Вы здесь

Биохимия метаболизма. Учебное пособие. Пируватдегидрогеназная реакция (Е. А. Бессолицына)

Пируватдегидрогеназная реакция

В аэробных условиях конечный продукт гликолиза пируват подвергается сначала дегидрированию и декарбоксилированию с образованием ацетил-Со А и СО2. Катализирует этот процесс пируватдегидрогеназный комплекс, располагающийся во внутренней мембране митохондрии и состоящий из трех последовательно действующих ферментов, важным коферментом которого является тиамин пирофосфат (ТПФ), производное витамина В1. Недостаток витамина B1, или тиамина, обуславливает заболевание, известное под названием бери-бери.


Рисунок 7: схема реакций пируватдегидрогеназного комплекса. А – схема работы пируватдегидрогеназного комплекса; Б – структура тиаминпирофосфата; В – схема реакции с тиаминпирофосфатом


Теперь нам ясно, что в организме животных, лишенных тиамина, оказывается невозможным нормальное окисление пирувата. Особенно сильно влияет такое нарушение на мозг, который обычно получает всю необходимую энергию путем аэробного окисления глюкозы и для которого поэтому окисление пирувата жизненно необходимый процесс. Превращение пирувата в ацетил-СоА происходит в четыре стадии (схема реакций с участием пируватдегидрогеназного комплекса представлен на рисунке 7).

На первой стадии пируват соединяется с ТПФ и затем подвергается декарбоксилированию. Реакция катализируется пируват-дегидрогеназным компонентом мультиферментного комплекса. Решающее значение для данного процесса имеет следующая особенность ТПФ, у простетической группы пируватдегидрогеназного компонента: очень кислый характер атома углерода, находящегося между атомами азота и серы тиазолового кольца (смотри рис. 7, Б). Этот атом углерода ионизируется, образуя карбанион, который легко присоединяется к карбонильной группе пирувата. Положительно заряженный азот в кольце ТПФ принимает на себя электроны, стабилизируя формирование отрицательного заряда, необходимого для декарбоксилирования.

Затем протонирование приводит к образованию гидроксиэтиламинпирофосфата. На второй стадии гидроксиэтильная группа, связанная с ТПФ, окисляется с образованием ацетильной группы и одновременно переносится на липоамид. Окислителем в этой реакции служит дисульфидная группа липоамида, которая превращается в сульфгидрильную группу. Реакция катализируется дигидролипоил трансацетилазным компонентом комплекса и приводит к образованию ацетиллипоамида. На третьей стадии ацетильная группа переносится с ацетиллипоамида на СоА, образуя ацетил-СоА, Процесс также катализируется дигилролипоилтрансацетилазой.

При переходе ацетильной группы на СоА сохраняется богатая энергией тиоэфирная связь. На четвертой, завершающей стадии происходит регенерирование окисленной формы липоамида. Реакция катализируется дигидролипоил-дегидрогеназным компонентам комплекса, Окислителем в ней служит NAD+, а роль простетической группы фермента выполняет FAD+.

Пируватдегидрогеназный комплекс настолько крупный, что по размеру может быть сравнен с рибосомой или другой млекулярной «машиной». Молекулярная масса данного комплекса составляет 4600 кDa и размер 300 А. В состав комплекса входит 48 полипептидных цепей, ядро комплекса образуют трансацетилазные цепи, пируват и липоил дегидрогеназные комплексы присоединяются к ядру с внешней стороны. Структурное объединение трех видов ферментов делает возможным координированный катализ при осуществлении сложной реакции. Все промежуточные продукты реакции окислительного декарбоксилирования пирувата прочно связываются с комплексом. Тесная близость между ферментами увеличивает суммарную скорость процесса и сводит к минимуму побочные реакции. Активированные промежуточные продукты переносятся от одного активного центра к другому липоамидной простетической группой трансацетилазы. Присоединение липоильной группы к ε-аминогруппе лизинового остатка трансацетилазы создает гибкий рычаг для реакционноспособного кольца. Этот молекулярный рычаг в 14Å способствует взаимодействию липоильной части трансацетилазной субъединицы с тиаминпирофосфатным компонентом соседней пируват-дегидрогеназной субъединицы и с флавиновым компонентом соседней липоилдегидрогеназы. Кроме того, липоильные компоненты мультиферментного комплекса могут реагировать друг с другом, образуя сеть взаимодействующих реакционноспособных групп.

Таким образом, суммарная реакция пируватдегидрогеназного комплекса может быть сформулирована следующим образом:

Пируват + NAD+ →AC-coA + CO2+NADH

Скорость реакции пируватдегидрогеназной реакции регулируется.

Регуляция пируватдегидрогеназного комплекса

Реакция образования ацетил-СоА, катализируемая пируватдегидрогеназным комплексом, регулируется в животных тканях при помощи ковалентной модификации этого комплекса. Когда концентрация АТФ в митохондриях относительно велика и когда ацетил-СоА, а также промежуточные продукты цикла Кребса имеются в достаточном количестве, обеспечивающем удовлетворение энергетических нужд клетки, дальнейшее образование ацетил-СоА приостанавливается. В этих условиях, которые служат сигналом для такой приостановки, АТФ является положительным модулятором, активирующим вспомогательный фермент – киназу пируватдегидрогеназы. Этот фермент использует АТФ для фосфорилирования остатка серина в активном центре молекулы пируватдегидрогеназы, в результате чего образуется неактивная форма фермента – фосфопируватдегидрогеназа.

Если, однако, потребность в АТФ возрастает и уровень АТФ соответственно снижается, то неактивная, фосфорилированная, форма пируватдегидрогеназы может быть вновь активирована. Это происходит в результате гидролитического отщепления от молекулы пируватдегидрогеназы ингибирующей фосфатной группы. Катализирует эту реакцию другой фермент – фосфатаза фосфопируватдегидрогеназы. Стимулирующее действие на этот фермент оказывает повышение концентрации ионов Са2+, играющих роль важного метаболического посредника; концентрация ионов Са2+ увеличивается всякий раз, когда возникает потребность в АТФ.

Киназа пируватдегидрогеназы и фосфатаза фосфопируватдегидрогеназы присутствуют в пируватдегидрогеназном комплексе. Этот комплекс, следовательно, представляет собой очень сложную, независимую и саморегулирующуюся систему. Пируватдегидрогеназный комплекс регулируется также путем аллостерической модуляции. Сильное ингибирующее действие оказывают на него (помимо АТФ) ацетил-СоА и NADH, которые являются продуктами пируватдегидрогеназной реакции и в то же время играют роль аллостерических ингибиторов этой системы. Аллостерическое ингибирование окисления пирувата резко усиливается в присутствии высокомолекулярных жирных кислот; ниже будет показано, что жирные кислоты тоже служат источником ацетил-СоА. Таким образом, каталитическая активность пируватдегидрогеназного комплекса выключается в тех случаях, когда в клетках имеется достаточно топлива в виде жирных кислот и ацетил-СоА или когда в них повышаются концентрация АТФ и отношение NADH/NAD+.