – на диаграмме заметны пустые места, – но по диагонали, прямо в центре диаграммы, вырисовывался яркий звездный пояс. Астрономы назвали его «главная последовательность» – как принято в этой науке, выбрали максимально простое наименование.

Девяносто процентов каталогизированных звезд оказались в этой зоне. Россыпь звезд видна в правом верхнем углу. Эти звезды относительно холодные, но обладают огромной светимостью. Если их температура невелика, какого цвета они должны быть? Красного. Что можно сказать о красной звезде с очень большой светимостью? Наверняка? Звезда должна быть колоссальной. Действительно, это очень большие красные звезды. Они называются красными гигантами. Благодаря функции Планка мы знаем, что эти звезды должны быть красными и большими. Подобная дедукция – мой хлеб с маслом. Еще правее и выше расположены красные сверхгиганты. Теперь мы можем перейти на новое астрономическое поприще и проанализировать всю эту ситуацию при помощи одной лишь прикладной физики. На самом деле, пользуясь законом Стефана – Больцмана и радиусом звезды r (получается формула L = 4πr2T4), можно начертить на диаграмме диагональные линии, вдоль которых будут располагаться звезды с фиксированным диаметром: 0,01 солнечного, 0,1 солнечного, 1 солнечный, 10 солнечных, 100 солнечных. Теперь мы знаем, каковы размеры этих звезд. Естественно, Солнце находится на линии «один солнечный диаметр». Диаметр красных сверхгигантов более чем в 100 раз превышает солнечный. Под главной последовательностью находим еще одну группу звезд. Они жаркие, но не слишком; это белые звезды. Они обладают крайне низкой светимостью, то есть должны быть мелкими. Они называются белыми карликами.

Когда диаграмма Герцшпрунга – Расселла была опубликована впервые, мы не знали, почему звезды группируются именно таким образом. Может быть, звезда рождается с очень высокой светимостью и со временем угасает, пока не становится тусклой и холодной. Может быть, жизненный цикл звезды направлен вниз вдоль главной последовательности (звезда одновременно стареет и теряет светимость). Логичная версия, но, исходя из нее, возраст Солнца был оценен в триллион лет, что гораздо больше возраста Земли. На протяжении десятилетий для ответа на этот вопрос выдвигались те или иные обоснованные догадки, пока не удалось выяснить, что же происходит на самом деле. Первый шаг к ответу был сделан, когда ученые присмотрелись к различным небесным объектам (рис. 7.2 и 7.3).

На этих картинках показаны множества звезд, именуемые астрономами звездными скоплениями. В некоторых скоплениях сотни звезд, в других – сотни тысяч. Если в скоплении всего несколько сотен звезд (как в Плеядах, см. рис. 7.2), то оно называется рассеянным; если в скоплении сотни тысяч звезд, то оно обычно приобретает шарообразную форму, как М13 (см. рис. 7.3) и называется шаровым.

В шаровых скоплениях насчитываются сотни тысяч звезд, а в рассеянных – до тысячи. Когда рассматриваешь подобные объекты в небе, сразу понятно, скопление какого типа перед тобой. Споров нет, так как нет промежуточных вариантов: либо там небольшое количество звезд, либо целая куча. У всех звезд в конкретном скоплении один и тот же день рождения – они одновременно образовались из газового облака.


Рис. 7.2. Рассеянное звездное скопление Плеяды. Это молодое скопление (вероятно, ему менее 100 миллионов лет). Предоставлено Робертом Дж. Вандербеем


Рис. 7.3. Шаровое звездное скопление M13. Иллюстрация сделана по материалам статьи J. Richard Gott, Robert J. Vanderbei, Sizing Up the Universe, National Geographic, 2011


Плеяды – молодое звездное скопление. Оно напоминает детсадовскую группу. Там повсюду молодые яркие голубые звезды. Но на диаграмме Герцшпрунга – Расселла это скопление равномерно представлено во всей главной последовательности, и в нем нет красных гигантов. Голубые звезды в верхней части главной последовательности настолько яркие, что именно они задают тон всей последовательности, но красные звезды, расположенные на главной последовательности ниже, там также присутствуют. Плеяды выглядят именно так, как должно выглядеть звездное скопление вскоре после рождения. Плеяды демонстрируют, что некоторые звезды при рождении обладают высокой температурой и высокой светимостью, а другие звезды рождаются холодными и тусклыми – просто именно в таком виде они и рождаются, – поэтому скопление распределено по всей главной последовательности.

В шаровых звездных скоплениях, таких как M13, представлена главная последовательность без верхнего конца плюс несколько красных гигантов, не входящих в главную последовательность. Фотография M13 напоминает день встречи выпускников в честь пятидесятой годовщины окончания колледжа – все звезды там старые. Самые яркие звезды, выделяющиеся на фоне общей картины, – красные гиганты. В главной последовательности скопления M13 все еще есть сравнительно холодные и тусклые объекты, но куда девались яркие голубые? Сошли со сцены? Что произошло? Вероятно, вы догадываетесь: они просто «превратились» в красные гиганты. Верхняя часть главной последовательности отсеялась, и голубые звезды с максимальной светимостью стали красными гигантами.

Также встречаются «средневозрастные» скопления, где исчезла лишь часть главной последовательности и появилось всего несколько красных гигантов.

Определить массы звезд различных типов – хитрое дело. Мы измеряли доплеровское смещение спектральных линий в системах двойных звезд, вращающихся друг вокруг друга, и применяли ньютоновский закон тяготения. Такой опыт показал, что главная последовательность – это еще и последовательность масс, которая начинается с тяжелых ярких голубых звезд в верхней левой части и заканчивается легкими тусклыми красными звездами в правой нижней части. Легкие звезды рождаются сравнительно тусклыми и прохладными, а массивные при рождении обладают высокой светимостью и температурой.

Массивные голубые звезды из верхней части главной последовательности живут примерно по 10 миллионов лет. Это не так много. Примерно в середине главной последовательности находятся такие звезды, как Солнце. Они живут по 10 миллиардов лет, то есть в 1000 раз дольше. Продолжая путь по главной последовательности вниз и вправо, добираемся до тусклых красных звезд, живущих триллионы лет. Девяносто процентов звезд относится к главной последовательности. Почему? Оказывается, на протяжении 90 % своего жизненного цикла звезда обладает такой температурой и светимостью, при которых мы относим ее к главной последовательности. Приведу аналогию: я практически уверен, что каждый вечер вы идете в ванную и чистите зубы. Но если я буду фотографировать вас в течение дня, то вряд ли застану вас за этим делом, поскольку пусть вы и чистите зубы ежедневно, но тратите на это совсем немного времени. Выяснилось, что некоторые области диаграммы Герцшпрунга – Расселла малонаселены, так как звезды «проскакивают» эти зоны в процессе изменения светимости и температуры, но проскакивают очень быстро. Очень редко удается застать звезду за чисткой зубов.

Что происходит глубоко в недрах звезд? Мы уже знаем, что при повышении температуры частицы движутся все быстрее и быстрее. Мы также знаем, что 90 % атомных ядер во Вселенной – это водород, такова же и доля водорода в звездах. Возьмем газовый пузырь, на 90 % состоящий из водорода, – это еще не звезда. Сожмем его и сделаем звезду. Как легко догадаться, самая жаркая часть звезды будет в центре. Если сжать что угодно, оно разогревается. В недрах звезд достаточно жарко (мы в этом убедимся), чтобы там разгорались ядерные печи и температура не падала. На поверхности звезды температура гораздо меньше. В недрах звезд так жарко, что все электроны там оторваны от атомов, вместо атомов остаются голые ядра.

В ядре водорода один протон. Когда к нему приближается другой протон, две эти частицы отталкиваются. Протон имеет положительный заряд, а одинаковые заряды отталкиваются с силой 1/r2. Чем ближе они сходятся, тем сильнее отталкиваются. Но давайте еще повысим температуру. Чем выше температура, тем больше средняя кинетическая энергия и тем выше скорость протонов. Высокие скорости позволяют протонам подлетать все ближе друг к другу, прежде чем электростатические силы оттолкнут их. Оказывается, существует «волшебная» температура – около 10 миллионов кельвинов, – при которой протонам удается сближаться настолько, что в игру вступает совершенно новое короткодействующее сильное ядерное взаимодействие, притягивающее и связывающее друг с другом эти протоны; я упоминал об этом взаимодействии в главе 1. Такая ядерная сила притяжения еще 100 лет назад была неизвестна, она должна быть достаточно мощной, чтобы преодолеть естественное электростатическое отталкивание протонов. Как же еще ее назвать, если не сильным ядерным взаимодействием? Именно эта сила обеспечивает так называемый термоядерный синтез (кроме того, сильное ядерное взаимодействие удерживает от распада сравнительно крупные ядра. В ядре гелия – два протона и два нейтрона. Два протона отталкиваются под влиянием электростатических сил, но именно сильное ядерное взаимодействие удерживает их в ядре. Аналогичные ситуации складываются с ядрами углерода [шесть протонов и шесть нейтронов] и ядрами кислорода [восемь протонов и восемь нейтронов]).

Когда два протона слипаются вместе при температуре 10 миллионов кельвинов, происходит достаточно забавная реакция. Получаются сцепленные воедино протон и нейтрон – один из протонов спонтанно превращается в нейтрон, – и при этом извергается положительно заряженная частица, напоминающая электрон, – она называется позитроном. Эта частица состоит из антивещества, очень экзотической материи. Позитрон весит столько же, сколько и электрон, но стоит ему столкнуться с электроном – и обе частицы аннигилируют. Масса этих частиц преобразуется в энергию, которая уносится в виде двух фотонов. Данное явление полностью согласуется с эйнштейновским уравнением E = mc2, описывающим взаимосвязь массы с энергией, об этом Рич гораздо подробнее расскажет в главе 18. Также при описанной реакции извергается электронное нейтрино, нейтральная частица (с нулевым зарядом). Нейтрино настолько слабо взаимодействуют с остальной материей во Вселенной, что просто улетают с Солнца. Обратите внимание на сохранение заряда в этой реакции. Мы начали с двух положительных зарядов (по одному у каждого протона) и на выходе также получили два положительных заряда (один – у протона, один – у позитрона). При реакции выделяется энергия, так как сумма масс исходных частиц больше, чем сумма масс конечных. Масса теряется и преобразуется в энергию по формуле E = mc2. Как называется ядро с одним протоном и одним нейтроном? Если в нем один протон – значит, это водород, но в данном случае – тяжелый водород. Выражение «тяжелый водород» употребляется часто, но у такого атома есть и собственное название: дейтерий.

Итак, у меня есть дейтерий. Если дейтерий сольется с еще одним протоном, то получится ядро ppn (с двумя протонами и одним нейтроном) плюс выделится еще энергия. Что у меня получилось? В ядре два протона, а когда в ядре два протона – это гелий. Слово «гелий» происходит от Гелиоса, древнегреческого бога Солнца. Гелий – это элемент, названный в честь Солнца. Дело в том, что открыли его на Солнце благодаря спектральному анализу и лишь впоследствии обнаружили на Земле. Ядро ppn легче обычного гелия и называется гелий-3, поскольку в нем три элементарные частицы (два протона и один нейтрон). Теперь сплавим два ядра гелия-3: ppn + ppn = ppnn + p + p + энергия. Получившееся в результате ядро ppnn – это полноценный обычный гелий (тот самый, которым наполняют гелиевые шары).

Все это происходит при температуре 15 миллионов кельвинов в центре Солнца, каждую секунду 4 миллиона тонн материи там превращаются в энергию. Мы осознали, что звезды из главной последовательности преобразуют водород в гелий. В конце концов весь водород в ядре звезды будет израсходован, и после этого начинается хаос: звездная оболочка расширяется, и звезда превращается в красный гигант. Примерно через 5 миллиардов лет Солнце станет красным гигантом, отбросит свою газовую оболочку и постепенно превратится в белый карлик. Более массивные звезды превратятся в красные гиганты, а затем – в красные сверхгиганты. Они могут взорваться как сверхновые, и на месте их ядер останутся нейтронные звезды или черные дыры. Мы вернемся к этой теме в главе 8.

Пока давайте вновь поговорим о диаграмме Герцшпрунга – Расселла. На ней есть главная последовательность, красные гиганты и белые карлики, причем температура звезд увеличивается справа налево, а светимость – снизу вверх. Спектральные классы звезд имеют буквенные обозначения. Некоторые из них сохранились со времен старой классификации, когда спектральные классы именовались в алфавитном порядке, но, как бы то ни было, система по-прежнему в ходу: OBAFGKMLTY. Каждая буква обозначает класс звезд с определенной температурой поверхности; Солнце относится к спектральному классу G. Приблизительные поверхностные температуры и цвета звезд таковы:


O (> 33 000 K, голубые)

B (10 000–33 000 K, бело-голубые)

A (7500–10 000 K, белые или бело-голубые)

F (6000–7500 K, белые)

G (5200–6000 K, желтые)

K (3700–5200 K, оранжевые) и

M (2000–3700 K, красные),


все они есть на рис. 7.1. Еще правее, за пределами нашей диаграммы, будут звезды остальных классов: L (1300–2000 K, красные), T (700–1300 K, красные) и Y (< 700 K, инфракрасные). Если обратить внимание на шкалу температур в нижней части рисунка, то понятно, какие звезды к каким классам относятся. Спика – звезда класса B, Сириус – звезда класса A, Процион – звезда класса F, а Глизе 581 – звезда класса M. Каждая звезда занимает на диаграмме определенную позицию как по горизонтали, соответствующую ее температуре (чем левее – тем жарче), так и по горизонтали, в зависимости от светимости (чем выше – тем ярче). Естественно, Солнце обладает ровно одной солнечной светимостью по определению. Это хорошо заметно, если обратить внимание на светимость Солнца по вертикали. На этой диаграмме используется логарифмическая шкала, на которую можно нанести огромный диапазон наблюдаемых значений светимости. Каждое деление соответствует возрастанию светимости в 10 раз.

По верхнему краю на рис. 7.1 расположены звезды, светимость которых в миллион раз превышает солнечную. По нижнему краю находятся звезды со светимостью в 1/100 000 от солнечной. Разброс светимости звезд в пределах главной последовательности просто ошеломляет. Оказывается, что звезды в верхнем конце главной последовательности всего в 60 раз превосходят Солнце по массе, но не в миллион раз. В нижней части главной последовательности находятся звезды вдесятеро легче Солнца, но, как я уже говорил, они гораздо, гораздо тусклее Солнца. Итак, диапазон масс велик, однако он не идет ни в какое сравнение с диапазоном светимости. На самом деле, можно описать формальное отношение, характеризующее, как светимость звезды в главной последовательности зависит от ее массы, но эта зависимость нелинейна: светимость пропорциональна массе, возведенной в степень 3,5. Таким образом, две звезды, масса которых слегка отличается, могут обладать очень разной светимостью.

А теперь – классные расчеты. Начнем с E = mc2. Эту формулу помнят все. Все знают, что ее придумал Эйнштейн, но немногие понимают ее смысл. Дедушка Альберт вывел ее в 1905 году. Как мы уже обсуждали, это уравнение означает следующее: некоторую массу можно преобразовать в энергию согласно такому отношению, где c соответствует колоссальной скорости света, а если ее возвести в квадрат – получается очень большая величина. Именно эта формула описывает мощь, заключенную в атомных бомбах. О происхождении этого уравнения и о Специальной теории относительности Эйнштейна речь пойдет в главе 18.

Если звезда обладает определенной массой и определенной светимостью – сколько она просуществует? Разумеется, то же самое можно спросить и о вашей машине с бензиновым двигателем: вы знаете, какова полная емкость бака, знаете, каков расход топлива на километр в литрах. Зная эти данные, можно предположить, как скоро в машине кончится бензин. Светимость звезды характеризует то, сколько энергии она излучает в единицу времени. Если умножить срок жизни звезды t на ее светимость L, то можно вычислить общее количество энергии, которую она сгенерирует в течение жизни, – tL. Нам известна светимость звезды, темпы расхода ее топлива, а также мы знаем, каковы запасы ее топлива (водорода). Таким образом, какова продолжительность жизни звезды на главной последовательности? Общая энергия, которую может выделить звезда в ходе термоядерного водородного синтеза, пропорциональна ее массе M. Как вы помните, E = mc2. Общая энергия, излучаемая звездой, пропорциональна M, а также пропорциональна tL, поэтому M пропорциональна tL. Соответственно t пропорциональна M/L. Если L пропорциональна M3,5, как я говорил выше, то t пропорциональна M/M3,5, либо, что то же самое, пропорциональна 1/M2,5. Чем массивнее звезда, тем меньше она просуществует!

Посмотрим, что это значит. Если срок жизни звезды пропорционален 1/M2,5, то звезда, которая вчетверо тяжелее Солнца, просуществует 1/42,5 солнечного века. Число 1/42,5 равно: один разделить на четыре в квадрате, умножить на квадратный корень из четырех. Квадратный корень из четырех равен двум, а четыре в квадрате равно 16. Соответственно срок жизни такой звезды, которая вчетверо тяжелее Солнца, составит 1/32 от солнечного. Солнце проведет в главной последовательности около 10 миллиардов лет. Соответственно звезда вчетверо тяжелее Солнца проведет в главной последовательности лишь 1/32 этого срока, или примерно 300 миллионов лет. Это недолго.

Другой пример: 1/402,5 – это примерно 1/10 000, поэтому звезда, которая в 40 раз тяжелее Солнца, просуществует всего около миллиона лет – крошечный срок по сравнению с миллиардами лет. Теперь сделаем шаг в противоположную сторону. Рассмотрим звезду, масса которой равна 1/10 солнечной. Один разделить на 1/10 равно 10, а 10 в степени 2,5 – это примерно 300. Такая звезда просуществует в 300 раз дольше Солнца. Сколько будет – 10 миллиардов умножить на 300? Получится 3000 миллиардов, или 3 триллиона, лет – это гораздо больше нынешнего возраста Вселенной. Такая звезда будет жечь свое топливо очень экономно. Звезда в 10 раз тяжелее Солнца проживет в 300 раз меньше Солнца, звезда в 10 раз легче Солнца – в 300 раз дольше Солнца.

Гелий синтезируется из водорода в звездах главной последовательности. В ядрах красных гигантов образуются другие элементы. Термоядерный синтез там идет активнее, и формируются такие элементы, как углерод, кислород и другие элементы таблицы Менделеева вплоть до железа (в атоме которого 26 протонов и 30 нейтронов). Девяносто процентов своего жизненного цикла звезда проводит на главной последовательности, после чего превращается в красный гигант и начинает выплавлять эти дополнительные элементы. Последний этап протекает быстро, он занимает каких-то 10 % жизненного цикла звезды. Всякий раз при слиянии легких элементов (легче железа, № 26 в таблице Менделеева) с образованием более тяжелых теряется масса, реакция термоядерного синтеза продолжается в соответствии с формулой E = mc2, при этом выделяется энергия. Такой процесс термоядерного синтеза называется экзотермическим именно потому, что выделяется энергия. Но известны и другие ядерные реакции, протекающие с выделением энергии. Возьмем, например, уран (№ 92), расщепим его ядро – и тоже получим экзотермическую реакцию. Она была осуществлена во Вторую мировую войну, когда на Хиросиму сбросили урановую бомбу. На Нагасаки сбросили бомбу с плутонием (это элемент № 94). Эти элементы имеют огромное ядро и нестабильные изотопы – атомы с одинаковым количеством протонов, но разным количеством нейтронов. Если расщепить изотопы, чтобы из них образовались более легкие элементы, при этом выделяется энергия. Такая реакция также экзотермическая, она называется делением ядра. Большая часть мирового ядерного арсенала, накопленного за годы холодной войны, – это ядерные заряды, при взрыве которых происходило бы деление ядра. В наше время основная ядерная мощь приходится на такие бомбы, при взрыве которых начнется термоядерный синтез гелия из водорода. Для того чтобы вы могли соотнести мощь таких бомб, отмечу: обычная ядерная бомба используется в термоядерной в качестве инициирующего заряда, – то есть термоядерные бомбы сулят поистине тотальное уничтожение. Известно, насколько эффективно материя в них преобразуется в энергию, ведь именно такой процесс обеспечивает горение звезд. Солнце – это огромная термоядерная бомба, с той оговоркой, что вся его умопомрачительная энергия связана массой, давящей на солнечное ядро. Нам пока не удается сконструировать термоядерную электростанцию. Все атомные электростанции в США, Франции и других странах работают на реакциях деления ядра.

Нельзя просто расщеплять атомы и получать неисчерпаемую энергию; вечно поддерживать реакцию термоядерного синтеза также не удастся. На рис. 7.4 показано почему. По оси абсцисс откладывается атомный номер, количество нуклонов (то есть протонов или нейтронов), содержащихся в ядре каждого существующего в природе элемента. Все начинается с одного нуклона – это атом водорода. В ядре водорода один протон. Схема продолжается вплоть до 238, это атомный номер урана: в его ядре 92 протона и 146 нейтронов. У некоторых элементов, в частности у урана, есть разные изотопы: например, уран-235, в котором всего 143 нейтрона. Он очень радиоактивен и быстро распадается (именно этот изотоп урана использовался в атомной бомбе, сброшенной на Хиросиму). Все остальные элементы располагаются на схеме между водородом и ураном. По оси ординат откладывается энергия связи на каждый нуклон. Чем выше энергия связи, тем ниже на схеме расположен элемент.


Рис. 7.4. Энергия связи на нуклон в атомных ядрах. Для всех элементов показаны лишь стабильные изотопы. Энергия связи дана в миллионах электрон-вольт на нуклон (то есть протон или нейтрон). В результате получаем энергию, выделяемую при синтезе такого ядра из свободных протонов. Чем выше энергия связи на нуклон (чем ниже ядро расположено на схеме), тем меньше массы на нуклон будет в ядре (по уравнению Эйнштейна E = mc2).

Предоставлено Michael A. Strauss; G. Audia, O. Bersillon, J. Blachot, and A.H. Wapstra, Nuclear Physics A 729 (2003): 3–128


Чтобы составить впечатление об энергии связи, представьте себе два сцепленных магнита: северный полюс одного притягивается к южному полюсу другого. При такой конфигурации нам придется затратить энергию, чтобы расцепить магниты. Вместе их удерживает энергия связи. На рис. 7.4 водород расположен на самой вершине графика – у него нулевая энергия связи. При синтезе гелия атом водорода словно «катится со склона», при этом высвобождается энергия. Гелий обладает большей энергией связи по сравнению с водородом: он словно находится чуть ниже ко дну долины. Обратите внимание на шкалу: значения энергии связи огромны (измеряются в миллионах электрон-вольт на нуклон). Как вы помните, в главе 6 рассказывалось, что такое электрон-вольт (эВ). Чтобы разложить гелий обратно на водород, потребуется более чем по 7 миллионов электрон-вольт на каждый из 4 нуклонов, всего более 28 миллионов электрон-вольт. В середине графика кривая достигает минимума. Уран, расположенный в правой оконечности графика, выше этого минимума в середине. Если вы – химический элемент, то с вами может происходить экзотермическая реакция деления ядра либо экзотермическая реакция термоядерного синтеза, пока вы не окажетесь в самой нижней точке. Эту нижнюю точку занимает железо с 26 протонами и 30 нейтронами (то есть с 56 нуклонами). Если я попытаюсь запустить термоядерный синтез на основе железа, то реакция получится эндотермической – в ходе нее энергия будет поглощаться. Если я попытаюсь запустить деление ядра железа, то снова получится эндотермическая реакция. На железе все стопорится: никакой энергии из него не извлечь.

Звезды заняты синтезом энергии. Если звезда кочегарит себе, выплавляя по порядку один элемент за другим, и в результате получает энергию, то перед вами довольная звезда. Благодаря извлекаемой энергии недра звезды остаются горячими, а тепловое давление раскаленного газа не дает звезде схлопнуться под собственным весом. Допустим, у меня есть главная последовательность таких звезд, которые вдесятеро массивнее Солнца: они состоят в основном из водорода и гелия, а в ядре водород по-прежнему преобразуется в гелий. Это акт 1. В акте 2 ядро звезды состоит уже из чистого гелия, но в газовой оболочке звезды по-прежнему присутствуют водород и гелий. Термоядерный синтез в ядре прекращается, ядро больше не в состоянии удерживать оболочку – и что происходит со звездой? Она сжимается, нарастает давление, и температура достигает значений, достаточных для слияния гелия. Для слияния ядер гелия (ppnn + ppnn) требуется более высокая температура, чем для слияния ядер водорода (p + p), так как в каждом ядре гелия (ppnn) по два протона, соответственно количество взаимно отталкивающихся положительных зарядов удваивается. В следующей сцене второго акта (при 100 миллионах кельвинов) начинается термоядерный синтез элементов из гелия, и звезда остается стабильной. В самом центре очень горячего ядра гелий превращается в углерод; вне ядра продолжается термоядерный синтез на основе водорода. В итоге получается шар с углеродной сердцевиной, и там недостаточно жарко, чтобы продолжать синтез уже на основе углерода, поэтому синтез прекращается. Ядро продолжает сжиматься, температура вновь возрастает, и начинается синтез на основе углерода. Это акт 3. Теперь, в результате углеродного синтеза, в центре углеродного ядра образуется кислород, а углеродное ядро находится в центре гелиевого. Гелиевое ядро, в свою очередь, окружено звездной оболочкой, в которой есть водород и гелий. Получилась такая луковица, в которой элементы расположены послойно, причем в центре луковицы жарче всего. При каждой из реакций выделяется энергия. В конце концов в центре образуется железное ядро, обернутое слоями все более и более легких элементов. Все это – новая химическая присадка к Галактике.

Но эти элементы по-прежнему заключены в звезде, у них должен быть шанс каким-то образом из нее вырваться – ведь именно из этих элементов мы с вами и состоим! Сегодня известно, что железо – это тупик синтеза. Когда в ядре накапливается железо, синтез останавливается и звезда схлопывается. Когда звезда пытается запустить синтез на основе железа, ее энергия попросту истощается, и схлопывание ускоряется. Звезды должны генерировать энергию, а не поглощать ее. В результате ускоряющегося схлопывания звезда претерпевает гравитационный коллапс, и в центре ее остается сверхплотная нейтронная звезда. При образовании нейтронной звезды выделяется такая кинетическая энергия, которой хватает, чтобы просто сдуть всю оболочку и внешнее ядро. Происходит колоссальный взрыв, звезда несколько недель сияет в миллиарды раз ярче Солнца. Внутренность звезды развеивается по галактике, то есть в межзвездном пространстве, при этом происходит химическое обогащение газовых облаков тяжелыми элементами. В результате эти облака становятся интереснее, чем банальная смесь чистого водорода и гелия.

На рис. 7.5 показана красивая спиральная галактика M51, в которой насчитывается 100 миллиардов звезд. Там все стройно и красиво (сверху), пока не происходит взрыв сверхновой (снизу).




Рис. 7.5. Спиральная галактика M51 и сверхновая. Иллюстрация сделана по материалам статьи J. Richard Gott, Robert J. Vanderbei, Sizing Up the Universe, National Geographic, 2011


Как будет рассказано в главе 12, мы живем в спиральной галактике, чем-то напоминающей М51. До взрыва (верхний снимок) видна и галактика, и, на переднем плане, некоторые звезды Млечного Пути, которые гораздо ближе к нам и (естественно) обладают гораздо меньшей светимостью, чем галактика. Когда происходит такой взрыв, мы видим в галактике новую звезду (нижний снимок). Раньше ее и видно не было, а теперь она – самая яркая точка в галактике. Это всего одна звезда. Будь вы планетой, вращающейся вокруг этой звезды, от вас осталась бы головешка. Без преувеличения, вот так просто. Такие звезды называются сверхновыми. В древности считалось, что при подобном взрыве в небе загорается новая звезда. Сегодня известно, что на самом деле это звездная агония. Не всем звездам такое суждено; лишь относительно массивные могут превратиться в сверхновые. После взрыва на месте сверхновой остается крошечная сверхплотная нейтронная звезда – это происходит, когда все внешние оболочки звезды разлетятся в стороны. Бывают и еще более массивные звезды. И они тоже взрываются. Но при коллапсе такой звезды пространство в ее центре искривляется под действием гравитации настолько сильно, что эта область отсекается от всей остальной Вселенной, и получается… вы угадали, черная дыра. Иногда черная дыра может формироваться в центре звезды уже на этапе отбрасывания газовых оболочек – в таких случаях также происходит взрыв сверхновой.

Стивен Хокинг занимается исследованием черных дыр; он совершил важнейшие открытия, связанные с их странными свойствами. Рич гораздо подробнее расскажет вам о черных дырах и об открытиях Хокинга в главе 20. В «Симпсонах» Хокинга назвали самым умным из живущих ныне людей. Большинство из нас с этим согласны.

Теперь позвольте рассказать о рождении звезд. Туманность Ориона – это «звездная колыбель» – область звездообразования. Это газовое облако, уже насыщенное тяжелыми элементами, выплавленными в ядрах более древних звезд, уже погибших.

В центре туманности – яркие новорожденные массивные звезды, относящиеся к классам O и B. Они ярко светят в ультрафиолетовом диапазоне спектра. Такое жаркое УФ-излучение состоит из фотонов, обладающих достаточной энергией, чтобы ионизировать водород в центре туманности (то есть отрывать электроны от ядер). Газ стремится сконцентрироваться в виде новых звезд, но этому мешает огромная светимость массивных звезд, расположенных в центре туманности. Тем временем этот газ, насыщенный тяжелыми элементами, уже может порождать и более интересные объекты, нежели просто туманные облачка. В нем также могут формироваться твердые шарообразные тела, содержащие кислород, кремний, железо, – такие тела напоминают землеподобные планеты. Возле некоторых новорожденных звезд планетарные системы также могут образовываться из окутывающего их газа. Это юные солнечные системы, возникающие на месте вращающихся газопылевых дисков (рис. 7.6). В туманности Ориона эти процессы продолжаются и прямо сейчас. В некоторых звездных колыбелях рождаются тысячи и тысячи солнечных систем. В нашей Галактике 300 миллионов звезд, многие из них имеют собственные планетные системы.

Какова наша роль в этой картине? Мы крошечные и несущественные в космических масштабах. Удручающее известие для тех, кому нравится чувствовать себя великим. У этой проблемы богатая история. Всякий раз, когда мы претендовали на космическую исключительность (мы в центре Вселенной и она вращается вокруг нас; либо мы состоим из особой материи, либо существуем с начала времен), оказывалось, что все в точности наоборот. На самом деле, мы живем в далеком захолустье ничем не примечательной галактики. Каждый астрофизик привык к такой реальности.


Рис. 7.6. Протопланетные диски вокруг новорожденных звезд в туманности Ориона. Фотография космического телескопа «Хаббл». Снимки предоставлены: M.J. McCaughrean (Институт астрономии общества Макса Планка), C.R. O’Dell (Университет Райса), NASA


Рис. 7.7. Глубокое поле телескопа «Хаббл». На этой фотографии с длительной экспозицией, сделанной с космического телескопа «Хаббл», показано около 10 000 галактик. Но Область глубокого обзора занимает лишь 1/13 миллионных всего неба. Следовательно, в области обзора телескопа «Хаббл» на всем небе находится примерно 130 миллиардов галактик. Снимки предоставлены: NASA, Европейское космическое агентство, С. Беквит (Научный институт космического телескопа) и группа изучения Области глубокого обзора. Цветные снимки подготовлены Nick Wherry, Michael Blanton, David W. Hogg (университет Нью-Йорка), Robert Lupton (Принстонский университет)


Позвольте мне еще более уничижительное сравнение. На рис. 7.7 показан один из снимков, сделанных космическим телескопом «Хаббл». Каждое пятнышко на картинке – это целая галактика. Галактики настолько далекие, что каждая из них занимает лишь крошечную часть снимка. В каждом из этих пятнышек кроется более 100 миллиардов звезд. И это всего лишь небольшой закоулок Вселенной. Этот участок, именуемый Глубоким полем «Хаббла», – снимок наиболее далекого предела Вселенной, который нам известен. В этой области около 10 тысяч галактик. Вся эта область занимает примерно 1/65 от площади полной Луны или 1/13 миллионной всего неба. Поскольку этот участок неба ничем не примечателен, потенциально количество галактик может оказаться в 13 миллионов раз больше, чем на этом снимке. То есть в пределах досягаемости обзора космического телескопа «Хаббл» находится 130 миллиардов галактик.

Карл Саган в своей книге «Голубая точка» писал, что все, кого мы знали, все, о ком когда-либо читали в исторических книгах, жили на Земле – этой крошечной пылинке во Вселенной. Я часто об этом задумываюсь. Ведь разум подсказывает: «я так мал», сердце говорит «я так мало», но теперь вы сильны и, читая эту книгу, будете все увереннее мыслить масштабно, а не мелко. Почему? Потому что теперь вы в курсе законов физики, знаете о механизмах устройства Вселенной. Фактически знания астрофизики вдохновляют, позволяют вам взглянуть в небо и сказать: «Нет, я чувствую себя не малым, а великим, поскольку человеческий мозг – какой-то килограмм серого вещества – смог все это осознать. А какие тайны меня еще только ожидают!»

Глава 8

Жизнь и смерть звезд (II)

Автор: Майкл Стросс


В этой главе мы немного подробнее обсудим, как устроены звезды, и поможет в этом информация, которую вы получили из предыдущей главы. В каком случае объект можно считать звездой? Астрономы определяют звезду как самогравитирующий объект, в центре которого протекают термоядерные реакции. «Самогравитирующий» – означает «такой, целостность которого поддерживается благодаря гравитации». Земля также остается целостной благодаря силе гравитации. На самом деле, у объекта, сравнимого по массе с Землей, сила гравитации гораздо больше внутренней прочности горных пород. Посудите сами: ведь Земля шарообразная, как и звезды. Гравитация действует одинаково во всех направлениях, и если целостность объекта обусловлена гравитацией, то этот объект напоминает по форме шар. Более мелкие объекты, например астероиды, сохраняют целостность именно благодаря прочности горных пород либо вообще представляют собой бесформенные кучи щебня – зачастую довольно глыбистые и продолговатые (рис. 8.1).

Но у больших массивных объектов, например Солнца, гравитация настолько превосходит остальные силы, что вся масса спрессовывается в виде сферы – это наиболее компактная конфигурация. Если большой самогравитирующий объект быстро вращается, то он будет не совсем круглым. Из-за вращения сфера уплощается. Сам Исаак Ньютон это понимал. Юпитер довольно быстро вращается, поэтому напоминает по форме эллипс; его экваториальный радиус примерно на 7 % больше полярного. Наиболее грандиозные примеры такого сплющивания при вращении – это спиральные галактики, которые мы обсудим в главе 13.

Если газ, из которого состоит звезда, удерживается в виде единого целого под действием гравитации, то почему весь этот газ не сжимается в одну точку? Все дело во внутреннем давлении газа. Гравитация тянет вглубь каждую частицу газа, а давление выталкивает эту частицу наружу, и две силы уравновешивают друг друга.


Рис. 8.1. Солнце (слева) и астероид 25143 Итокава (справа), масштаб не соблюден. Форма двух тел очень разная. Солнце диаметром 1,4 млн километров под действием собственной гравитации приняло форму шара. Обратите внимание на хорошо заметные солнечные пятна. Диаметр астероида – всего полкилометра; его самогравитация слишком мала, чтобы это тело приняло сферическую форму.

Считается, что этот астероид – непрочная каменистая структура, и вещество, из которого он состоит, постепенно собралось в процессе аккреции. Снимок Солнца сделан космическим аппаратом SOHO (Солнечная и гелиосферная обсерватория), специально предназначенным для наблюдения Солнца. Снимок астероида сделан с аппарата «Хаябуса», запущенного Японским аэрокосмическим агентством (JAXA). Снимки предоставлены: Солнце: NASA, см. https://sohowww.nascom.nasa.gov/gallery/images/large/mdi20031028_prev.jpg; астероид Итокава: JAXA, см. https://apod.nasa.gov/apod/ap051228.html


Аналогичный пример – воздушный шарик. Он имеет шарообразную форму, но причина не в гравитации, а в натяжении резины. Шарик стремится скукожиться, как резиновая полоска, но (как и в звезде) внутреннее давление газа этому препятствует. Давление воздуха и натяжение резины уравновешивают друг друга, и шарик остается шарообразным.

Давление внутри звезды возрастает к центру и ослабевает с увеличением расстояния от центра. Падение давления газа с увеличением высоты известно и на Земле. Атмосферное давление на уровне моря составляет примерно 760 мм рт. ст. – на столько поднимается столбик ртути под весом столба воздуха, простирающегося до верхней границы атмосферы. Когда вы поднимаетесь вверх и все большая часть земной атмосферы оказывается под вами, столб воздуха над вами укорачивается и, соответственно, давит все слабее. То есть атмосферное давление уменьшается с высотой.

Давление звездного газа зависит от температуры и плотности звезды; и плотность, и температура стремительно возрастают по направлению к центру звезды.

Теперь поговорим о ядре. Ядро невозможно наблюдать напрямую, но о его свойствах можно косвенно судить по уравнениям, описывающим звездную структуру. Эти уравнения учитывают эффект давления и гравитации. Они выводятся с учетом того, что Солнце стабильно, давление и гравитация взаимно уравновешиваются в каждой точке звезды. Согласно таким расчетам, температура в самом центре Солнца должна составлять 15 миллионов кельвинов, как мы уже говорили. Эти расчеты также показывают, что плотность солнечного вещества в центре нашей звезды составляет примерно 160 г/см3, то есть Солнце в 160 раз плотнее воды. Для сравнения: из всех элементов, встречающихся на Земле, наибольшей плотностью (22,6 г/см3) обладает осмий, он примерно вдвое плотнее свинца. При столь колоссальной температуре газ в недрах Солнца ионизирован, то есть электроны оторваны от атомов, ядра и электроны в такой среде носятся с огромной скоростью. Такое состояние вещества называется «плазма». Именно давление этих стремительно движущихся частиц противодействует гравитации, не дает Солнцу схлопнуться и поддерживает его в стабильном состоянии.

Мы уже знаем об одном базовом свойстве вещества при заданной температуре: вещество излучает фотоны. Это справедливо и для недр Солнца, разогретых до 15 миллионов кельвинов. Пик спектра абсолютно черного тела при такой температуре находится в рентгеновском диапазоне. Означает ли это, что Солнце ярко светит в рентгеновском спектре? Нет. Допустим, рентгеновский фотон был излучен в недрах Солнца. Может ли он беспрепятственно вырваться из центра? Вспомните, как ходили к врачу на рентген: те части тела, которые не требуется облучать, вам накрывали тяжелым свинцовым фартуком. Следовательно, тонкий слой свинца, плотность которого равна жалким 11,34 г/см3, поглощает практически все попадающие на него рентгеновские лучи. Если этого достаточно для нейтрализации рентгеновских лучей, то логично сделать вывод, что из центра Солнца рентгеновским лучам далеко не уйти. На самом деле они успевают пролететь всего около сантиметра – и полностью поглощаются.

Но энергия поглощенного фотона должна куда-то потратиться. Она нагревает материю, впитавшую фотон, а эта материя потом излучает в спектре абсолютно черного тела – новые рентгеновские лучи испускаются повторно. Можно себе представить, как фотончик поглощается материей, после чего переизлучается снова и снова. Если учесть все цифры, то получится, что энергия, выделившаяся в ядре Солнца, достигает солнечной поверхности примерно через 170 тысяч лет. Расстояние от центра Солнца до его поверхности составляет всего 2,3 световой секунды – то есть фотон пролетал бы его за 2,3 секунды, если бы ему ничто не мешало. Но поскольку фотон насилу пропихивается наружу, траектория у него кривая, как у пьяницы. Солнце его поглощает, снова излучает, и так он постепенно добирается от ядра к поверхности.

Исходный фотон, излученный в центре звезды при 15 миллионах кельвинов, относился бы к рентгеновскому спектру. Будет ли он рентгеновским, когда достигнет поверхности? Нет. Всякий раз при переизлучении энергии ее спектр соответствует температуре той точки в звезде, где она была переизлучена. Пока энергия пробивается от центра к поверхности, температура снижается и отдельные фотоны теряют первоначальный облик. Энергия распределяется между более низкоэнергетическими фотонами, что соответствует более низкой температуре. Итак, пусть недра Солнца и излучают рентгеновские лучи, на поверхности мы рентгеновских лучей не находим. Они медленно превращаются в фотоны видимого света, который и льется на нас от Солнца.

Если бы в центре Солнца не было ядерной печи, поддерживающей в недрах высокую температуру и давление, то Солнце стало бы медленно сжиматься под действием гравитации, постепенно теряя энергию, излучаемую с поверхности. Такое гравитационное сжатие с постепенным проседанием газовой оболочки звезды к центру происходит с выделением энергии. То же самое происходит с куском мела, падающим на пол, – при падении он набирает скорость. Гравитационной энергии сжатия как таковой хватило бы, чтобы поддерживать нынешнюю светимость Солнца на протяжении примерно 20 миллионов лет. Еще до Эйнштейна Герман фон Гельмгольц в 1856 году предположил, что именно такое медленное гравитационное сжатие и служит источником энергии, подпитывающей Солнце. На тот момент эта гипотеза казалась правдоподобной, поскольку явление термоядерного синтеза было неизвестно – его предстояло открыть лишь через 82 года. Но теперь, на основе датировки по радиоактивным изотопам (при этом мы отмечаем, сколько урана в конкретной породе успело превратиться в свинец), уже известно, что возраст Земли – несколько миллиардов лет. Более того, окаменелости демонстрируют, что температура земной поверхности практически не менялась на протяжении значительной части всего этого периода. Следовательно, Солнце светит примерно с той интенсивностью, что и сегодня, уже гораздо дольше 20 миллионов лет, поэтому гипотеза о гравитационном сжатии как об источнике солнечной энергии не подтверждается.

Когда стала понятна важность формулы E = mc2, вопросов не осталось. Солнце сжигает в своих недрах ядерное топливо, и от этого выделяется энергия. Такой приток ядерной энергии выравнивает светимость Солнца и поддерживает давление внутри звезды. Солнце стабильно и не сжимается. Термоядерный синтез – столь эффективный источник энергии, что Солнце ровно светит на протяжении последних 4,6 миллиарда лет, в течение длительного времени обеспечивая Земле стабильные условия развития. Солнце провело уже примерно половину своего жизненного цикла в главной последовательности.

Кстати, а как определить основные параметры Солнца: радиус, массу и светимость? Солнечный радиус измеряется в несколько этапов. Радиус Земли известен со времен древнегреческого математика и географа Эратосфена, вычислившего его около 240 года до н. э. Каждый год, ровно в полдень 21 июня Солнце проходит прямо над египетским городом Сиеной. Эратосфену это было известно. В то же время он измерил, что Солнце на 7,2° отклоняется от вертикали в городе Александрия, что лежит прямо на север от Сиены. Аристотель утверждал, что Земля, независимо от ориентации, во время лунного затмения всегда отбрасывает на Луну круглую тень. Единственное тело, которое всегда отбрасывает круглую тень, – это сфера; следовательно, Эратосфен знал, что Земля должна иметь форму шара. Он также понимал, что смещение высоты Солнца на 7,2° при одновременном измерении высоты в двух разных городах обусловлено тем, что между этими городами – примерно 7,2° широты, либо 1/50 всей окружности Земли (360°). Нанимаем землемера – посчитать расстояние от Александрии до Сиены, умножаем это расстояние на 50 и узнаем длину земной окружности – около 40 тысяч километров. Делим на 2π и получаем радиус. Все было просто, достаточно было догадаться, как это сделать!

Из разных обсерваторий, находящихся в различных точках Земли, мы получаем немного разное положение Марса на фоне далеких звезд. Зная радиус Земли и измеряя такие смещения вызванные параллаксом, можно измерить расстояние до Марса. Впервые это сделал Джованни Кассини. Работа Кеплера позволила определить размеры планетных орбит – и построить масштабную модель Солнечной системы. Зная расстояние между Землей и Марсом, можно вывести размеры всех орбит, в том числе радиус земной орбиты – одну астрономическую единицу. Следовательно, в 1672 году Кассини определил, что расстояние от Земли до Солнца составляет примерно 140 миллионов километров – что не слишком отличается от истинного значения 150 миллионов километров.

Конец ознакомительного фрагмента.