Вы здесь

Биология с основами экологии. 2 Химический состав клетки (Ю. П. Верхошенцева, 2013)

2 Химический состав клетки

Организмы животных и растений получают все необходимые элементы из окружающей природы. В клетках содержится около 90 химических элементов, 24 из них имеют известное ученым предназначение. В зависимости от содержания в организмах элементы делят на три группы.

В первую группу входят О (от 65 % до 70 %), C (от 15 % до 18 %),Н (от 8 % до 10 %) и N (от 1,5 % до 3 %). Эти элементы составляют около 97 % массы клетки, поэтому их называют макроэлементами.

Вторую группу составляют Р, S, Cl и металлы: К, Са, Mg, Na и Fe. На их долю приходится около 3 % вещества клетки: Mg входит в состав хлорофилла, от содержания Ca зависит свертываемость крови, Ca и P участвуют в формировании костной ткани, Fe является необходимой составляющей гемоглобина – белка, участвующего в переносе кислорода к тканям, Na, K, Cl обеспечивают транспорт веществ через клеточную мембрану.

Основной вклад в построение молекул жизненно важных соединений вносят макроэлементы вместе с S и P, поэтому их называют биогенными, или биоэлементами. Макроэлементы вместе с S входят в состав белков, а вместе с P – в состав нуклеиновых кислот; О, Н, С образуют липиды (с S и P) и углеводы.

Третья группа объединяет остальные элементы. Их не более 0,01 % вещества клетки, однако, это не значит, что без них организм может легко обойтись. Элементы третьей группы подразделяют на микро (от 10-12 % до 10-3 %) и ультрамикроэлементы (не более 10-12 %). К последним относят Ag, Au, Hg, Be, U, As и др. Биологическая роль многих из них не выявлена.

Все химические соединения образуют два больших класса: неорганические и органические. Органические соединения содержат углерод, его наличие является их отличительным признаком. Из всего многообразия органических соединений особое биологическое значение имеют нуклеиновые кислоты, белки, углеводы и липиды (жиры).

Неорганические вещества. Вода – самое распространенное вещество в живых существах. В многоклеточных организмах вода составляет до 80 % массы. У человека содержание воды в различных органах колеблется от 10 % (в клетках эмали зубов) до 85 % (в клетках головного мозга). Вода в клетках присутствует в двух формах: свободной (95 % всей воды в клетках) и связанной (от 4 % до 5 % связана с белками).

Молекула воды полярна (диполь). Центры ее положительного (у атомов водорода) и отрицательного (у кислорода) зарядов разнесены. Атом кислорода молекулы воды притягивается к атому водорода другой молекулы с образованием так называемой водородной связи (рисунок 1).


Рисунок 1 – Образование водородной связи между молекулами воды


Значительное сцепление молекул воды между собой и с молекулами других веществ позволяет воде легко перемещаться вверх по сосудам растений и переносить питательные вещества.

Соли. Большая часть неорганических веществ находится в клетке в виде солей. Они образованы катионами К+, Na+, Mg2+, Са2+ и анионами соляной, серной, фосфорной и угольной кислот. Катионы К+, Na+, Са2+ обеспечивают раздражимость клетки. Различное их количество на внешней и внутренней стороне мембраны создает разность потенциалов, позволяющую передавать возбуждение по нерву и мышце. Содержание К+ в мышечных клетках в 30 раз выше, чем в крови; Na+ участвует в транспорте глюкозы, других сахаров, аминокислот; Ca2+ и Mg2+ активируют ряд ферментов. Анионы угольной и фосфорной кислот обусловливают буферность клетки – свойство поддерживать необходимую для нормальной жизнедеятельности слабощелочную среду. Некоторые нерастворимые в воде соли входят в состав организмов в твердом виде. Прочность костной ткани придает содержащийся в ее межклеточном веществе фосфат кальция, а крепкие раковины моллюсков состоят из карбоната кальция.

Органические вещества. Углеводы – органические соединения с общей химической формулой Сn(H2О)m. Содержание углеводов в животных клетках составляет от 1 % до 5 %, а в клетках растений достигает 70 %.

Углеводы подразделяют на моносахариды (простые сахара), дисахариды или олигосахариды (состоят из 2-10 молекул простых сахаров) и полисахариды (сложные сахара).

Липиды – разнообразные по строению жироподобные вещества, почти нерастворимые в воде (гидрофобные), но хорошо растворимые в неполярных растворителях (хлороформе, метаноле). Наиболее распространенные липиды: воски, нейтральные жиры, фосфолипиды и стероиды.

Белки – высокомолекулярные полимерные органические вещества, определяющие структуру и жизнедеятельность клетки и организма в целом. Структурной единицей, мономером их биополимерной молекулы является аминокислота. Все организмы для синтеза белков используют 20 одних и тех же аминокислот, 8 из них не могут синтезироваться организмом человека и должны поступать с пищей – их называют незаменимыми.

Выделяют четыре уровня организации белковых молекул: первичный, вторичный, третичный и четвертичный (рисунок 2).

Ферменты – органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям.

Все ферменты помимо белка содержат небелковые компоненты. Белковая часть называется апоферментом, а небелковая – кофактор (если это простое неорганическое вещество, например Zn2+) или кофермент (коэнзим) (если это органическое соединение).

Нуклеиновые кислоты. Мононуклеотиды. Мононуклеотид состоит из одного пуринового (аденин – А, гуанин – Г) или пиримидинового (цитозин – Ц, тимин – Т, урацил – У) азотистого основания, сахара – пентозы и 1-3 остатков фосфорной кислоты.

Полинуклеотиды. Существует два типа нуклеиновых кислот: ДНК и РНК. Нуклеиновые кислоты – полимеры, мономерами которых служат нуклеотиды.

Нуклеотиды ДНК и РНК состоят из следующих компонентов:

1. Азотистое основание (в ДНК: аденин, гуанин, цитозин и тимин; в РНК: аденин, гуанин, цитозин и урацил).

2. Сахар – пентоза (в ДНК – дезоксирибоза, в РНК – рибоза).

3. Остаток фосфорной кислоты.

ДНК дезоксирибонуклеиновая кислота длинноцепочечный неразветвленный полимер, состоящий из четырех типов мономеров – нуклеотидов А, Т, Г, Ц – связанных друг с другом ковалентной связью через остатки фосфорной кислоты (рисунок 3).

РНК рибонуклеиновая кислота вместо дезоксирибозы содержит рибозу, а вместо тимина – урацил. РНК, как правило, имеют лишь одну цепь, более короткую, чем цепи ДНК. Двуцепочечные РНК встречаются у некоторых вирусов.

Виды РНК: информационная (матричная) – и – РНК, транспортная – тРНК, рибосомная – р – РНК.

Аденозинтрифосфорная кислота АТФ. Энергия, поступающая с пищей, запасается клеткой в виде химических связей органических молекул, которые клетка синтезирует. Универсальным источником энергии в клетке являются молекулы глюкозы. Энергия, выделяющаяся при расщеплении глюкозы, запасается в молекулах АТФ – универсальном аккумуляторе энергии. У растений АТФ образуются в хлоропластах в процессе фотосинтеза и в митохондриях. Использование АТФ позволяет организму легко и быстро высвобождать и запасать энергию. По строению АТФ сходна с адениловым нуклеотидом, входящим в состав РНК, только вместо одного остатка фосфорной кислоты (фосфата) в состав АТФ входят три остатка (рисунок 4).

Практическая часть

Самостоятельная работа

Задание 1

Зарисуйте рисунок 2 и сделайте обозначения.


Рисунок 2 – Структуры белка


Задание 2

Рассмотрите и зарисуйте рисунок 3, обозначив ширину спирали ДНК и расстояние между витками спирали [2, 3].


Рисунок 3 – Модель молекулы ДНК


Задание 3

Рассмотрите рисунок 4 и запишите реакцию превращения АТФ в АДФ (рисунок 4).


Рисунок 4 – Превращение АТФ в АДФ


Тесты для самоконтроля:

2.1 К макроэлементам относится:

а) золото;

б) марганец;

в) железо;

г) цинк.

2.2 К микроэлементам относится:

а) медь;

б) уран;

в) кальций;

г) азот.

2.3 К микроэлементам не относится:

а) цинк;

б) медь;

в) калий;

г) марганец.

2.4 К моносахаридам относится вещество:

а) крахмал;

б) гликоген;

в) глюкоза;

г) сахароза.

2.5 К моносахаридам относится вещество:

а) мальтоза;

б) дезоксирибоза;

в) целлюлоза;

г) крахмал.

2.6 К дисахаридам относится вещество:

а) крахмал;

б) гликоген;

в) глюкоза;

г) сахароза.

2.7 К дисахаридам относится вещество:

а) мальтоза;

б) дезоксирибоза;

в) целлюлоза;

г) крахмал.

2.8 В состав молекулы ДНК входят остатки моносахарида:

а) рибозы;

б) дезоксирибозы;

в) глюкозы;

г) фруктозы.

2.9 В состав молекулы РНК входят остатки моносахарида:

а) рибозы;

б) дезоксирибозы;

в) галактозы;

г) глюкозы.

2.10 При полном сгорании 1 г вещества выделилось 38,9 кДж энергии. Это сгорели:

а) углеводы;

б) жиры;

в) или углеводы или липиды, так как при их полном окислении выделяется 38,9 кДж энергии;

г) не углеводы и не липиды, так как при их полном окислении выделяется 17,6 кДж энергии.

2.11 Основу клеточных мембран образуют:

а) жиры;

б) фосфолипиды;

в) воски;

г) белки.

2.12 Вторичную структуру белков стабилизируют связи:

а) ковалентные;

б) водородные;

в) ионные;

г) такие связи отсутствуют.

2.13 Придают аминокислоте кислые и щелочные свойства следующие функциональные группировки:

а) кислые – радикал, щелочные – аминогруппа;

б) кислые – аминогруппа, щелочные – радикал;

в) кислые – карбоксильная группа, щелочные – радикал;

г) кислые – карбоксильная группа, щелочные – аминогруппа.

2.14 Первичную структуру белков стабилизируют связи:

а) ковалентные;

б) водородные;

в) ионные;

г) такие связи отсутствуют.