Вы здесь

Атлетичный мозг. Как нейробиология совершает революцию в спорте и помогает вам добиться высоких результатов. Часть I. Спортсмен и его мозг (Амит Кетвала, 2016)

Часть I

Спортсмен и его мозг

Глава 1

Искусство прогноза. Криштиану Роналду

Северо-восточное побережье Бразилии, лето 2014 г. Над спортивной ареной стоит удушающий зной. Сегодня здесь разворачивается жаркая баталия. Нападающий сборной Англии, звезда футбола, бежит по левому флангу, делает поворот, открываясь для удара… но лишь бездарно проезжает по мячу подошвой.[5] Хуже того, закрученный мяч под крики раздосадованных болельщиков катится назад по неровному газону, удаляясь от ворот. Не поддавшись разочарованию, неутомимый форвард разворачивается, в его программе уже построен новый маршрут преследования мяча. Он вновь начинает разбег, жужжа электроприводами, но времени больше нет. Звучит финальный свисток, означающий, что надеждам Англии сегодня не суждено оправдаться.

Так проходил чемпионат мира по футболу, но это был необычный чемпионат.

Этот английский нападающий мало чем похож на привычного нам футболиста международного уровня, притом что он налетал по всему миру не меньше, принимая участие в соревнованиях. Его зовут Мусташио. Он не слишком силен в игре на втором этаже, не идеален в обработке мяча, а по полю он бегает в маленькой шляпе-цилиндре и с моноклем. Его рост 40 сантиметров, а сам он робот-андроид, игрок команды Плимутского университета на чемпионате мира по футболу среди роботов.

Тем не менее у Мусташио все же есть некоторые черты сходства с такими футболистами, как Уэйн Руни, и их больше, чем кажется на первый взгляд. Компьютерный мозг робота решает те же задачи, что и мозг Руни во время матча. В его программе заложены аналогичные стратегии, начиная с определения текущего положения мяча и прогноза о том, где он будет находиться в следующий момент.

Мусташио и его напарники Пиксель, Гиэрс, Эмпс и Флакс экипированы одинаковыми веб-камерами, с их помощью роботы получают необходимую им визуальную информацию. Затем они могут, подобно людям, использовать эту информацию для расчета траектории и направления движения мяча, а также для принятия решений в зависимости от характера его движения. При всем обилии высоких технологий игра идет мучительно медленно. Главная причина низкого темпа – в неуклюжести игроков; это, по словам одного из создателей Мусташио Фила Калверхауса, основной камень преткновения. Он с неподдельной радостью сообщает о том, что ни один из плимутских футболистов не упал за время чемпионата.

В спорте мозг решает куда более сложные задачи, чем это обычно представляется. Даже самое элементарное движение требует точного расчета скорости и траектории перемещения различных объектов, в том числе и положения в пространстве самого спортсмена. «Чтобы взять шахматную фигуру и переместить ее на другое поле, требуется больше вычислительной мощности, чем чтобы решить, какой сделать ход, – утверждает профессор Лондонского университета Винсент Уолш, один из крупнейших мировых специалистов в области когнитивной нейробиологии. – Мне кажется, что в плане использования мозговых ресурсов, связанных с обработкой информации, спорт сильно недооценен. А ведь это фактически особая форма мышления».

Именно поэтому роботы пока так далеко позади нас. Наш мозг гораздо сложнее и функционирует гораздо быстрее. «Человек как система невероятно сложно устроен, – рассуждает доктор Калверхаус из Плимутского центра робототехники и нейробиологии. – Преимущество человека в том, что в его мозгу одновременно обрабатывается просто невероятное количество информации. Поэтому нам доступны куда более сложные вещи, чем все то, на что способны роботы».

Человеческий мозг действительно уникален. В пропорции к размерам всего тела он примерно в два раза крупнее по сравнению с мозгом любого другого существа на Земле и к тому же имеет громадные возможности. По данным одного исследования, чтобы проделать такой же объем операций в секунду, который выполняет всего один человеческий мозг, потребуется задействовать мощность всех имеющихся компьютеров.[6]




Одна из причин уникальности нашего мозга состоит в размере его коры – нервной ткани, покрывающей полушария головного мозга, с большим количеством борозд и извилин. Именно кора отвечает за то, чем мы отличаемся от большинства других животных: способность к рассуждению, планированию и общению. В коре каждого из полушарий выделяют четыре доли: лобную, теменную, височную и затылочную.

Нервная ткань состоит из клеток – нейронов. В человеческом мозге насчитывается порядка 100 миллиардов нейронов. Каждый представляет собой тонкую вытянутую структуру с большим количеством отростков. Эти клетки проводят электрические и химические сигналы, которые в конечном счете определяют индивидуальные черты нашего сознания. Нейронная сеть – это своего рода жесткий диск плюс интернет-соединение: внутри нее хранится и передается информация и различные команды.

Единственная функция нейрона как отдельной клетки заключается в передаче электрического импульса, короткого сигнала, похожего на вспышку света. Однако главное здесь – в количестве связей с другими нейронами, которые возбуждаются от этого импульса. От того, как именно будут задействованы миллиарды таких связей, зависит характер мысли или действия в ответ на раздражения, поступающие из других частей тела.

Работу нейронов можно сравнить с игрой оркестра: мелодию всего произведения можно услышать, только когда музыканты играют вместе. Если использовать спортивную аналогию, представим себе болельщиков на стадионе, у каждого из которых в руках небольшой фрагмент картинки. Отдельно взятый болельщик может либо поднять свой фрагмент в определенное время, либо нет. Однако когда несколько тысяч болельщиков разом поднимают свои кусочки изображения, в их секторе появляется целая картина или слоган.

Нечто подобное происходит и в мозге человека. Когда мы думаем о каком-либо предмете, испытываем какую-либо эмоцию или выполняем какое-либо действие, сигналы идут по определенному участку сети нейронов. Уже проводятся первые эксперименты по считыванию сигналов непосредственно из мозга. Ученым удалось получить изображение лиц людей, о которых в данный момент думали испытуемые, исключительно на основе анализа их мозговой активности.

Итак, наши мысли, чувства и действия, а также процессы обработки информации, которые Фил Калверхаус стремится воспроизвести в своих роботах, возникают благодаря определенным комбинациям нервных импульсов, в проведении которых могут быть задействованы миллионы нейронов. Глава 1 нашей книги посвящена тому, как мозг спортсмена мирового уровня научился использовать эти процессы и как благодаря этому ему удается делать то, что на первый взгляд кажется невозможным.

Удар – и мимо

При выполнении подачи в крикете игрок, подающий мяч (боулер), может метнуть его со скоростью около 160 км/ч. В этом случае мяч долетает до игрока, отражающего его битой (бэтсмена), менее чем за полсекунды. Учитывая, что регистрация полета мяча занимает в мозгу бэтсмена около 200 миллисекунд, а на отражающее движение битой он затрачивает примерно 700 миллисекунд, непонятно, как ему в принципе удается попасть по мячу. Профессиональные бейсболисты и крикетисты регулярно справляются с такими подачами, при которых новичок либо будет вхолостую махать битой, либо получит синяки.

Ключом к этой загадке является механизм прогнозирования. Если робот может вычислить текущее положение мяча и рассчитать его предшествующее положение, то профессиональный спортсмен способен по ряду косвенных признаков определить вероятную траекторию дальнейшего движения мяча. Секрет мгновенной реакции кроется в умении считывать такую информацию, которую другие просто не замечают. Для научного обоснования этой гипотезы профессор Квинслендского университета (Австралия) Брюс Абернети с коллегами провел серию экспериментов с частичным перекрытием обзора, во время которых бэтсмену, готовящемуся отразить подачу, всячески ограничивали возможность видеть мяч.[7]

На самом деле все было вполне безопасно.

Бэтсмен был в специальных очках, затемняющихся по команде компьютера экспериментатора или от специальной педали во время подготовки боулера к броску. В одном из экспериментов участвовали по шесть профессиональных и начинающих бэтсменов, а также трое боулеров, выполнявших крученые подачи. Очки на бэтсменах затемнялись либо непосредственно перед тем, как боулер отправлял мяч в полет, либо перед отскоком от земли, либо оставлялись незатемненными. В итоге более опытные игроки гораздо лучше справились с отражением мяча, не имея возможности проследить весь его полет. Им помогла информация о положении тела боулера и движениях его руки. Другим экспериментом было доказано, что профессиональный игрок в крикет начинает менять положение ног вперед или назад еще до того, как мяч оказывается в воздухе, в то время как менее опытный крикетист будет ждать, пока траектория полета мяча не станет более очевидной. В более поздних экспериментах ученые еще радикальнее уменьшали количество визуальной информации, доступной бэтсмену. Выяснилось, что опытный игрок может точно спрогнозировать траекторию мяча по характеру движения суставов боулера при выполнении подачи и даже по движению одной лишь его руки.

Аналогичные результаты были получены и для других видов спорта. Так, Абернети показывал игрокам в сквош видеозапись действий соперника, затем прерывал ее за мгновение до того, как тот собирался нанести удар по мячу, и спрашивал, куда и с какой силой полетит мяч.[8] В результате было доказано, что опытный игрок может извлечь из картинки больше информации, чем новичок. Когда появились соответствующие технические возможности, похожие эксперименты были проведены с участием теннисистов и футболистов, и ученые вновь пришли к тем же выводам. «Теперь все гораздо проще», – говорит Абернети в беседе со мной по скайпу из Брисбена. В конце 1970-х, когда он ставил свои первые эксперименты подобного рода, в его распоряжении не было компьютерных программ редактирования изображений. «Чтобы получить нужные кадры, приходилось переводить кучу пленки, – продолжает он. – А как мы боялись, что мяч угодит в камеру, ведь она стоила огромных денег! Причем отснять материал было еще даже не полдела. Сначала приходилось ждать одну, а то и две недели, пока пленку проявят. Потом вручную обрабатывать отдельные кадры: копировать, склеивать. У меня часть жизни ушла на то, чтобы под микроскопом аккуратно закрывать разные участки кадра кусочками черной пластмассы». С тех пор технологии шагнули далеко вперед: от пленки к цифре, затем к виртуальному изображению мяча, летящего прямо на человека, и далее к кинематической модели, на которой видны только светящиеся точки, показывающие расположение суставов. При этом ученые раз за разом приходят к одному и тому же заключению: мозг профессионала способен вычленить из потока предварительной информации мельчайшие детали, которых ему будет достаточно для того, чтобы принять решение и осуществить нужное действие.

Береги лицо!

Глядя на рекордное количество голов, забитых Криштиану Роналду за мадридский Real, можно прийти к бесспорному заключению: этот человек способен забивать с закрытыми глазами.[9] Мы находимся в Мадриде. Вот помещение, специально оборудованное для проведения одного любопытного опыта. Сейчас трехкратный обладатель «Золотого мяча» продемонстрирует на камеру свое искусство прогноза. Но первым на «поле» выходит Рональд, футболист-любитель и ровесник Роналду, не имеющий, однако, такого же развитого навыка вероятностного прогнозирования, равно как и обыкновения столь же строго следить за своим внешним видом.

Рональд стоит прямо напротив настоящих футбольных ворот, ожидая подачи навеса от бывшего игрока Southend United, ныне ведущего популярной в Британии утренней передачи о футболе Энди Ансы. В тот момент, когда мяч уже на подлете, все источники света в студии внезапно выключаются. Камера, способная снимать в темноте, фиксирует растерянность Рональда в его неудачной попытке попасть по мячу.

У Роналду получается лучше. В полной темноте он сначала посылает в сетку один мяч точным ударом головой в падении, а затем второй – красивым ударом с полулета. «Это непросто, – признается футболист. – Нужно постараться запомнить полет мяча». Его мозг справляется с этой задачей невероятно быстро: 200 миллисекунд на то, чтобы глаза восприняли необходимую ему информацию, плюс каких-то 500 миллисекунд на то, чтобы мозг рассчитал скорость и траекторию подачи и отдал команду телу выполнить соответствующие действия.

Под занавес ученые придумали для прогностических способностей Роналду по-настоящему суровое испытание. Теперь свет гаснет еще раньше – в момент подачи мяча. Все, на что футболист может опереться, – это лишь положение тела Ансы во время выполнения удара. Невероятно, но удар в исполнении Криштиану оказывается еще зрелищнее, чем предыдущие. Навес летит на уровне головы, однако Роналду решает принять его на грудь и резким движением плечевого пояса переправляет мяч в нижний угол ворот. «Отличный гол! – констатирует он, не скрывая радости, в интервью по окончании эксперимента. – Я представил себе мяч в полете и боялся, что мне придется бить по нему лицом, поэтому решил действовать грудью и отчасти плечом и в результате забил».

Спортсмены высокого класса точно знают, куда именно нужно смотреть, чтобы получить необходимую им информацию. Возьмем пример бывшего полузащитника Barcelona Хави, одного из самых титулованных футболистов последних лет, чей талант, впрочем, еще не в полной мере оценен. Он знаменит не только феноменальным процентом точных передач, но и тем, как он вел себя на поле, ища партнера, которому можно отдать пас. Он совершал резкие движения головой туда-сюда, как ящерица. «У одних потолок скорости реакции не выше восьмидесяти, у других доходит до двухсот, – рассказывал он. – Я стремлюсь приблизиться к двумстам. Когда меня атакует соперник, в 99 % случаев это человек физически более крепкий, чем я. Так что мне приходится думать быстрее его».[10]

Это качество свойственно самым эффективным пасующим игрокам.[11] К такому выводу пришел профессор Норвежского института спорта Гейр Йордет, который проанализировал съемки матчей английской Премьер-лиги с помощью специального режима, используемого британским спортивным каналом Sky Sports. Данный режим применяется в системе интерактивного телевидения и позволяет следить за перемещениями отдельных игроков во время матча. Ученый анализировал движения головы футболистов, когда им нужна была зрительная информация. Йордет получил статистику по 118 спортсменам, сыгравшим в 64 матчах, и подсчитал, сколько раз они переводили взгляд с мяча на поле для того, чтобы увидеть расположение и перемещения других игроков. Первое место по количеству обзоров площадки занял дуэт ведущих полузащитников того времени, Фрэнка Лэмпарда и Стивена Джеррарда, с результатом 0,62 зрительного поиска в секунду, или 37 в минуту. Йордет также установил корреляцию между количеством обзоров и точностью передач. В интервью лондонской The Guardian Хави однажды сказал: «Я все время ищу свободное пространство. Постоянно. Всю игру. Сюда? – Нет. Туда? – Тоже нет. Те, кто не играл, не всегда понимают, как это сложно. Думаю только о свободном пространстве. Защитник здесь – пасую сюда. Вижу пространство и отдаю мяч».[12]

Когда мы собираемся обнаружить какие-либо объекты в поле зрения, наши действия подчинены определенной логике. Исследования показывают, что направление движения глаз зависит от наличия контекстуальных сигналов. Например, глядя на море, мы ищем серферов, а если смотрим на дорогу, то замечаем не асфальт, а машины. У спортсменов все точно так же: они усваивают специальные стратегии зрительного поиска в зависимости от того или иного вида спорта.

В научном журнале Nature были опубликованы результаты исследования, в котором участвовали три бэтсмена-крикетиста. Они отбивали мячи, выстреливаемые специальной пушкой, при этом движения глаз игроков фиксировались с помощью видеокамеры, закрепленной на голове каждого из спортсменов.[13] Все трое действовали одинаково: вначале они смотрели на точку подачи, откуда должен был вылететь мяч. Затем они практически сразу переводили взгляд туда, где должен был произойти отскок. После отскока мяча они следили за его движением примерно 200 миллисекунд, которых мозгу хватало, чтобы определить, куда в итоге прилетит мяч.

Бэтсмен, показавший наилучший результат, опережал движение мяча более значительно. У него уходило гораздо меньше времени на то, чтобы спрогнозировать место отскока, чем у наименее успешного игрока, который дольше следил за мячом после вылета из пушки. Этому игроку не удавалось справиться с более быстрыми подачами, потому что, пока он думал, куда полетит мяч, тот уже успевал отскочить от земли.

Для серии экспериментов с участием Криштиану Роналду и Энди Ансы был поставлен еще один опыт. Футболистам на голову надели небольшую конструкцию, состоящую из видеокамеры и двух зеркал, чтобы регистрировать движения их глаз. Затем Ронадлу дали мяч и попросили контролировать его, не позволяя Ансе его отобрать. Пока нападающий Real в течение пяти секунд удерживал мяч, используя резкие обманные движения, финты и приемы, инфракрасная камера фиксировала малейшие движения его глаз. Далее эту запись при помощи специальной программы совместили с видеопотоком с фронтальной камеры и получили точную картину того, куда был направлен взгляд спортсмена в каждый конкретный момент. Результаты поразили ученых.

За восемь секунд Криштиану совершил 13 обманных движений, и, притом что он часто переводил взгляд на мяч, его глаза постоянно контролировали ситуацию, глядя то на соперника, то на окружавшее его пространство, чтобы спланировать дальнейшие действия. Взгляд Роналду перемещался резко, четко и выверенно, в то время как глаза Ансы бегали, по его собственному признанию, «как шарик в ейнтболе». Криштиану предугадывал дальнейшие движения соперника, следя за его ступнями и бедрами.

«Роналду настоящий специалист по части футбола, – делится впечатлениями от эксперимента спортивный психолог и руководитель эксперимента Зои Уилмхерст. – Если сравнивать с процессом изучения языка, сначала идет наработка базовых выражений, потом усвоение основных грамматических правил (в данном случае навыков владения мячом) и затем использование их на практике, то есть в игре. Со временем, когда накоплен определенный практический опыт, о правилах уже не вспоминаешь».

Зеркальный лабиринт

Мозгу теннисиста, готовящегося принять первую подачу соперника, за полсекунды необходимо успеть совершить три действия. Во-первых, он должен почувствовать приближение объекта, летящего с угрожающе высокой скоростью. Во-вторых, ему необходимо опознать этот объект и определить наиболее вероятную траекторию его движения. И в-третьих, выбрать оптимальный алгоритм ответных действий, для чего попутно нужно преодолеть инстинктивное стремление уклониться от опасного объекта и запустить идеально согласованный процесс реагирования с целью переправить указанный объект через сетку таким образом, чтобы выиграть розыгрыш.

За последние 25 лет мы значительно продвинулись в понимании того, как происходит научение мозга спортсмена подобным навыкам. Это стало возможным благодаря технологии фМРТ (функциональной магнитно-резонансной томографии). Обычная МРТ позволяет оценить состояние суставов и органов или увидеть внутреннюю структуру мозга за счет использования мощного магнитного поля. Функциональная МРТ дает возможность измерить приток крови к отдельным участкам головного мозга практически в реальном времени.

Когда у человека активна та или иная область мозга, находящиеся в ней нейроны усиленно расходуют глюкозу и кислород, что заставляет организм увеличивать приток богатой кислородом крови в эту область. Такая кровь, только что прошедшая через легкие, отличается по своим магнитным свойствам от бедной кислородом, и это отличие как раз и видно на аппарате фМРТ. То есть, если поместить человека в аппарат и дать ему задание, предполагающее некую мыслительную деятельность, можно увидеть участки мозга, которые активируются во время выполнения задания.

Это нельзя назвать прямым наблюдением нейронной активности, поскольку усиление кровотока происходит лишь через пару секунд после собственно возбуждения нервных клеток. Кроме того, изображения, получаемые на аппарате фМРТ, пока недостаточно четкие, чтобы можно было различить объекты в масштабе размера нейронов. Однако на сегодняшний день это наиболее совершенная технология, позволяющая получить наглядное представление о локализации и ходе различных процессов внутри головного мозга.

К технологии фМРТ обратился Брюс Абернети, который в сотрудничестве с коллегами из Университета Брунеля в Лондоне изучал функционирование мозга на примере профессиональных бадминтонистов. Чтобы понять, какие участки отвечают за вероятностное прогнозирование, ученые провели сканирование мозга спортсменов, которым в этот момент демонстрировали короткие видео, снятые во время выполнения различных ударов. Непосредственно перед касанием ракеткой волана видео обрывались, и испытуемым предлагалось определить, в какую часть корта упадет волан. Эксперимент показал, что у опытных игроков наблюдается повышенная мозговая активность в тех участках мозга, которые ответственны за наблюдение и понимание действий других людей.

Согласно одной из возможных интерпретаций полученных результатов, такая активность означает, что мозг достраивает картинку и создает своеобразную «внутреннюю модель», предположение о дальнейшем развитии событий на основании действий соперника. Более опытные спортсмены строят более точные предположения, и эта разница в классе игроков видна не только на площадке, но и на мониторе томографа.

Спустя несколько лет исследователи в том же составе провели аналогичный эксперимент уже с участием футболистов, которым показывали видео с бегущим на них соперником с мячом. Запись останавливали перед тем, как соперник выполнял финт, а испытуемые должны были определить, в какую сторону он двинется. Чем дальше до начала финта останавливали видео, тем больше была разница в степени нейронной активности между полупрофессиональными спортсменами и новичками.

Среди нервных клеток головного мозга существуют так называемые зеркальные нейроны, которые задействованы в подобном способе научения. Их открыли случайно в начале 1990-х.[14] Группа итальянских ученых, занимавшихся исследованием головного мозга приматов, обнаружила, что когда макака берет рукой что-то съедобное и когда она видит человека, делающего то же самое, у нее возбуждается одна и та же совокупность нейронов. Позже наличие зеркальных нейронов было подтверждено у человека: выяснилось, что наш мозг демонстрирует одинаковый характер активности как при выполнении определенных действий, так и при наблюдении за выполнением тех же действий другим в режиме видеоигры.

Этим свойством обладают около 20 % нейронов двигательной области коры головного мозга, вместе они и образуют группу зеркальных нейронов. «Все это можно сравнить с моделированием действий другого человека в виртуальной реальности, – рассказывает известный нейробиолог Вилейанур Рамачандран, одним из первых проявивший интерес к изучению зеркальных нейронов после их случайного открытия. – Нейрон как бы принимает чужую точку зрения».[15]

В другом исследовании – на этот раз в Риме – в центре внимания были баскетболисты.[16] Здесь ученые применяли технологию транскраниальной магнитной стимуляции, при которой над различными участками черепа испытуемых проводили магнитную катушку с током. Технология позволяет регистрировать уровень электрической активности в мозге и даже воздействовать на эту активность. В эксперименте участвовали как профессиональные игроки и тренеры, так и спортивные журналисты. Им демонстрировали видеозаписи выполнения свободных бросков. Видео останавливали в самом начале броска и просили испытуемых сказать, попадет мяч в кольцо или нет.

Лучше всех с заданием справились спортсмены, причем зачастую они давали правильный прогноз еще до того, как баскетболист на видео выпускал мяч из рук. У них также наблюдалась характерная активность двигательной области коры. Как мы знаем, эта область контролирует движения тела, но в данном случае она также возбуждалась во время просмотра игроками записей бросков, а наивысшую степень активности она проявляла, когда показывали неудачные броски.

Благодаря зеркальным нейронам мозг профессиональных крикетистов, бейсболистов, футболистов продолжает обучаться, глядя на соперника. Кроме того, профессионалы знают, куда именно нужно смотреть, чтобы получить зрительные подсказки, которые позволяют им с максимальной точностью и скоростью спрогнозировать дальнейшее развитие ситуации и проявить чудеса реакции.

Орлиное зрение

Ко всем спортсменам умение делать прогнозы приходит путем тренировок и накопления опыта, однако у некоторых из них есть изначальные преимущества. Все роботы-футболисты из Плимута были оборудованы одинаковыми видеокамерами; человеческий глаз не камера, глаза не могут быть одинаковыми у всех. В спорте это важно, особенно когда речь идет о прогнозировании полета мяча.

Мы видим предметы благодаря тому, что свет, отраженный от них, попадает на сетчатку – внутреннюю оболочку глазного яблока, имеющую в своем составе слой клеток, именуемых палочками и колбочками. Эти клетки входят в состав зрительного анализатора. Реагируя на свет, они преобразуют его в электрические импульсы, которые по зрительному нерву попадают в мозг. Если сравнивать глаз человека с цифровой камерой, можно сказать, что четкость снимка, сделанного на камеру, зависит от числа пикселей светочувствительной матрицы, в то время как острота зрения точно так же может зависеть от плотности слоя палочек и колбочек сетчатки.

В 1996 г. Дэвид Киршен и Даниэл Лэйби с коллегами проверили остроту зрения у 387 профессиональных бейсболистов, иными словами (продолжая аналогию с цифровой камерой), посчитали число пикселей на светочувствительной матрице человеческого глаза.[17] По сравнению с обычными людьми, спортсмены показали впечатляющие результаты: оценку «превосходно» получили 58 % бейсболистов и лишь 18 % испытуемых из контрольной группы, не занимавшихся спортом.

В среднем у игроков Высшей бейсбольной лиги США (не считая питчеров, выполняющих подачи) была зафиксирована острота зрения 6/3,35[18] на правом глазу и 6/3,6[19] на левом. Эта запись означает, что если бы спортсмен смотрел на предмет с расстояния шести метров, то человеку с нормальным зрением (6/6, или 1,0), чтобы разглядеть предмет с той же четкостью, пришлось бы приблизиться к нему соответственно на 3,35 или на 3,6 метра.

Итак, острота зрения в значительной мере зависит от числа палочек и колбочек в структуре сетчатки глаза, их плотность может варьировать от 100 000 до 324 000 на квадратный миллиметр. Считается, что этот показатель у каждого человека заложен генетически, то есть успех многих именитых спортсменов отчасти обусловлен хорошим зрением, данным от природы. В результате исследования с участием 157 спортсменов-олимпийцев, представлявших различные виды спорта, было установлено, что у представителей таких видов, как стрельба из лука и софтбол, зрение лучше, чем у легкоатлетов и боксеров.[20] Спортсменам без очков и линз, чтобы достичь вершин в спорте, где залогом успеха является отменное зрение, приходится прилагать дополнительные усилия.

Лучшим игрокам в бейсболе благодаря прекрасному зрению гораздо легче получать информацию о траектории движения объектов на площадке. Бейсбольный мяч имеет характерной формы шов, прошитый красной ниткой, что помогает отбивающему (бэттеру) определить направление закрутки подачи, а также предсказать траекторию дальнейшего движения мяча. Острое зрение позволяет бэттеру считывать эту важнейшую информацию на ранних стадиях полета мяча, что дает ему больше времени на принятие решения и успешное отражение подачи. Такая описательная парадигма получила название «аппаратное и программное обеспечение»: острое зрение («аппаратная часть») облегчает процесс идентификации важных деталей, а мозг («программная часть») получает больше данных для прогнозирования последующего полета мяча.[21]

Это не значит, что люди с плохим зрением не могут достичь успеха в спорте; просто им необходимо несколько иначе подходить к развитию соответствующих навыков, то есть к апгрейду «программной части». Так, известный крикетист Дон Брэдмен, признанный одним из выдающихся бэтсменов и в целом представителей этого вида спорта, имел зрение хуже среднего, из-за чего его не взяли в армию во время Второй мировой войны. Успех в спорте ему обеспечила игра, в которую он играл сам с собой в детстве, не подозревая, что тем самым он развивал зрительно-моторную координацию. Будущий знаменитый крикетист часами стучал мячом для гольфа по резервуару с водой на заднем дворе дома, отбивая мяч столбиком крикетной калитки. Позднее Брэдмен вспоминал: «Тогда для меня это было просто игрой. Но сейчас я понимаю, что, пожалуй, это было идеальным упражнением на отработку точности удара и прекрасной тренировкой для глаз. Мячик для гольфа отскакивал очень быстро, и я едва успевал изготовиться для того, чтобы отбить его». Брэдмену удалось компенсировать недостаток зрения за счет развития зрительно-моторной координации: он реагировал на бросок гораздо позже, чем другие игроки, но при этом у него получался идеальный прием подачи.

Вместе с тем людям, от природы имеющим острое и хорошее пространственное зрение, как правило, легче дается «апгрейд ПО».

У плимутских роботов разница между аппаратной частью и программным обеспечением состоит именно в этом. Процесс обработки визуальной информации у них является, по выражению Калверхауса, многопоточным. Данные анализируются параллельно по разным аспектам, что ускоряет получение результата. «По одному потоку данные с камеры поступают в буфер, по другим происходит их обработка, – объясняет он. – Есть поток данных о локализации мяча и линий на поле, есть – о местонахождении различных препятствий или других роботов». Человеческий мозг выполняет схожие операции, только по нему трудно определить, где именно заканчивается «аппаратная часть» и начинается «программная».

Единство противоположностей

Угарный газ не имеет ни цвета, ни запаха и опасен для человека. Он связывает кислород крови, нарушая снабжение мозга, в результате нейроны, лишенные кислорода, погибают. В начале 1990-х гг. женщина в возрасте 35 лет, известная только по инициалам Д. Ф., пережила отравление угарным газом, вследствие чего у нее в затылочной доле обоих полушарий головного мозга образовались два одинаковых пораженных участка. История болезни Д. Ф. получила известность среди нейробиологов, поскольку дала возможность ученым выяснить, что процесс обработки визуальной информации у человека тоже разделен на несколько потоков для повышения эффективности, как и у роботов-футболистов.

На первом этапе обработки визуальной информации клетки сетчатки преобразуют свет в нервные импульсы. Формирование визуальной картины окружающего мира происходит в мозгу постепенно. Процесс начинается с нейронов, сосредоточенных в затылочной доле; они отвечают за базовые зрительные образы. По мере достраивания картинки к ним добавляются более сложные признаки.

К примеру, отдельные группы нейронов зрительной коры возбуждаются, когда мы читаем определенные слова. Эти нейроны принимают импульсы от других нейронов, реагирующих на отдельные буквы. В свою очередь нейрон, реагирующий на появление буквы «Н», испускает импульс, получив сигнал от групп нейронов – детекторов признаков, таких как линии и границы. На нижнем уровне визуального анализа находятся нейроны, которые возбуждаются в ответ на простое наличие участков света и тени. При взгляде на черную линию на белом фоне – например, горизонтальную черточку у буквы «Н» – среагирует цепочка таких нейронов нижнего уровня, однако импульсы, исходящие от них, запустят волну последующих импульсов на пути от попадания света на сетчатку до формирования отвлеченных понятий и мыслей.

Обработка зрительной информации на всех уровнях осуществляется по топографическому принципу, когда смежные области пространства, находящегося в поле зрения, активизируют смежные области зрительной коры. Мозг в этом плане можно уподобить интерактивной карте местности. Начиная с элементарных форм и далее вплоть до сложных стимулов, таких как лица и различные предметы, мозг шаг за шагом выстраивает картину окружающего пространства.

Обследование мозга пациентки Д. Ф. выявило, что обработка зрительной информации на высших уровнях идет по двум направлениям: одно отвечает за восприятие, другое – за действия. Эти направления или потоки представлены кластерами специализированных и тесно связанных друг с другом участков мозга. В них поступает информация от первичных детекторов признаков.

Вентральный (нижний) поток ответствен за распознавание предметов, их формы и цвета. Он прочно связан с областью мозга, отвечающей за память. Где-то ближе к началу вентрального потока находятся так называемые «бабушкины клетки», которые возбуждаются только при виде знакомого лица.

Дорсальный (верхний) поток – это домен действий, он специализируется на информации о положении объектов в пространстве и их движении. Его нейроны реагируют на движение по прямой и по окружности. Другие нейроны этого потока возбуждаются различным образом в ответ на то или иное положение глаз, что помогает мозгу понять, как меняется местоположение тела относительно каких-либо предметов.

Нейроны дорсального направления также регистрируют оптический поток, то есть процесс изменения образа предмета по мере его движения. Допустим, если мы видим, что определенный предмет непрерывно увеличивается в размерах, мы понимаем, что он, вероятно, движется прямо на нас, и, скорее всего, в этом случае лучше будет уклониться от него. Разумеется, если мы в данный момент не играем в крикет, потому что тогда мы должны будем либо поймать этот предмет, либо отбить.

Отравление угарным газом привело к необратимому нарушению в функционировании вентрального потока обоих полушарий у пациентки Д. Ф., в результате чего она потеряла способность узнавать предметы. В то же время она могла совершать действия с этими предметами, что было подтверждено в ходе эксперимента с «отправкой письма».

Пациентка легко справилась с просовыванием кусочка картона в косую прорезь, но не смогла выполнить задание, когда ее попросили просто повернуть картонку под тем же углом, под которым была скошена прорезь. Это объяснялось тем, что у Д. Ф. пострадал вентральный поток, ведающий восприятием, в то время как дорсальный поток, связанный с действиями, остался нормальным.

У спортсменов оба потока функционируют совместно.[22] Рассмотрим их взаимодействие на примере тенниса. Вентральный поток собирает информацию для формирования контекста игровой ситуации и поиска оптимального решения до начала розыгрыша. Дорсальный контролирует выполнение удара, в частности силу и сам момент его нанесения. Во время начальной стадии подачи соперника у игрока, готовящегося принять мяч, предположительно задействован в основном вентральный поток, который управляет положением тела и углом наклона ракетки, а также извлекает из памяти известную ему информацию о сопернике. Все это призвано помочь мозгу игрока решить, как именно лучше принять подачу: например, сыграть кроссом или обводящим ударом по линии. Как только соперник выполнил подачу, мгновенно подключается дорсальный поток, контролирующий движения, направленные на успешный прием.

Судя по всему, у новичков либо у людей в непривычных ситуациях основным оказывается вентральный поток. В одном эксперименте группе опытных гольфистов предложили выполнить патт, то есть легким ударом загнать мяч в лунку, сделав при этом замах с неудобной стороны.[23] Рядом с мячом поместили стрелку, указывающую в направлении лунки, но не совсем точно. При выполнении удара с неудобной стороны игроки больше ориентировались на стрелку – соответственно, был активен вентральный поток, которому для определения оптимального варианта действий требовалась опора в виде ситуативной информации. Когда же игрокам разрешили сделать тот же удар со своей обычной, удобной стороны, такого эффекта не наблюдалось. Это значит, что при осуществлении отработанных действий, доведенных до автоматизма, управление берет на себя дорсальный поток.

Пол Скоулз в игре!

Уже на раннем этапе принятия решений атлеты, входящие в элиту мирового спорта, выигрывают за явным преимуществом. Дело ли тут в тренировках, врожденных качествах или и в том и в другом, но очевидно, что мозг спортсменов, имеющих дело с быстрыми перемещениями мяча, особым образом настроен на осуществление прогнозирования. Благодаря умению строить верные прогнозы и просчитывать ситуацию, они успевают выбрать оптимальный вариант действий, когда времени на размышление нет.

Пожалуй, лучшей иллюстрацией того, насколько важен и полезен навык прогнозирования в спорте, является знаменитый английский футболист Пол Скоулз. Бывший полузащитник Manchester United и сборной Англии в начале карьеры был низкорослым юношей-астматиком. Войти в историю футбола ему, как и Уэйну Руни, помогла работа головой. Скоулза нередко называют своим кумиром такие выдающиеся игроки, как испанский полузащитник Хави, регулярно выигрывавший Кубок мира. Его восхищало в Скоулзе умение протиснуться между соперниками и отдать идеальный пас, длинный или короткий. Действуя в довольно ограниченной центральной зоне, он удачно использовал выбор позиции, движение на поле и умение прогнозировать ситуацию в противостоянии игрокам, которые были быстрее, сильнее или элементарно мощнее его самого.

Позднее его тренер сэр Алекс Фергюсон говорил о нем так: «Он понимает то, что происходит вокруг него у края штрафной, лучше, чем большинство других игроков. Когда он был еще подростком, он всегда ухитрялся оказываться в нужном месте в самое нужное время, но и при подаче из-за пределов штрафной он действует не менее эффективно, потому что умеет правильно использовать свой опыт. Его футбольная голова – одна из светлейших в истории Manchester United».

Когда мы встретились для интервью, Скоулз как раз начал карьеру футбольного эксперта на британском спортивном канале BT Sport, где его футбольная голова оказалась востребованной, чтобы анализировать матчи. Это интервью, последнее за день, он дал в офисе телеканала рядом с лондонским собором Святого Павла. Сначала обычно немногословный Скоулз не демонстрировал готовности к увлекательной беседе, но стоило упомянуть об экспериментах Абернети, как футболист проявил живой интерес. «Это будет непросто, – рассуждал он вслух о том, реально ли принять передачу вслепую. – Хотя, думаю, есть футболисты, которые смогли бы. Но вообще принять вот так мяч с лета – это что-то из области фантастики».

Чем раньше спортсмен успеет сыграть по летящему к нему мячу – это касается футбола, крикета, сквоша, бейсбола, – тем больше у него будет времени на принятие решения и ответные действия. Этот навык позволяет таким игрокам, как Скоулз, просчитывать ситуацию на несколько шагов вперед. «Последнее, о чем я думаю, когда мне приходят мяч, – это что делать дальше», – утверждает он. Естественно – ведь он уже знает.

Глядя на игру тех спортсменов, у кого такой навык хорошо развит, можно подумать, что они находятся на каком-то другом стадионе. Вспоминается игра главного плеймейкера миланского Inter португальца Луиша Фигу на стадионе San Siro за несколько месяцев до окончания его карьеры футболиста. Он был самым возрастным игроком на поле и бегал медленнее всех, но создавалось впечатление, что у него в распоряжении громадные участки газона, хотя он никуда не спешил, не торопился. «Когда игра получается, чувствуешь, что у тебя куча времени, – делится впечатлениями Скоулз, который в свои лучшие годы испытывал нечто подобное. – Но так бывает не каждый раз. Когда играешь не на сто процентов, все происходит как-то суетливо и нервно, зато, когда все получается как надо, начинает казаться, что ты на поле один».

О похожем ощущении рассказывали представители самых разных видов спорта, в том числе пилоты «Формулы-1», вспоминая, как шли на обгон. И есть убедительные доказательства того, что это не просто ощущение.

Ученые из Университетского колледжа Лондона полагают, что мозг использует особый механизм ускоренной обработки зрительных сигналов в ситуации, когда необходимо выполнить определенные действия.[24] Испытуемых поделили на две группы и попросили реагировать на внезапно появляющиеся и исчезающие на экране диски. Волонтеры из первой группы должны были коснуться пальцем экрана в момент появления диска, а из второй – просто сказать об этом. Те, кто в качестве реакции выполняли действие, ощущали себя так, как будто у них было больше времени на осуществление этого действия, чем у тех, кого двигаться не просили.

«Самое главное для меня как полузащитника было четко знать, где находятся другие игроки моей команды, – продолжает Скоулз. – Я старался все время держать в голове картинку: где сейчас находится мой центр-форвард, где крайние хавбеки, где защитники. Нельзя просто получить мяч, не зная, что делать дальше или что происходит вокруг».

Отвечая на вопрос о том, как происходит принятие решения после получения передачи, Пол Скоулз фактически повторяет слова Уэйна Руни: «Все зависит от того, где в этот момент находятся игроки и где ты получаешь пас. Если там, где тебе удобно, можно ли переправить его в касание центр-форварду? Или лучше обработать и пойти вперед самому? Это бывает очень трудно объяснить, но представьте, что у вас в голове карта, где показано расположение всех игроков вашей команды, и вы решаете на основе этой карты».

У роботов-футболистов в программе заложена карта игровой площадки, и они точно знают и запоминают позицию игроков своей и чужой команды. Звезды мирового футбола тоже обладают этим качеством. В человеческом мозге есть специальный отдел, важный с точки зрения научения и памяти, он называется гиппокампом. Его клетки, известные как нейроны места и нейроны решетки, отвечают за контроль нашего собственного положения в пространстве и местоположения других людей.[25] Этих клеток насчитывается всего несколько тысяч, но, учитывая их возможные комбинации, такого количества вполне достаточно для кодирования всех точек, где мы оказываемся в течение жизни. Нейроны места привязаны к определенной обстановке: когда мы приходим домой или на работу, активизируется конкретный набор нейронов гиппокампа. Когда же мы заходим в незнакомое помещение, включается уже другая цепочка клеток места. Эти нейроны помогают нам ориентироваться относительно других объектов, благодаря им мы вспоминаем, где оставили машину, и можем ходить по дому в полной темноте. Впервые они были обнаружены в 1971 г. при проведении исследования на лабораторных крысах. Ученые могли точно сказать, где в данный момент находится животное, исходя из того, какие нейроны были у него активны. Среди спортсменов нейроны места особенно ценят, наверное, пилоты «Формулы-1», ведь они, например, позволяют им понять, когда пора сбросить скорость, чтобы войти в поворот.

В таких видах спорта, как футбол, у спортсменов нет возможности постоянно искать ориентиры, чтобы определить свое положение на поле. Здесь на помощь приходят нейроны решетки. Их открыли в 2005 г. Эдвард и Мэй-Бритт Мозеры, а также Джон О’Киф, получившие за это Нобелевскую премию. Нейроны решетки разделяют пространство вокруг нас на треугольники, расходящиеся из центра, в котором находимся мы. Когда мы стоим на точке, являющейся вершиной одного из таких треугольников, активизируется определенный нейрон решетки. Если мы сделаем два шага вперед по направлению к вершине другого треугольника, активизируется уже другой нейрон. Они отмечают наше положение в пространстве вне зависимости от конкретной ситуации, даже если мы меняем позицию. Поэтому высококлассные футболисты всегда точно знают, где находятся ворота, даже когда у них нет возможности осмотреться. У них автоматически включается ощущение пространства, поскольку они специально развивают его в себе.

Спортсмены уровня Пола Скоулза сочетают эту информацию с умением замечать детали, которые помогают им прогнозировать дальнейшее развитие событий. Следующая глава посвящена тому, как они встраивают ее в контекст, сформированный по другим источникам, и в итоге решают, как нужно действовать дальше.

Если бы ученым удалось просканировать мозг Уэйна Руни, когда в его сторону летел мяч, который он затем в прыжке через себя переправил в ворота, они бы увидели под его пересаженной шевелюрой калейдоскоп активно взаимодействующих нейронов.

В человеческом мозге происходит объединение сигналов от нейронов места и решетки с информацией из памяти, зрительной информацией и импульсами, посланными телом. Здесь же принимается решение о том, какие действия будут совершены. Мозг спортсмена отличается от мозга обычного человека скоростью принятия решений. Но если мы поймем, как и почему это происходит, то, вероятно, сможем приблизиться к их уровню.

Глава 2

Иллюзия выбора. Мика Хаккинен

Грейстокский лес объят загадочной тишиной. Густой хвойный массив в знаменитом Озерном крае на северо-западе Англии испещрен затейливо петляющими гравийными трассами. Внезапно в тишину врывается рев мотора, и спустя мгновение появляется раллийный болид Элфина Эванса, заносом входит в поворот и тут же исчезает в густом облаке поднятой им белесой пыли.

Эванс – восходящая звезда британского автоспорта. Его уже сравнивают с легендарным автогонщиком Колином Макреем, двукратным чемпионом мира по раллийным гонкам и победителем соревнований в составе той же команды M-Sport.

В Грейстокском лесу проходят тестовые заезды команды. Сегодня Эванс даст журналистам почувствовать все прелести работы штурмана, или второго пилота. Штурманы – это те суровые люди, которые сидят на пассажирском сиденье и подсказывают пилоту, что ждет экипаж впереди. Эвансу трасса хорошо знакома, так что помощь настоящего второго пилота ему не нужна. И это хорошо, потому что, когда твою голову на скорости все время болтает туда-сюда, прочитать что-либо абсолютно невозможно, особенно если текст состоит из убористо написанных и емких символов, которые штурман расшифровывает вслух для своего напарника, чтобы подготовить его к совершению маневра.

У каждого экипажа есть собственная, отработанная годами кодировка, но в любой системе записи тем или иным образом будет указываться расстояние до ближайшего поворота, описание опасного препятствия, например подъема, где следует проявить осторожность. Обозначение одиночного поворота может выглядеть так: «200 Л2 400», что означает «двести метров до левого поворота второго уровня сложности, потом четыреста метров до следующего отрезка пути». При добавлении различных деталей запись, естественно, усложняется. Например, «300 Т Л2 минус! П4 100» значит «триста метров до трамплина, затем левый поворот второй сложности при опасном отрицательном уклоне дороги, дальше правый поворот четвертого уровня и потом сто метров до конца отрезка». Во время гонки штурман сообщает пилоту огромное количество информации, поэтому перед началом чемпионата экипаж несколько раз проходит трассу в ознакомительном режиме, чтобы сделать легенду максимально точной и понятной.

Если смотреть глазами зрителя, находясь на точке, где трасса делает крутой поворот, создается впечатление, что Эванс спокойно контролирует машину, которая мягко входит в «шпильку» и затем плавно набирает скорость до следующего поворота. Но изнутри все выглядит совсем иначе. Когда сидишь, пристегнутый ремнями, в по-спартански брутальном, свободном от всего лишнего салоне тюнингованного «форда-фокус», ощущения непередаваемые! Пилот неожиданно резко рвет рычаг переключения скоростей и бьет по тормозам, при этом руль он держит плавно, делая лишь небольшие корректирующие движения в ответ на перемены в сцеплении с коварной трассой. Машина проходит трехкилометровый круг за неполные две минуты. К моменту финиша лицо Эванса пылает, а сам он сидит мокрый от пота вследствие физического напряжения и предельной концентрации.

После встряски на лесной трассе мы с Элфином уютно располагаемся в здании XII в., где когда-то была больница, а теперь находится главный офис команды M-Sport. Поразительный контраст: снаружи древние каменные стены усадьбы Довенби-холл, а внутри – просторное, идеально чистое помещение, где проводят техническое обслуживание гоночных автомобилей.

Эванс выглядит значительно моложе своих 27 лет, однако, несмотря на чуть детские черты, держится с той уверенностью, которая свойственна маститым гонщикам, хотя он участвует в мировом раллийном первенстве всего год. Короткие темно-русые волосы, торчащие уши, ярко-голубые глаза. Размышляя над заданным вопросом, Элфин неторопливо блуждает взглядом по богато декорированной столовой, в которой его яркий фирменный комбинезон смотрится довольно странно. Вопрос касается того, о чем думает гонщик во время заезда. Эванс дает неожиданный ответ.

– Честно говоря, ни о чем, – говорит он с легким валлийским акцентом. – Когда управляешь болидом, мысли приходят в голову крайне редко – так быстро все происходит. Нужно, чтобы ничто не отвлекало от управления. Конечно, какие-то мысли вертятся, но я обращал внимание, что, когда я вкладываюсь в гонку полностью, в какой-то момент понимаю, что вообще не помню, о чем думал последние 15–20 минут.

Тем не менее, хотя сам Эванс этого не замечает, его мозг за одну секунду принимает сотни разных решений. Просто представим себе, сколько всего нужно учесть в момент прохождения одного поворота. Прежде всего необходимо обработать непрерывно поступающую зрительную информацию о скорости и положении автомобиля. Затем информацию от рук, ног и других частей тела, которые ощущают качество сцепления болида с трассой и сигнализируют о том, надо ли делать на это какую-то поправку. Кроме того, в отличие от обычного водителя, пилот параллельно слушает указания штурмана и соотносит их с собственным опытом прохождения данного участка, с оценкой фактических условий и с личным видением оптимального способа вхождения в поворот. К тому же во время соревнований пилот учитывает информацию от своего штаба о том, с каким временем идут конкуренты, стоит ли рискнуть и прибавить или лучше будет не торопиться и сохранить имеющуюся позицию.

Все это успевает пронестись в голове гонщика еще до того, как он начал работать рулем и тормозом для входа в поворот. Чтобы принять всего одно элементарное решение – насколько повернуть руль или выжать газ, – мозг должен сопоставить информацию из десятков разных источников за какую-то долю секунды, провести сложные вычисления и выдать ответ – быстрый, точный и в то же время с достаточным допуском в условиях меняющейся обстановки. С добавлением новых факторов сложность расчетов возрастает в геометрической прогрессии, причем это характерно отнюдь не только для раллийных гонок. В этой главе мы поговорим о том, как спортсменам удается не запутаться в бешеном потоке информации, а получать с ее помощью быстрые и точные ответы.

Даже такие относительно простые действия, как прием мяча в футболе или ловля мяча в крикете, требуют расчета траектории объекта, движущегося с высокой скоростью, изменения собственного положения, а также выполнения определенных движений таким образом, чтобы не дать мячу просто отскочить куда попало. А для этого нужно обработать громадное количество информации. Вот одна из причин того, почему Мусташио и его партнеры по команде в ближайшее время не смогут выиграть у мадридского Real.

В памяти роботов-футболистов хранится вся информация, необходимая для выполнения последующих действий. Как уточняет Фил Калверхаус, их память «хранит копию всего, что происходит в реальном времени, включая сигналы с датчиков самого робота, их собственную информацию о местонахождении мяча и ворот, а также сигналы с датчиков остальных роботов. Таким образом, у каждого отдельного робота есть возможность принять решение относительно своих дальнейших действий».

У людей все устроено примерно так же. Но даже у спортсменов возможности мозга все равно ограниченны. Мы можем одновременно удерживать в голове лишь некоторое количество информации, ресурсы нашей памяти так или иначе имеют свой предел. В психологии есть термин «кратковременная память». В разное время для объяснения термина использовали разные аналогии: в 1950-х гг., например, ее сравнивали со школьной доской. Сегодня понятнее всего выглядит аналогия с оперативной памятью компьютера. В кратковременной памяти содержится весь объем информации, необходимой нам, чтобы осуществить то действие, которое мы в данный момент выполняем.

В середине 1950-х гг. психолог из Принстона Джордж Миллер опубликовал работу, из которой следовало, что человек в среднем способен одновременно удерживать в памяти от пяти до девяти элементов. Магическое число 7 +/ – 2 получило название «кошелек Миллера», и оказалось, что оно работает в отношении элементов самого разного рода. Возьмем, к примеру, числа. Посмотрите на следующий ряд чисел, а потом закройте книгу секунд на десять и попробуйте воспроизвести их все по порядку:

58201230719662652015

Чтобы запомнить такую или подобную последовательность, можно использовать несколько стратегий. Кто-то попытается повторить числа про себя, как мы делаем, чтобы не забыть номер телефона, пока ищем ручку. Согласно закону Миллера, большинство из нас смогут запомнить примерно семь чисел, после чего впадут в ступор.[26] А ведь это простейшая цепочка элементов. Выбирая, а затем с максимальной точностью осуществляя оптимальный вариант действий в таком виде спорта, как автогонки, человек производит расчеты с сотнями взаимосвязанных переменных. Это куда сложнее, чем семь единиц информации.

Значит ли это, что мозг Элфина Эванса и других высококлассных спортсменов устроен как-то принципиально иначе? Может, у них больше объем кратковременной памяти или сильнее «процессор», позволяющий им быстрее обрабатывать данные? В большинстве случаев это не так. Просто они научились использовать особые стратегии обработки информации.

Огненный болид Летучего финна

Тормозные диски объяты пламенем. «Мерседес» Мики Хаккинена под визг измученных тормозов только что заехал на пит-стоп трассы в английском Сильверстоуне. Колодки из углеволокна, которые прижимаются к диску и создают силу торможения, не выдержали агрессивного стиля вождения и воспламенились. Двукратный чемпион «Формулы-1» вылезает из машины. На нем черный кожаный комбинезон, облегающий гонщика чуть плотнее, чем на пике его карьеры. Хаккинен взъерошивает светлые волосы; ему кажется забавным, что к машине несется техник с огнетушителем. Зрители, пришедшие в медиадень с одним из спонсоров команды McLaren, явно в восторге от незапланированного шоу. Но наше интервью с финским пилотом состоится чуть позже.

Дав машине немного остыть, мы с Хаккиненом делаем круг по знаменитому автодрому. Финн гонит «мерседес» на пределе возможностей: визг покрышек, дым из-под колес, рев мотора. В какой-то момент мы срезаем поворот, и машину сносит на гравий. Любой на месте пилота, подвергающего тюнингованный автомобиль сумасшедшим нагрузкам на огромных скоростях, был бы максимально сосредоточен, как Элфин Эванс во время заезда по раллийной трассе. Однако Хаккинен только смеется и шутит. «Примерно так я вожу семью за покупками!» – перекрикивает он надрывный стон двигателя. А затем спокойно кивает на магнитолу и спрашивает, не включить ли радио. Спасибо, не надо!

Пилот может вести машину по гоночной трассе на высокой скорости под непринужденную беседу благодаря тому, что за годы тренировок его мозг научился работать особым образом. Комплексные решения и движения, связанные с управлением автомобилем, выбором нужного момента для торможения и угла поворота руля, контролируются на подсознательном уровне.

Поскольку такие решения принимаются автоматически, у мозга освобождается больше ресурсов на осуществление более осознанной мыслительной деятельности – в данном случае это мысли о том, как заставить журналиста дрожать от страха.

Чтобы добиться автоматизма, сперва следует научиться фрагментировать информацию. Этот процесс сродни тому, как раллийный гонщик и его штурман работали над легендой маршрута. Суть метода заключается в разбитии неких данных на небольшие совокупности, которые легче обрабатывать, чем весь массив целиком. Вернемся к числовой последовательности, которую мы пытались запомнить. Попробуем сделать это еще раз, только теперь предварительно выполним ее фрагментацию на более знакомые элементы:

5/8/2012, 30/7/1966, 27/4/2015

У нас получился список дат. Первая дата – день, когда сборная Великобритании установила рекорд на Олимпиаде в Лондоне, выиграв сразу шесть золотых и одну серебряную медаль. Вторая – победа сборной Англии на чемпионате мира по футболу. Третья – английский футбольный клуб Bournemouth завоевал себе место в Премьер-лиге. Мы воспользовались принятым форматом записи дат и в результате разбили сплошную последовательность чисел на фрагменты, имеющие значение для нас. Заметим, что магическое число Миллера 7+/-2 никуда не делось, просто теперь у нас в распоряжении не 20 элементов, а всего три.

В середине 1960-х гг. нидерландский шахматист и психолог Адриан де Гроот провел интересный эксперимент, к участию в котором он привлек как опытных гроссмейстеров, так и начинающих игроков.[27] В течение пяти секунд им демонстрировали шахматную доску с расставленными на ней фигурами, после чего фигуры убирали и просили участников по памяти восстановить комбинацию. Гроссмейстеры лучше справились с заданием, но лишь в тех случаях, когда расстановка была такой, какую можно было бы наблюдать в реальной игре. Опытный шахматист, в отличие от непрофессионала, видит не просто фигуры, случайным образом расставленные на доске, а осмысленный фрагмент игровой ситуации. Аналогичным образом мы членим последовательность букв на слова, а ряд чисел – на даты.

За счет фрагментации специалист может обрабатывать тот же объем данных, затрачивая при этом меньше мыслительных ресурсов, фактически на автомате. В другом похожем исследовании шахматистам показывали доску с фигурами и предлагали повторить расстановку уже на другой доске.[28] Более опытным игрокам требовалось посмотреть на первую доску меньшее количество раз, чем новичкам.

Подобную закономерность можно наблюдать и в более активных видах спорта.

В конце 1980-х – начале 1990-х гг., когда в ходе легендарного противостояния футбольных клубов Liverpool и Manchester United ливерпульцы постепенно сдавали позиции команде из Манчестера, в составе которой был и Пол Скоулз, ученые из обоих городов принципиальных соперников совместно трудились над исследованием особенностей пространственного мышления у футболистов.[29] Испытуемым показывали десятисекундные фрагменты матча. Фрагменты могли быть как системно организованными, так и лишенными такой организации. В первом случае это, например, было развитие атаки путем перепасовки; во втором – беспорядочные действия игроков, скажем, после отскока либо перехвата мяча. Эксперимент показал, что опытные спортсмены гораздо лучше запоминали позиции конкретных игроков на поле в системно организованных фрагментах, однако при отсутствии системности в действиях футболистов результаты оказывались одинаковыми.

Звездам американского футбола также требовалось немного времени, чтобы правильно запомнить позиции игроков на поле. Они по тому же принципу группировали координаты отдельных спортсменов в более крупные элементы ситуации, уменьшая тем самым количество запоминаемых элементов. Наставники университетских команд продемонстрировали способность мысленно достраивать недостающие фрагменты игровой ситуации.[30] Когда им показывали небольшой кусочек изображения, они уверенно называли момент игры и восстанавливали всю картину происходящего. Там, где непрофессионал видит лишь случайное расположение отдельных людей, специалист мыслит готовыми схемами.

Еще одним ярким примером группировки информации в спорте являются указания квотербека или тренера игрокам в американском футболе относительно того, какой тип розыгрыша должна выполнить команда. Бывший квотербек Национальной футбольной лиги США Трент Дилфер, рассказывая в интервью спортивному сайту FanHouse о стратегиях запоминания ключей к таким зашифрованным «посланиям», говорил о том, как трудно в этом плане бывает игрокам, переходящим в другую команду. «Многие тренеры используют систему нумерации, – объяснял он. – Например, фраза «Красный направо 22 Техас» обозначает «нападение Западного побережья».[31] В другом клубе оно обозначается фразой «Сплит направо скат направо угол 639 F».[32]

Более простым примером группировки информации является расстановка футболистов на поле, когда позиции десяти полевых игроков можно представить в виде формул: 4–4–2 или 4–3–3. Таким образом, мы сократили количество элементов с десяти до трех. Тот же принцип лежит в основе составления автогонщиками легенды трассы. Итак, успешные спортсмены мыслят с помощью готовых структур, которые позволяют разбить большой объем информации на отдельные фрагменты, что облегчает их запоминание, высвобождая часть интеллектуальных ресурсов и внимания для других целей. Как утверждает Трент Дилфер, простое запоминание розыгрыша – совсем не то, что «владение им»: «Сначала ты знаешь ситуацию, потом понимаешь ее и уже потом начинаешь чувствовать ее инстинктивно. Вот это для меня и значит владеть ситуацией».

Автоматика, систематика, схематика

Фрагментация применима не только к отвлеченным понятиям вроде чисел и позиций, она также имеет место в процессе освоения новых навыков. Когда Эванс впервые сел за руль, он наверняка все делал медленно и очень осмысленно, как всегда бывает у учеников в автошколе. Скорее всего, ему тоже было трудно одновременно следить за движениями рулем и переключением передач, за отпусканием педали сцепления и нажатием педали газа, чтобы поймать момент схватывания.

Это проходят все. Когда мы учимся какому-то практическому навыку, мы понимаем, что именно нужно делать, но нам сложно удержать все это в голове. Мы можем с большим трудом вспоминать, как перейти со второй на третью передачу, чтобы при этом еще не забыть выжать сцепление, проверить зеркала и не съехать с дороги. Со временем все эти действия проходят стадию группировки и постепенно начинают воспроизводиться автоматически. Так мы овладеваем ими.

Американцы Мэтью Смит и Крейг Чемберлен провели эксперимент, иллюстрирующий это утверждение. Они собрали группу футболистов разного уровня и дали им задание провести мяч несколько метров змейкой, одновременно поглядывая на экран, чтобы не пропустить определенную фигуру, которая должна была на нем появиться.[33] Начинающим футболистам пришлось очень несладко. Их результаты были гораздо хуже, поскольку префронтальной коре их мозга оказалось не по силам разом выполнить оба действия. Профессионалы же прошли змейку практически с той же скоростью, с какой у них это получалось раньше, несмотря на дополнительное задание.

Переход действия из разряда сознательно контролируемых в разряд автоматических можно наблюдать на аппарате фМРТ. Ученые из Стэнфордского университета в Калифорнии провели сканирование мозга добровольцев, которые в этот момент выполняли задание на определение скорости реакции. Результаты сканирования показали, что первоначально активность регистрируется во многих участках мозга, но по мере того, как человек осваивает процедуру выполнения задания, уровень активности в этих участках снижается. Мы еще вернемся к этому выводу, но пока отметим, что мозг профессионального спортсмена работает менее напряженно, чем мозг непрофессионала.

В другом калифорнийском научном центре, Университете в Санта-Барбаре, Николас Вимбс занимался исследованием нейронных процессов, лежащих в основе фрагментации моторных задач, посредством которой физические действия становятся автоматическими.[34] «Любой фрагмент можно представить в виде ритма», – объясняет он, имея в виду структуры, в которые входят сами элементы и промежутки или паузы между ними. Мы имеем дело с такими структурами, когда запоминаем новую информацию или обучаемся какому-то навыку. Например, можно говорить о цифрах номера телефона, разделенных промежутками, или о действиях теннисиста при выполнении подачи, разделенных паузами.

Вначале префронтальная кора проявляет высокую степень активности. Данная область находится в передней части мозга и отвечает за множество важных аспектов высшей нервной деятельности от внимания и кратковременной памяти до индивидуального характера человека и его социального поведения. Именно благодаря ей происходит фрагментация комплексного действия, которому мы хотим обучиться, на более простые элементы. Допустим, подачу в теннисе можно разложить на подброс мяча, замах, удар и переход в позицию для приема ответного мяча. Но чтобы добиться автоматизма в выполнении подачи, мозг должен связать эти отдельные кусочки в единый процесс. Группой исследователей под руководством Вимбса было проведено сканирование мозга испытуемых, которые нажимали на клавиши в определенной последовательности, опираясь на запись у них перед глазами. Это напоминает игру на фортепьяно или гитаре по нотам; нечто подобное также проделывают любители музыкальной компьютерной игры Guitar Hero. «Когда они повторили комбинацию по 200 раз, то научились отлично справляться, – рассказывает Вимбс. – Через некоторое время комбинации становятся привычными. В начале эксперимента у одного из участников уходило примерно четыре с половиной секунды на каждую последовательность из 12 нажатий клавиш. К его окончанию все справлялись в среднем менее чем за три секунды».

Результаты сканирования показали, что, когда в действиях испытуемых появлялось все больше автоматизма, на первый план выходили более древние скопления клеток, спрятанные под корой больших полушарий, – базальные ганглии. Получается, что автоматизм, чтобы проявить себя, как бы готовит своего представителя. Это похоже на обучение нового сотрудника: после того как базальным ганглиям «объяснили», что надо делать, и дали выполнить операцию достаточное количество раз, высшие отделы мозга сняли контроль за этой операцией и полностью доверили ее обученному молодому специалисту. Если же начальник вдруг решает вернуться и посмотреть, как сотрудник справляется с возложенными на него обязанностями, стоя у него за спиной, качество выполнения операции может пострадать. Соответственно, когда спортсмен пытается анализировать действия, которые он обычно производит неосознанно, они становятся неуклюжими, нескоординированными и просто провальными, как будто он раньше никогда этим не занимался. Так выглядит классическая схема срыва спортсмена в критической ситуации, мы затронем этот вопрос подробнее в одной из следующих глав. Пока же ознакомимся с результатами исследования, которое особенно ярко иллюстрирует важность автоматизма.

Девин Поуп и Морис Швейтцер, экономисты из Пенсильванского университета, сравнили более 2,5 миллиона паттов на гольф-турнирах разного уровня.[35] Выяснилось, что профессиональные гольфисты выполняли завершающий удар с меньшей точностью, когда итогом раунда для них мог быть берди (удар на один меньше пара), чем когда они пытались уложиться в пар, независимо от расстояния и сложности удара. Если на кону стоит возможность получить дополнительные очки, спортсмен концентрируется на своих действиях, то есть начинает сознательно их контролировать. В результате простое действие, производимое обычно на автомате, превращается в трудновыполнимую задачу.

Когда начинающий крикетист приступает к разбегу перед подачей, он думает о том, как он держит мяч; о том, что нужно добежать до криза, не заступив на него; как рассчитать замах, чтобы добиться максимальной силы подачи; как важно, чтобы рука не сгибалась при броске. В это время префронтальная зона коры его мозга работает с огромным количеством параметров.

Когда же за дело берется опытный игрок, он ни о чем таком не думает, потому что за его действия при подаче отвечают базальные ганглии. Если он в этот момент и думает о чем-то, то скорее о том, куда он направит мяч, каковы слабые стороны бэтсмена, находящегося в другом конце площадки, и как лучше выполнить другие подачи своей серии, чтобы вывести бэтсмена из игры.

Сознательно контролировать все параметры подачи мяча с разбега в крикете, приема подачи соперника в теннисе, удара в прыжке через себя в футболе невозможно ввиду ограниченного объема кратковременной памяти. Но когда все эти действия доводятся до такой стадии автоматизма, что нам уже не нужно задумываться о них, нам становится по силам совершить то, что на первый взгляд невозможно, причем мы успешно выполняем их, даже когда наше сознание занято чем-то другим.

«Окончательный выбор решения – за тобой»

«Когда в штрафную летит навес, у тебя в голове за долю секунды проносится множество вариантов, что можно сделать с мячом. Допустим, есть пять-шесть вариантов действий». Так Уэйн Руни описывал процесс принятия решений в интервью журналу ESPN (см. предисловие). «Окончательный выбор решения – за тобой, – сказал он там же. – Ну, а дальше уже дело техники».

Чтобы сделать окончательный выбор, мозгу сначала необходимо принять в расчет данные из множества различных источников, выработать потенциальные варианты решения, а также взвесить все риски и выгоды каждого из них. Чтобы узнать, как ему это удается, мы обратились за помощью к Нильсу Коллингу, с которым я учился в университете. Доктор Коллинг по-прежнему работает во внушительного вида бетонном здании, где расположен отдел экспериментальной психологии Оксфордского университета, занимаясь исследованием процессов принятия решений и оценки рисков.

«Очень интересный вопрос, особенно применительно к людям с высокой степенью развитости практических навыков – таким как спортсмены, – отвечает он. – Коротко говоря, мозг, в зависимости от конкретной ситуации, принимает решения, используя ряд различных систем. Каждая система, связанная с принятием решений, и соответствующая ей нейронная сеть имеют свои особенности, достоинства и недостатки. Причем они постоянно друг с другом конкурируют, что и определяет поведение человека».

Таких систем как минимум три, и очень вероятно, что у атлетов во время занятий их видом спорта происходит очень плавный переход между этими системами.

К первой группе относятся решения, предполагающие длительное размышление и тщательное взвешивание различных факторов. Мы все порой принимаем подобные решения на работе и в личной жизни. В качестве примера возьмем футбольного тренера, который изучает трансферный рынок, выбирая между ярким крайним нападающим и надежным центральным полузащитником. Или наставника, который должен дать совет теннисисту, когда тот никак не может справиться с мощным бэкхендом соперника. Оценкой различных вариантов по ряду критериев ведает область в нижней части лобной доли, известная как вентромедиальная префронтальная кора головного мозга. «Скажем, при покупке дома мы учитываем его цену, местоположение и множество прочих факторов. В итоге получаем простой индекс желательности или ценность в денежном эквиваленте для каждого дома и, сопоставляя их, делаем выбор, – объясняет Коллинг. – За этот процесс как раз и отвечает вентромедиальная префронтальная кора. Люди, у которых данная область повреждена, порой принимают нелогичные решения».

Вторая группа включает решения, принимаемые автоматически. Сюда относятся такие действия, как прием паса в футболе, что, как мы теперь знаем, контролируется более древней, подкорковой областью мозга, в частности базальными ганглиями. Как замечает доктор Коллинг, «многие такие действия даже не рассматриваются как решения».

Однако в спорте наибольший интерес представляют решения, занимающие промежуточное положение между процессами, доведенными до автоматизма, с одной стороны, и требующими длительной умственной работы – с другой. Причем они меняются в зависимости от игровой ситуации. «Такие решения не обязательно основаны на конкретных параметрах в рамках определенных сценариев или вариантов действий. Скорее, они апеллируют к не вполне ясному общему ощущению ситуации, в которой мы находимся, – поясняет Коллинг. – Например, решая, следует ли предпринять то или иное действие, мы можем представить себе его возможную альтернативу либо руководствоваться собственным ощущением простого наличия других возможностей, даже если мы не имеем в виду что-то конкретное. Соответственно, мы тут же начинаем искать более удачные варианты, если позволяет ситуация, а не мучаемся, выбирая между неудачными решениями».

Поэтому, скажем, пилот «Формулы-1» предпочтет не торопиться с обгоном другого болида на конкретном повороте, рассчитывая на то, что далее по ходу гонки ему представится более подходящая возможность. Коллинг с коллегами из Оксфордского университета нашли область лобной коры, ответственную за подобные решения, а также за привлечение информации из контекста.[36] «К примеру, благодаря этой области мы решаемся на рискованные шаги, только когда нас толкает к этому ситуация, – продолжает он. – Возьмем футболиста, чья команда на последних минутах матча проигрывает в счете. В этой ситуации он будет оценивать риски и последствия совсем не так, как в начале игры».

В отсутствие прессинга процесс принятия решений весьма демократичен. Вернемся к знаменитому голу, забитому Уэйном Руни «ножницами». Мозг игрока формирует план действий, например, «принять мяч на грудь» или «ударить головой с лета». В этом процессе задействованы сразу несколько участков, расположенных в лобной и теменной доле мозга.[37] Различные варианты действий представлены в виде определенных схем импульсной активности нейронов по аналогии с картинкой, складывающейся из отдельных кусочков, которые поднимают над головой болельщики на стадионе.

Электрические импульсы, исходящие из разных участков мозга, можно уподобить избирателям, голосующим за тот или иной вариант действий. Источником этих сигналов, в частности, служат: дорсальный поток, где происходит обработка информации о положении объектов; нейроны места и решетки, отвечающие за информацию о местонахождении объектов и окружающем пространстве; нейроны, связанные с мышцами и суставами. Сигналы делятся на возбуждающие и тормозные. Таким образом, как избиратели голосуют на референдуме, отмечая в бюллетене «да» или «нет», так же и нейроны способны влиять на то, активизируются ли другие нейроны, связанные с ними. В этом и состоит процесс принятия в расчет информации из всевозможных источников перед тем, как сделать выбор.

Данные сигналы, поступающие из различных зон мозга и тела, склоняют чашу весов за или против соответствующего плана действий. Когда уровень электрической активности (так называемая переменная решения) нейронов, представляющих ту или иную альтернативу, достигает определенного порогового значения, мозг приступает к выполнению соответствующего действия. Решение считается принятым.

Но на этом работа мозга не заканчивается. После того как выбор сделан, а тело уже приступило к выполнению действия, мозг продолжает корректировать свои сигналы телу в ответ на поступающие от него импульсы. Например, мозг формулирует задачу: «ударить головой с лета» – после чего строит прогноз относительно того, какой отклик он должен получить от глаз и других частей тела в процессе решения поставленной задачи.

Если информация от органов чувств не соответствует прогнозу, мозг может пересмотреть план действий, чтобы минимизировать вероятность ошибки. «Мозг не просто отдает четкие приказы, – объясняет научный обозреватель Карл Циммер в статье в научно-популярном журнале Discover, – он еще непрерывно уточняет санкционированную им программу действий, направленных на решение задачи. Спортсмены действуют эффективнее, чем все остальные, поскольку их мозг способен находить более эффективные решения».[38]

Короткий путь

После контакта с бейсбольной битой мяч летит по траектории, на которую влияет множество факторов: это и сила удара, и угол наклона биты, и скорость вращения, и уровень влажности воздуха, и направление ветра.

У опытного игрока, которому нужно поймать мяч, изначально уже есть преимущество. Он знает, куда нужно смотреть, и поэтому, в отличие от менее искушенного спортсмена, заранее готов к тому, как именно будет исполнена подача. Его движения доведены до автоматизма, следовательно, и сам процесс ловли мяча не представляет для него особых сложностей, если, конечно, он не будет слишком много задумываться о нем.

Однако мозгу еще нужно просчитать, в каком месте мяч должен коснуться земли, что, по идее, предполагает расчет траектории и скорости его движения. Дело в том, что от малейших изменений в скорости полета зависит очень многое, а единственным средством получения информации являются глаза спортсмена.

Игрок не может измерить скорость ветра и применить нужную физическую формулу. Если дать ему задачку на расчет траектории полета мяча, он вряд ли ее решит. Но, как ни странно, ему хватит какой-то доли секунды, чтобы побежать за мячом в правильном направлении.

Разгадка в том, что мозг умеет ловко пользоваться короткими путями к верному ответу. Этот метод также можно назвать методом использования готовых схем или эвристических правил. Его суть состоит в неосознанном применении определенных стратегий обработки информации, которые, как и метод фрагментации или группировки, позволяет снизить нагрузку на когнитивный аппарат. Нобелевский лауреат Даниэл Канеман в книге «Думай медленно… решай быстро» (Thinking Fast and Slow) так описывает эвристическое правило: «простейшая процедура, помогающая находить адекватные, хотя зачастую неидеальные, ответы на трудные вопросы».[39] Иначе говоря, это грубый, приблизительный расчет, основанный на практике.

В специальном исследовании методики, которую применяют опытные крикетисты в ловле мяча, Питер Маклауд из Оксфордского университета и его коллега Золтан Пал Дьенеш из Университета Сассекса взяли пушку, выстреливающую мячи под углом вверх с разной силой, чтобы они падали на разном расстоянии впереди или позади игрока. Затем они измерили скорость и направление пробежки каждого спортсмена и обнаружили, что все старались сделать так, чтобы угол, под которым они смотрят на мяч в течение всего времени его полета, оставался одинаковым.[40]




Мозг крикетиста не занимается расчетом траектории движения мяча, скорости ветра и вообще чем бы то ни было, что перегружает кратковременную память. Игрок просто смотрит на мяч и подстраивает собственную скорость так, чтобы взгляд был направлен на мяч под одним и тем же углом. Тем самым он гарантированно поймает мяч как раз тогда, когда тот прилетит в наиболее удобную для этого точку. Как мы уже знаем, в зрительном отделе коры головного мозга имеются нейроны, отвечающие за оптический поток, то есть воспринимающие приближение или отдаление объекта как изменение проекции его размеров на сетчатку глаза. Вполне вероятно, что у опытных ловцов хорошо развиты те области мозга, которые ответственны за учет угла зрения при наблюдении за движущимся объектом.

Подобные короткие пути к правильному решению называют «быстрыми и экономными эвристиками» за то, что они позволяют сберечь время и избежать сложных вычислений. Стратегия, основанная на использовании постоянного угла зрения, также находит применение в таких видах спорта, как регби или американский футбол, где бывает необходимо остановить бегущего соперника. Для этого спортсмены делают то же, что лев, охотящийся на антилопу: они бегут туда, где вот-вот окажется цель. Они настолько к этому привыкли, что способны проделывать это с завязанными глазами. К такому выводу пришел Деннис Шаффер из Университета Огайо, проведя эксперимент, во время которого игроки в американский футбол с повязкой на глазах должны были поймать мяч, в который было вмонтировано устройство, подающее звуковой сигнал.[41]

Такая стратегия не всегда себя оправдывает, в чем смогли убедиться игроки регбийной команды Harlequins в финале английской Премьер-лиги в 2013 г. Крайний нападающий их соперников Leicester Tigers Том Крофт при росте под два метра имел около 110 килограммов веса, однако для человека с такой комплекцией бегал он довольно резво. На записи игры видно, как защитник мчится наперерез, пытаясь перехватить Крофта, но не учитывает его феноменального разгона и падает на газон в тот самый момент, когда нападающий заносит мяч в зачетную зону, реализуя попытку.

Эвристическими правилами также пользуются спортсмены, решая, кому отдать пас. С точки зрения экономии умственных усилий проще всего действовать первым пришедшим в голову образом. По некоторым данным, так в 60–90 % случаев поступают игроки в баскетболе, австралийском футболе и гандболе.

Это объясняется тем, в какой последовательности в голове появляются различные варианты действий и как эта последовательность меняется в зависимости от прошлого опыта. «Действия, которые ранее совершались регулярно в аналогичных ситуациях, имеют больший приоритет, – поясняет Маркус Рааб, руководивший исследованием в области эвристики в спорте. – Мозг как бы уверен, что именно первый пришедший на ум ответ является наилучшим». Есть также данные о том, что опытным спортсменам на ум приходит меньше вариантов, чем начинающим. По сути, они способны сделать правильный выбор настолько быстро, что им просто не нужно генерировать множество вариантов.

Одна из наиболее известных теорий, объясняющих умение профессионалов быстро принимать верные решения, фактически также сводится к описанию короткого пути. Речь идет об использовании знакомых схем или считывании внешних сигналов. Этому вопросу посвящено большое количество работ. Даниэл Канеман относил такой способ мышления к Системе 1, которой, в свою очередь, противопоставлена Система 2, отвечающая за более вдумчивый мыслительный процесс. Тот же подход рассматривается в книге Малкольма Гладуэлла «Озарение. Сила мгновенных решений» (Blink: The Power of Thinking Without Thinking). При этом оба автора во многом опираются на книгу Гэри Клейна «Источники силы» (Sources of Power), где данный феномен называется моделью принятия решений, основанной на эффекте узнавания.

Вот цитата из книги: «Эксперты видят то, чего не видят остальные, и зачастую эксперты не понимают, что другие не в состоянии заметить того, что кажется им очевидным». Клейн приводит пример пожарных, которые интуитивно понимают, в какой момент горящее здание готово обрушиться. Тот же принцип применяется и в спорте.

«Эксперты, судя по всему, более тонко улавливают нужную информацию», – утверждает Нильс Коллинг. Мы действительно убедились в этом, анализируя их способности к вероятностному прогнозированию и определению источников полезной информации. Вспомним, как Криштиану Роналду точно угадывает направление движения защитника по одному движению его бедра.

Эффект узнавания срабатывает, когда спортсмен выполняет определенное действие или принимает определенное решение как реакцию на конкретный стимул. В бейсболе это будет, например, особый замах (или же отсутствие замаха) при виде вращения мяча или движения руки питчера, сигнализирующих о броске по дуге или о подаче с боковым отклонением мяча. В футболе – быстрое перемещение к ближней стойке ворот, как только крайний нападающий опускает голову, готовясь подать навес в штрафную.

Спортсмен ищет соответствие текущей ситуации среди тех, в которых он уже находился прежде, будь то во время игры или на тренировке. После этого он принимает решение, полагаясь на свой прошлый опыт. Отсюда смыслом тренировочного процесса является расширение диапазона ситуаций, в которых спортсмены должны действовать по схеме реакции на различные стимулы. В идеале нужно стремиться к тому, чтобы уметь принимать правильные решения во всех возможных ситуациях и тем самым добавить прогнозируемости в непредсказуемый мир спорта.[42]

Решения, принимаемые опытными спортсменами интуитивно, как правило, являются верными. Один из экспериментов с участием профессиональных шахматистов показал, что предельное сокращение времени на обдумывание ходов практически не сказалось на качестве их игры, поскольку в большинстве случаев первое же пришедшее им в голову решение было наиболее рациональным.

Постепенно, по мере накопления опыта, подобные экспресс-схемы закрепляются, благодаря чему и в более сложных ситуациях решения также приходят интуитивно или инстинктивно. Спортсменам кажется, что они просто угадывают, но их решения, как правило, оказываются верными. С каждым отданным пасом или принятой подачей их движения становятся все быстрее и точнее, а в их мозге происходят физические изменения. Эта способность мозга к адаптации называется нейропластичностью, и в следующей главе мы увидим, что именно она позволяет понять, в чем же состоит уникальность мозга спортсмена.

Глава 3

Изменения в мозге. Роджер Федерер

Сердце Билли Моргана бешено колотится. Апрель 2015 г. Склоны Итальянских Альп близ коммуны Ливиньо. Билли 26 лет, он сноубордист, и сейчас ему предстоит решающая попытка. На кону звание чемпиона мира, цена ошибки огромна.

– Мы готовились к этому полгода, – рассказывает Билли во время интервью спустя некоторое время. – Я очень переживал, не спал из-за этого. Я не думал, что когда-нибудь этот день настанет и я действительно окажусь там и выполню свою попытку.

Морган родился в Саутгемптоне, у него синие глаза, средней длины русые волосы, разделенные посередине пробором, он заводит их назад, открывая уши. Напоминает музыканта из группы Nirvana. Это один из сильнейших сноубордистов в мире, на зимней Олимпиаде 2014 г. в Сочи он занял десятое место в дисциплине слоупстайл, где судьи оценивают ловкость спортсменов при выполнении самых невообразимых трюков в воздухе.

Спортсмен исполнил обратный четверной корк с оборотом вокруг собственной оси на 1800 градусов – захватывающую серию кульбитов, включая четверное сальто. «Это был уникальный трюк, – объясняет Морган. – Никто до этого не делал сразу четыре оборота, так что я снова поднял общую планку. Вообще не так много на свете видов спорта, где делают четыре сальто в одном прыжке».

Чтобы выполнить удачное приземление после таких вращений, требуются одновременно физическая сила, идеальная координация движений, изрядное мужество и умение контролировать свое тело. Сила – это мышцы, которые Морган тренировал годами. Координация и все остальное – это его мозг, в котором, так же как и в мышцах, за годы занятий спортом произошли определенные изменения.

«Самое главное – тренировать автопилот, – считает Морган. – Если он не сработает, все может кончиться плохо. Автопилот подсказывает, когда пора разгруппироваться – раскрыться перед приземлением. Раскроешься на долю секунды раньше – и считай, свалился. Это чувство приходит, только когда проделаешь прыжок тысячу раз. Когда смотришь, как впервые делают двойной корк, у одного сразу видно, что он умеет вращаться в воздухе, а другой просто делает упражнение, и выглядит это, как будто мешок вверх подбросили. Форма тела не меняется, потому что с ним никогда не было такого раньше, и тогда лучше ему пока вообще не браться. Нужно сначала развить чувство контроля над собственным телом в воздухе».

Морган составил свою программу из небольших кусочков, отдельно тренировал отрыв и приземление, а затем связал все вместе. Вторя британскому раллийному гонщику Элфину Эвансу, Морган признается, что, выполняя сложный прыжок, он не думает абсолютно ни о чем. «Я прихожу к выводу, – говорит он, – что у человеческого тела есть некий предел информации, за которым память просто выключается. Ты настолько сконцентрирован, что после приземления уже не можешь вспомнить, как все происходило».

Андерс Эриксон посвятил свою жизнь изучению того, как достигаются высоты вроде тех, что достиг в своем деле Морган. Эриксон вырос в Швеции и начал карьеру ученого в то время, когда его соотечественники демонстрировали выдающиеся успехи в спорте: Ингемар Стенмарк был королем слалома, Бьорн Борг один за другим брал чемпионские титулы на Уимблдоне и «Роллан Гаррос». Эриксон же, поняв, что ему никогда не стать гроссмейстером, сосредоточился на том, откуда берется профессиональный навык в таких областях, как спорт или музыка, и его работы со временем легли в основу современного понимания этого вопроса.

Благодаря его исследованиям,[43] мы сегодня знаем о правиле 10 000 часов, согласно которому, если планомерно практиковаться в течение десяти тысяч часов, можно добиться профессионального уровня в чем угодно: в иностранном языке, игре на музыкальном инструменте, в любом виде спорта. Это может быть и что-то менее конкретное, например программирование. Главное в том, что единственным отличием профессионала от любителя является практика. Сам Эриксон полагает, что его работу истолковали неверно, но факт остается фактом: в исследовании, из которого было выведено знаменитое правило, была опрошена группа скрипачей. Их спрашивали о том, с какого возраста они начали заниматься скрипкой, по сколько часов в день занимались и сколько часов в день, по их мнению, они посвятили тому, чтобы выйти на свой нынешний уровень. Из ответов тех, кто имеет все шансы стать солистами мировой величины, было получено среднее значение 10 000 часов.

Это прекрасный стимул, особенно для тех, кто ненавидел уроки физкультуры в школе или кое-как подбирал аккорды к любимой песне на акустической гитаре. Ведь это означает, что добиться уровня своего кумира абсолютно реально, нужно лишь приложить достаточно усилий. Именно поэтому бывший фотограф Дэн Маклафлин в возрасте 31 года бросил свою профессию и всерьез замахнулся на выступление на профессиональном гольф-турнире в октябре 2016 г. К этому сроку он запланировал завершить свою программу подготовки, рассчитанную как раз на 10 000 часов.

Данное правило также знаменует собой кардинальную смену парадигмы в нейробиологии, что стало особенно заметно за последние лет сорок. Речь о развенчании представления о том, что талант – вещь врожденная. В начале XIX в., когда наука о мозге только формировалась, была популярна концепция, известная как френология.

Согласно ей, наши мысли и эмоции локализованы в различных участках мозга, причем психологические особенности конкретного человека можно точно определить путем детального обмера черепа в соответствующих местах. Многие сегодня берут в качестве предмета интерьера керамический череп с размеченными на нем областями, загадочно подписанными «интуиция» или «предвидение».

С точки зрения современной науки мозг представляет собой подвижную, гибкую и адаптирующуюся систему, формируемую как природой, так и обучением. Разумеется, успешные спортсмены отчасти обязаны своими достижениями генетике: нельзя выйти в финал стометровки на Олимпиаде, не имея нужного типа быстро сокращающихся мышечных волокон, сколько часов в день ни тренируйся.[44] В главе 1 мы уже установили связь между качеством игры бэттера в бейсболе и его врожденной остротой зрения, что определяет его способность замечать вращение мяча на начальном этапе подачи.

Конечно, различные комментаторы и болельщики часто говорят о врожденном таланте, одаренности отдельных спортсменов, тем не менее ученые склонны считать мастерство следствием не природного дара, а практики. Или же, как утверждает Гладуэлл в «Гениях и аутсайдерах», по крайней мере, возможности практиковаться более 10 000 часов, а это зачастую зависит от условий и определенного везения.

Примером может служить биография гольфиста Рори Макилроя, который шестилетним мальчиком посылал мячи ударом клюшки прямиком в стиральную машину, став героем репортажа на ирландском телевидении, или знаменитых сестер Уильямс. Когда Серена и Винус были еще маленькими, их отец Ричард завел досье на 78 страницах, где подробно расписал свой план по воспитанию из них лидеров мирового женского тенниса.

Ни один спортсмен не рождается с умением рассчитывать траекторию мяча после отскока или принимать выверенные решения за долю секунды. Все это навыки, на формирование которых уходят тысячи часов тренировок. Такие тренировки, как, впрочем, и все, что мы делаем, заставляют наш мозг изменяться. Когда Билли Морган спускается по склону на сноуборде или приземляется после прыжка, он оставляет следы не только на снегу, но и в собственной голове.

В этом суть нейропластичности. Наш разум – такой же податливый материал, как пластилин. Потому наш мозг является гибкой системой, способной к научению на основе полученного опыта, а также к адаптации и восстановлению после травм. Любые наши действия, равно как и все, что действует на нас, вызывает в мозге небольшие изменения. Со временем эти изменения накапливаются, заставляя нас в аналогичной ситуации в будущем действовать уже несколько иначе. Если бы кто-то прокатился по склону за Морганом, для него это был бы уже не совсем тот же самый склон, потому что на снегу оставались бы следы от сноуборда Моргана.

«Наш мозг можно сравнить с заснеженным склоном, – объясняет пионер в области исследований нейропластичности Альваро Паскуаль-Леоне на страницах бестселлера Нормана Дойджа «Пластичность мозга» (The Brain That Changes Itself).[45] – Физические характеристики: уклон, тип горной породы, плотность снега – это данность, как наши гены. Съезжая с него на санках, мы можем ими управлять, и след, который мы оставим, будет зависеть, во-первых, от нашего навыка управления санями, а во-вторых, от характеристик самого склона. Мы вряд ли сможем точно сказать, где именно закончится наш спуск, поскольку на это влияет очень много факторов. Однако можно с уверенностью утверждать, что во второй раз мы, скорее всего, окажемся где-то поблизости от того места, где пролегал наш путь в первый раз. Это не будет полным повторением первого маршрута, но мы точно пройдем вблизи него. А если мы будем так кататься весь день, то к вечеру увидим, что по одним дорожкам мы проехали много раз, а по другим – всего ничего».

Тем, кто давно вырос, но по-прежнему мечтает стать успешным спортсменом, не меняя основной профессии, как Дэн Маклафлин, будет приятно узнать, что благодаря прогрессу в изучении феномена нейропластичности можно обойти правило 10 000 часов. В свете новых знаний о том, каким образом мозг лидеров мирового спорта сумел измениться за счет тренировок, обычный любитель сможет кардинально развить свои навыки, а ученые вместе с перспективными компаниями смогут разработать новые средства тренировки мозга, расширив границы человеческих возможностей. Но вначале следует разобраться в том, как годы упорной работы изменяют образ мышления. Мы поговорим об этом на примере длинных рук Роджера Федерера, замечательной дружбы Энди Коула и Дуайта Йорка, а также пугающих перспектив нейродопинга. Но начинается эта история, как, впрочем, и многие другие, на заднем сиденье лондонского такси.

Используй – или потеряешь

Оно розовое. При взгляде из машины кажется, будто прямо на дороге у тротуара валяется голова коровы. Если бы не это внезапное наваждение, то возникает чувство, что едешь по магистрали в торговом районе Лондона в классическом английском кебе. Несколько сотен таких такси покрасили в дикий розовый цвет и доставили сюда, в Баку, в преддверии Европейских игр 2015 г. Таксист, у которого сегодня больше пассажиров, чем оставшихся зубов, несомненно, человек с богатым жизненным опытом, но, судя по жуткой тряске в машине, движущейся по грунтовой дороге на окраине азербайджанской столицы, его водительский стаж вряд ли дотягивает до 10 000 часов.

Нейробиолог, вооруженный аппаратом фМРТ, мог бы подтвердить, что нам не повезло с кебменом. Дело в том, что лондонские таксисты одними из первых продемонстрировали, какие изменения происходят в мозге под влиянием практики.[46] Чтобы получить лицензию – даже сегодня, в эпоху спутниковой навигации и сервисов вроде Uber, – они должны пройти жесткий отбор по результатам теста на знание Лондона. Чтобы справиться с тестом, претенденты обязаны наизусть выучить громадный объем информации о сложной системе лондонских улиц.

Оказалось, что в процессе запоминания у них изменяется размер гиппокампа, отдела мозга, отвечающего за пространственное мышление и память. Точнее, у лондонских таксистов гиппокамп значительно больше, чем у обычных людей, причем его размер, как выясняется, зависит от количества лет водительского стажа.

С развитием технологий визуализации мозга в последние десятилетия ученым удалось продвинуться в понимании процессов, происходящих в мозге во время практики. В некотором отношении мозг ведет себя как мышца: если он используется, он увеличивается в размерах, если нет – уменьшается. Так что, возможно, френологи были не так уж неправы.

Профессионального спортсмена выделяют не только мощные бицепсы. Те же гольфисты могут иметь самые разные габариты,[47] однако грамотный нейробиолог обнаружит их по характерным особенностям нейронной архитектуры. В 2009 г. группа швейцарских ученых повторила эксперимент Эриксона, взяв вместо скрипачей 40 человек с разным уровнем и опытом игры в гольф. Десять из них были профессиональными гольфистами, у десятерых был гандикап от 0 до 14, еще у десяти – от 15 до 36, а оставшиеся десять вообще никогда в жизни не играли ни в гольф, ни даже в мини-гольф (напомним, что в гольфе, чем меньше значение гандикапа, тем выше класс игрока).

Исследователи не стали тащить последнюю группу на поле, чтобы не тратить впустую время, а задали несколько вопросов остальным трем группам: когда они начали заниматься и сколько всего часов, по их мнению, они провели на поле вплоть до этого момента. Как нетрудно догадаться, профессионалы начали в более раннем возрасте, чем представители двух других групп.[48] Но самое большое различие касалось количества времени, уделенного игре. У самой слабой группы в среднем оказалось 758 часов, у более продвинутой получилось 3207 часов, а профессионалы выдали умопомрачительные 27 415 часов практики.

Иными словами, если проводить на поле по восемь часов ежедневно, включая выходные и праздники, то, чтобы достичь такого показателя, понадобится почти 10 лет. Средний возраст группы профессионалов – 31 год.

В результате тренировок в течение столь продолжительного времени произошли серьезные изменения. К такому выводу пришли швейцарские исследователи, когда подвергли сканированию мозг участников эксперимента на предмет изменений в сером веществе. Оно состоит из тел и отростков нейронов, и у гольфистов из двух лучших групп его оказалось больше, чем у остальных испытуемых. Прирост серого вещества у них наблюдался в различных участках лобной и теменной доли, ответственных за контроль движений тела.

То есть данные участки мозга в буквальном смысле увеличились на фоне длительной практики.

Ученые из Китайской академии наук в Пекине пришли к аналогичным результатам, сравнив мозг профессиональных прыгунов в воду с трамплина и тех, кто не занимался этим видом спорта.[49] Выяснилось, что у спортсменов толщина коры в некоторых участках, в том числе тех, что играют важную роль в восприятии биологических движений, больше. По мнению исследователей, утолщение коры в этих областях может быть связано с тем, что данные атлеты более четко воспринимают движения, выполняемые другими людьми. Умение учиться посредством наблюдения – важнейший навык для прыгунов в воду, ведь в этом залог их собственного профессионального развития. Соответственно, у более опытных спортсменов кора головного мозга в этом месте толще.

Принцип научения через наблюдение крайне важен в процессе приобретения практических навыков. Вспомним, что мы говорили в главе 1 о зеркальных нейронах, которые возбуждаются и когда мы сами выполняем какое-либо действие, и когда смотрим за тем, как это делают другие. Таким образом, зеркальные нейроны и явление нейропластичности помогают понять, как спортсмены повышают свое мастерство, а также учатся прогнозировать действия соперников.

Клоуны и война

Чтобы начать изменяться, мозгу требуется на удивление немного времени. Выше мы говорили о величинах порядка нескольких тысяч часов практики в течение нескольких лет, однако группа исследователей из Германии установила, что, когда мы осваиваем какой-то новый для себя навык, изменения в нашем мозге благодаря его пластичности могут произойти всего за пару месяцев. Ученые провели фМРТ мозга жонглеров.[50] Для участия в исследовании они пригласили начинающих артистов, так что им не пришлось выдергивать клоунов с арены и загонять в металлическую трубу томографа (интересно, сколько бы их туда поместилось?)

Сперва ученые просканировали мозг 24 артистов, после чего половине из них дали задание за три месяца научиться жонглировать тремя шариками. Через три месяца провели повторное сканирование и обнаружили у тех, кто учился жонглировать, характерное увеличение объема серого вещества. Еще через три месяца, в течение которых им запретили жонглировать вообще – ни горящими факелами, ни ятаганами, ничем, – томограф показал, что объем серого вещества стал уменьшаться.

Вывод: мозг ведет себя подобно мышце не только в том плане, что он увеличивается в определенных местах, если его хорошенько потренировать, но и в том, что он уменьшается, если приобретенный навык не используется. Конечно, в реальности все несколько сложнее. И, чтобы понять, какие процессы протекают в ходе увеличения или уменьшения объема отдельных областей мозга, нужно копнуть чуть глубже.

На первый взгляд кажется, что нейронные цепи в мозге перепутаны, примерно как небрежно свернутая новогодняя гирлянда, но на самом деле они устроены очень логично. В главе 1 мы познакомились с топографической организацией зон обработки зрительной информации, которые расположены в виде сетки, как на карте мира. Информация об объекте, находящемся в правом верхнем углу поля зрения, обрабатывается в зоне, непосредственно примыкающей к зоне обработки информации об объекте, расположенном в поле зрения справа посередине.

Другие зоны головного мозга, в том числе первичная двигательная кора, устроены аналогичным образом. Если подвести электрод к определенной точке данного участка мозга, можно вызвать сокращения мышц мизинца. А если чуть сместить электрод, то сокращаться будут мышцы уже безымянного пальца на той же руке. Первую карту, на которой показано взаимное расположение участков коры головного мозга, составил канадский нейрохирург Уайлдер Пенфилд.

В 1940–1950-х гг. он разработал и впервые применил метод лечения эпилепсии, получивший название монреальской процедуры. Суть метода в разрушении нейронов в тех областях мозга, где находится очаг заболевания. Для обнаружения этого очага Пенфилд использовал электростимуляцию различных участков коры. Пациент при этом оставался в сознании под местной анестезией, соответственно, хирург мог наблюдать за его реакцией. Данная технология применяется и сегодня в отдельных случаях для удаления опухоли мозга. Благодаря этому методу нейрохирург может контролировать ход операции, чтобы случайно не задеть важные мозговые центры. В интернете есть ролики, на которых видно, как пациенты разговаривают, поют и даже играют на гитаре прямо во время операции.

Применяя свой метод, Пенфилд смог одним из первых наблюдать связь между различными участками коры и частями тела человека. В результате он создал карту сенсорной и двигательной коры, получившую название «двигательный гомункулус» (см. ниже), части тела которого пропорциональны соответствующим им рецептивным полям коры головного мозга.

Чтобы получить наглядное представление о рецептивном поле, проще всего будет провести небольшой эксперимент. Попросите друга закрыть глаза и после этого коснитесь его ладони двумя пальцами, между которыми будет 2–3 сантиметра. Спросите, прикосновение скольких пальцев он почувствовал. Затем повторите опыт с одним пальцем, с тремя, чередуйте разные комбинации. В большинстве случаев друг будет отвечать правильно. Тогда измените расстояние между пальцами: чем оно меньше, тем сложнее будет испытуемому понять количество точек контакта. Постарайтесь определить расстояние, при котором ваш друг больше не сможет точно угадывать, сколькими пальцами вы его коснулись – одним или двумя. Это расстояние и будет размером рецептивного поля сенсорной системы на его ладони.

Попробуйте повторить эксперимент уже на другой части тела – допустим, на плече или на спине. Теперь испытуемому будет гораздо труднее различать прикосновения к одной и нескольким точкам на небольшом расстоянии. Причина в том, что в этих местах кожа менее чувствительна, чем на ладони, соответственно, и рецептивные поля там больше.

Центральная область сетчатки глаза представлена в зрительной коре значительно бо́льшим участком, чем периферия, – подобно врезке на карте города, где центр изображен в более крупном масштабе. В плане тактильных ощущений с кончиками пальцев связана гораздо более обширная область коры, чем с аналогичным по размеру участком кожи на спине, поэтому пальцы куда более чувствительны, чем, скажем, спина.

Все сказанное относится и к двигательной коре. Пальцы на руках гораздо подвижнее пальцев на ногах и реагируют на команды мозга гораздо точнее, поскольку они представлены в мозге большей по площади зоной коры. Это нашло схематичное отражение на двигательном гомункулусе (довольно малоприятная на вид картинка, надо сказать), который со времен опытов Пенфилда практически не претерпел изменений.

Данные зоны являются строго ограниченными: во-первых, они могут накладываться одна на другую, а во-вторых, благодаря нейропластичности, могут увеличиваться и сокращаться в размерах. В еще одном исследовании с участием скрипачей было впервые доказано, что у профессионалов карта мозга действительно выглядит иначе, и причиной является длительная практика. С 1950-х гг., когда Пенфилд проводил свои эксперименты, техника шагнула далеко вперед, так что теперь больше не нужно запускать людям в мозг электроды и заставлять их играть на скрипке.[51]


Первичная двигательная кора: 1 – бедро; 2 – туловище; 3 – рука (кроме кисти); 4 – кисть; 5 – ступня; 6 – лицо; 7 – язык; 8 – гортань


Сегодня применяют технологию транскраниальной магнитной стимуляции (ТМС). Метод предполагает проведение катушки с током над головой пациента; возникающее при этом магнитное поле способно стимулировать или тормозить возбуждение нейронов. Когда катушка проходит над двигательной корой, эффект практически аналогичен стимуляции с помощью электродов. А если одновременно проводить сканирование на аппарате фМРТ, можно точно установить, с какими мышцами связаны те или иные участки мозга.

В данном конкретном случае исследователей больше интересовали мышцы левой руки, поскольку ее пальцами скрипач прижимает струны к грифу, и от того, как он их прижимает, зависит, какой звук издаст инструмент – услаждающую слух мелодию или мерзкий, до костей пробирающий визг. У скрипачей-виртуозов движения должны быть быстрыми, уверенными и четкими.

Ученые, параллельно работавшие в лабораториях в Германии и Бирмингеме (штат Алабама, США), выяснили, что пальцы левой руки скрипачей представлены в мозге большей по размеру областью, чем у контрольной группы. В то же время соответствующие области для правой руки в обеих группах были одинаковыми. Более того, одинаковыми оказались и участки мозга, контролирующие движения большого пальца левой руки, поскольку у скрипачей он просто охватывает шейку грифа, не совершая других движений.

Итак, за годы практики мозг профессиональных скрипачей претерпел структурные изменения. Была даже установлена зависимость между степенью реорганизации участков коры, отвечающих за движения мышц левой руки, и возрастом, с которого каждый из испытуемых начал заниматься скрипкой: чем раньше это произошло, тем значительнее были изменения.

Полученные выводы применимы и к спортсменам. Ракетка Роджера Федерера, конечно, не является произведением искусства, как скрипка Страдивари, но годы тренировок и выступлений на корте вызвали похожие изменения и в его мозге. Можно смело утверждать, что зона коры, контролирующая правую руку, у Федерера заметно больше, чем у теннисиста-любителя.

В 2013 г., после падения спортивной формы, Федерер решил сменить ракетку и, следуя тогдашнему тренду среди элиты мирового мужского тенниса, выбрал себе ракетку с большей площадью струнной поверхности. «Ракетка – это самый главный предмет инвентаря для теннисиста,[52] – говорит Даррен Кэхилл, сам в прошлом профессиональный игрок, в материале The New York Times, посвященном этому переходу Федерера. – Ты должен понимать ее. Знать ее. Доверять ей. Она как член семьи. Истории о том, как теннисисты не расстаются с ракеткой даже во сне, – чистая правда. Мы видим ракетку чаще, чем кого бы то ни было за свою жизнь».

Проводя такое количество времени с инвентарем вроде теннисной ракетки, мы запускаем процесс изменений в своем мозге. Группа ученых из Австралии проанализировала проекции кистевых мышц на кору головного мозга у пяти топовых бадминтонистов. Исследование показало, что у данных спортсменов размер соответствующих проекций больше, чем у тех, кто время от времени играет в бадминтон в компании, не говоря уже о тех, кто вообще никогда не держал в руках какой-либо ракетки.

С увеличением размера участка коры, связанного с определенной мышцей или группой мышц, возрастает и степень чувствительности, с которой эти мышцы можно сознательно контролировать. Многим людям трудно совершить движение безымянным пальцем так, чтобы мизинец остался в покое, однако у пианистов или гитаристов это обычно получается лучше. Если привязать друг к другу два соседних пальца, чтобы они могли двигаться только вместе, и оставить так на некоторое время, то и после того, как снимете веревочку, вы не сразу сможете шевелить ими по отдельности, потому что в мозге уже успела произойти небольшая реорганизация.

При смене привычного инвентаря мозг тоже перестраивается. После того как Федерер взял другую ракетку, в его двигательной коре стали происходить определенные изменения. Когда Рори Макилрой подписал многомиллионный контракт с фирмой Nike, он практически сразу сменил клюшки, мячи и другой инвентарь, после чего в его игре случился провал. Он смог вернуться к своему прежнему уровню лишь спустя некоторое время. С точки зрения нейрофизиологии это время понадобилось его мозгу, точнее, участкам его коры, отвечающим за соответствующие мышцы, чтобы провести микроскопическую корректировку для адаптации к мельчайшим изменениям в форме и весе клюшки.

Подобные изменения в мозге могут начаться очень быстро. Размеры участков коры не постоянная величина; смежные участки могут расти за счет друг друга, накладываться один на другой. Мы беседуем с Билли Морганом в период его восстановления после серьезной операции на передней крестообразной связке колена. Ему не сидится на месте, он жаждет поскорей вернуться к активным тренировкам, но пока врачи не разрешают ему бегать и прыгать. «Мне очень тяжело сидеть без движения, – сетует он. – Говорят, я больше не смогу гонять на скейте, но, может, я как-нибудь сбегу к одному приятелю, чей дом тут недалеко, и тогда… Я же просто с ума сойду, если буду сидеть в спортзале и делать жим ногами».

Билли нельзя будет вставать на сноуборд в течение полугода. Потом, когда он впервые после вынужденного перерыва поднимется на заснеженный склон, он не сразу сможет выполнять те трюки, которые у него получались раньше. Ощущение застоя и потери формы у спортсменов после травмы происходит из-за все той же пластичности мозга, только теперь она работает в обратном направлении: если связи между нейронами долго не используются, они атрофируются так же, как мышцы. В начале своей карьеры сноубордиста Морган тоже делал перерывы между сезонами на полгода, после чего первые несколько дней он чувствовал застой в мышцах, однако теперь это ощущение будет сопровождать его дольше, поскольку его уровень до травмы был весьма высоким. «Я буду вновь разучивать прежние трюки постепенно, и в этом своя сложность, – объясняет он. – На то, чтобы опять освоить несколько трюков, уходит уйма времени, но бывает, что с приземлением после какого-то одного прыжка приходится воевать бесконечно. Нужно остановиться и решить, какие трюки можно оставить, и накатывать их дальше на тренировках».

Сейчас в голове Моргана идет война за территорию. Когда человек ломает ногу и какое-то время не нагружает ее, область мозга, отвечающая за контроль этой ноги, поглощается соседними областями. Различные исследования пациентов, которым были ампутированы те или иные конечности, показывают, что соседние области мозга расширяются за счет области, связанной с ампутированной конечностью. Битва за нейронную ткань ведется по принципу «все против всех» или в данном случае «используй – или потеряешь», как можно потерять свою часть газона для игры в крикет в общественном парке, если рядом с тобой другая компания играет более активно.

Бомбардиры и брюхоногие

Когда в 1999 г. Manchester United сделал золотой хет-трик, выиграв подряд три турнира, своим феноменальным успехом команда во многом была обязана самому блестящему дуэту нападающих в современной истории футбола. Энди Коул и Дуайт Йорк на двоих наколотили в том сезоне 53 гола. Какая-то телепатическая связь между ними сохранялась и вне поля, не говоря уже о том, что автор The Guardian Роб Смит назвал «чем-то вроде мощной эмпатии, которую обычно можно наблюдать в сентиментальных комедиях». До матча в Премьер-лиге с Southampton в октябре 1998 г. Коул и Йорк провели в одном составе всего одну игру. На 11-й минуте встречи Коул получает мяч на левом фланге и делает навес к ближней штанге на Йорка. Тот в подкате падает на газон, но успевает послать мяч в сетку. После этого двое нападающих вместе продолжили терроризировать защиту соперников до конца сезона.

За пределами стадиона они так же быстро наладили дружеский контакт. «Энди помогал мне найти жилье, показывал город, – вспоминал Йорк 15 лет спустя. – Он даже пригласил меня к себе поужинать вместе с его семьей. У меня тогда в Манчестере не было знакомых, так что Энди был единственным, кто помогал мне. И это оказалось очень кстати, когда нам выпало играть вместе. У нас возникло полное взаимопонимание».[53]

Если бы Коул с Йорком так отлично не поладили, смогли бы они забить вместе столько голов? Или, быть может, не закатись тогда тот первый мяч в ворота Southampton, не сложилось бы такой замечательной дружбы. Это не просто гадание, а иллюстрация одного из ключевых принципов нейропластичности. Поскольку наши мысли и воспоминания рождаются благодаря связям между миллиардами нервных клеток, чтобы изменить их, нужно изменить силу связей между отдельными нейронами.

Нейрон внешне напоминает дерево – с корнями, стволом и кроной. «Корни» нейрона длинные и тонкие, они называются дендритами. Их функция – получение сигналов от других нейронов. Длинный отросток нейрона называется аксоном, он значительно толще дендритов. Ближе к своему окончанию аксон имеет ответвления, посредством которых он передает сигнал другим нейронам. Между аксоном одной нервной клетки и дендритом следующей имеется небольшой зазор – синапс. Электрический импульс сам по себе не может преодолеть этот зазор, поэтому, когда нейрон активируется, он высвобождает в синаптическое пространство некоторое количество нейромедиаторов – веществ, которые преодолевают это пространство, достигают следующего нейрона и передают ему импульс, вызывая его активизацию.

Когда один нейрон заставляет другой активироваться либо когда два нейрона активируются почти одновременно, связь между ними усиливается благодаря химическим изменениям в синапсах. Итак, если два нейрона активируются совместно, они становятся связанными друг с другом.

Идея далеко не нова. Впервые она была высказана еще Зигмундом Фрейдом, но сегодня известна как правило Хебба, по фамилии канадского нейропсихолога Дональда Хебба, который сформулировал это правило в своей книге «Организация поведения: нейропсихологическая теория» (The Organisation of Behavoiur). Химическое обоснование правила было получено в 1960-х гг., после того как невропатолог и психиатр Эрик Кандел занялся препарированием гигантского морского моллюска Aplysia californica. Брюхоногие этого вида имеют одну уникальную особенность: у них насчитывается всего порядка 20 000 нервных клеток, причем они необычайно крупные и прозрачные, что делает их удобными для изучения. Локализовав одну полную нейронную цепь моллюска, Кандел смог увидеть, какие изменения происходят в синапсах при активизации механизмов памяти.

Связь между нейронами осуществляется посредством нейромедиаторов – веществ, которые выпускаются передающим нейроном, проходят через синапс и достигают рецепторов принимающего нейрона, возбуждая в нем электрический импульс.

Когда импульс возникает в двух нейронах одновременно, связь между ними усиливается. Активизируется специальный ген, вызывающий структурные изменения в обоих нейронах. В результате первый начинает вырабатывать больше нейромедиаторов, а во втором появляется больше рецепторов, рассчитанных на эти конкретные нейромедиаторы. Таким образом, открыв одну дверь, мы одновременно прорубаем несколько новых. В одном из исследований Кандел и его коллеги установили, что в ходе этого процесса число рецепторов у одного нейрона может увеличиться более чем в два раза.

Данные процессы лежат в основе механизмов научения и памяти. Когда человек совершает некое действие или переживает некое ощущение, у него активируется определенная цепочка нейронов, каждый из которых воздействует на соседние. Их совместная активация усиливает связь между ними: высвобождение нейромедиаторов того или иного типа приводит к увеличению числа рецепторов и, соответственно, к появлению новых синаптических связей. В итоге меняется карта коры головного мозга. Однако на этом изменения не заканчиваются. В каждом виде спорта есть свои легенды о тех, кто оставался в зале после тренировок. Дэвид Бекхэм, выступавший за Manchester United, был как раз таким игроком. По окончании тренировки он подолгу самостоятельно оттачивал мастерство выполнения свободных ударов, что помогло ему стать одним из величайших исполнителей стандартов в истории футбола. Англичанин Ронни О’Салливан, снискавший славу великого снукериста, сам будучи правшой, тренировал удары левой рукой до тех пор, пока не научился уверенно выполнять их в игре.

Положительный эффект практики наблюдается и после того, как навык успешно освоен, поскольку она повышает продуктивность работы мозга. Допустим, человек годами выполнял определенную работу. Он прекрасно знает, что от него требуется, потому прекрасно со всем справляется. Более того, по прошествии времени ему уже не нужно прилагать столько усилий, как раньше, но качество от этого нисколько не страдает. Точно так же происходит и с нейронами головного мозга.

В процессе освоения навыка увеличивается размер проекции той части тела, которая задействована в реализации данного навыка, на кору мозга. Однако постепенно число нейронов и количество энергии, необходимые для осуществления этого действия, уменьшаются, поскольку мозг научается использовать мышцы более эффективно.[54] Иллюстрацией может служить игра звезд мирового спорта. Достаточно взглянуть на то, как Лионель Месси уверенно контролирует пас, как экономны его движения, как легко он касается мяча, и сравнить с игрой футболиста второго дивизиона. Обратите внимание на плавность движений полевого игрока в крикете или бейсболе при выполнении броска, а потом попробуйте сделать так же. Или присмотритесь к тому, как Роджер Федерер выполняет удар справа: кажется, будто его рука плывет по воздуху, когда он ставит победную точку в матче.

Имя бразильца Неймара получило известность в мировом футболе еще до его многомиллионного трансфера из Santos в Barcelona, где уже играл Месси. Его отец был футболистом, и в детстве Неймар играл в мини-футбол и уличный футбол. Когда мальчику было всего 11 лет, его заметили в молодежной академии Santos и пригласили в клуб. Так что, учитывая, сколько времени он посвятил футболу, можно уверенно сказать, что свои 10 000 часов он отработал уже давно.

В 2014 г. в Японии провели исследование, чтобы определить, насколько именно повысилась эффективность работы мозга Неймара благодаря многолетней практике.[55] Исследование проводилось на аппарате фМРТ: футболист должен был совершать вращательные движения ногой ниже колена попеременно по и против часовой стрелки, меняя направление вращения каждые несколько секунд. В исследовании также приняли участие трое других профессиональных футболистов, двое пловцов из числа лидеров, а также один футболист-любитель. Выяснилось, что во время выполнения задания уровень мозговой активности у футболистов был ниже, чем у пловцов, у профессиональных футболистов – ниже, чем у любителя, а самым низким он оказался у Неймара.

Ученые считают, что причина здесь в том, что Неймар много лет играл босиком, перепробовав порядка 50 разных типов мячей. Итогом стали изменения в его мозге: укрепились связи между нейронами, а зона коры, отвечающая за движения ног, увеличилась и к тому же стала функционировать более эффективно.

Этот феномен часто называют мышечной памятью, однако высокая эффективность работы нейронов – это лишь одна сторона такой памяти. Другая предполагает высокую скорость выполнения операций, и здесь важную роль играет миелин – богатое липидами белое вещество головного мозга.

Авто(мато)бан

Почему у спортсменов с определенного возраста начинается спад? Понятно, что тело, которое столько лет заставляли работать на пределе возможностей, говорит, что дальше так нельзя. Однако спортсменов начинает подводить не только тело, но и голова: реакция уже не та, что прежде, а период, в течение которого они могут компенсировать потерю скорости за счет опыта, ограничен.

Нейрон похож на электрический провод. Если его правильно заизолировать, ток пойдет быстрее и без ненужных потерь. Для нейронов в роли изолятора выступает миелин. Научение, как мы выяснили, определяется изменениями в синапсах; миелин же закрепляет результаты научения. Он формирует оболочку вокруг нейрона, подобно изолятору вокруг медного провода. Таким образом, нервный импульс не теряется при прохождении через нейрон, а скорость его прохождения становится выше. «Благодаря миелину узкие дорожки, по которым идет сигнал, превращаются в сверхскоростные автобаны, – пишет Даниэл Койл в книге «Код таланта» (The Talent Code). – Нервные импульсы, которые до этого «тащились» со скоростью менее 1 м/с, после формирования миелиновой оболочки «летают» со скоростью порядка 90 м/с».

Появление слоя миелина по всему пути проведения импульса сравнимо со сменой телефонного интернет-соединения на широкополосное. Кроме того, оболочка дает возможность сократить временной разрыв между сигналами, что в совокупности ведет к увеличению скорости обработки информации в 3000 раз. Как мы убедились, ключевое отличие спортсменов от обычных людей состоит в их способности заблаговременно считывать важную информацию и быстро принимать на ее основе точные решения. Отсюда главное – это скорость, а скорость – это миелин.

При активизации нейрона происходит не только упрочение его связей с соседями, процесс также привлекает клетки олигодендроциты, которые на томограмме выглядят как светящиеся зеленые точки. Они-то и вырабатывают миелин, слой за слоем окружающий нервную клетку. Все это происходит крайне медленно, учитывая масштаб скоростей, с которыми по нейронным сетям перемещаются импульсы.

«Это один из самых сложных и удивительных примеров межклеточного взаимодействия,[56] – замечает доктор Дуглас Филдс на страницах «Кода таланта». – И самых медленных. Каждый участок нервного волокна может покрываться 40–50 слоями миелина, а на формирование одного слоя уходит от нескольких дней до нескольких недель. Представьте, сколько времени займет миелинизация всего аксона, а затем всей цепочки, которая может включать тысячи нейронов. Это все равно что изолировать трансатлантический кабель».

Теперь понятно, откуда взялось число 10 000 – количество часов, необходимых, чтобы овладеть каким-либо навыком на уровне профессионала. Ведь мало лишь создать нейронные пути – цепочки нервных клеток, закрепляющие алгоритм выполнения требуемых действий в долговременной памяти, – нужно еще «расширить канал» передачи импульсов, то есть образовать миелиновую оболочку, обеспечивающую высокую скорость и эффективность такой передачи. «Формирование навыка – это процесс изолирования нейронных цепочек с помощью оболочки, которая увеличивается в размерах в ответ на определенные сигналы» – эта мысль неоднократно подчеркивается в книге Койла.

Между тем, как мы узнаем в части II нашей книги, путь к овладению навыком можно и срезать, придать ускорение нейропластичности. Оптимизируя сигналы, посылаемые мозгу в ходе практики, можно добиться высочайшего уровня нейропластичности, ускорить формирование миелиновой оболочки и обойти правило 10 000 часов.

Билли Морган – живое подтверждение того, что это возможно. Он начал тренироваться на снегу всего лишь девять лет назад. «Я ходил на лыжах с классом в школе. Тогда же одноклассник захотел попробовать съехать вниз и потащил меня с собой на склон с искусственным покрытием в Саутгемптоне. Мне не особо хотелось, – признается Морган. Но вскоре он заболел сноубордингом. – Два следующих года нас просто не отпускало. По снегу я впервые прокатился только в 17 лет».

На Олимпиаде-2014 Морган, которому тогда было 23 года, занял 10-е место. При этом у него было гораздо меньше опыта занятий сноубордингом непосредственно на снегу, чем у других участников. Но к тому времени он научился прекрасно контролировать свое тело в воздухе, а это один из главных залогов успеха в современном слоупстайле. Дело в том, что прежде Морган занимался гимнастикой. Шла даже речь о том, чтобы его в 17 лет взяли в труппу одного цирка в Германии. («В принципе, еще не поздно», – смеется он.)

«Я думаю, чем больше занимаешься прыжками, тем уверенней себя ощущаешь и тем больше у тебя шансов выкрутиться, когда что-то идет не так, – считает он. – Я понял это, еще когда занимался акробатикой. Где-то лет с четырех до восьми я ходил на гимнастику, а до четырнадцати – на акробатику, и это было сродни фанатизму: каждый день после уроков и еще по субботам».

Многие сноубордисты для развития контроля в воздухе тренируются на батуте. У Моргана в этом плане уже имелось колоссальное преимущество. «В современном сноубординге очень важно качество выполнения трюков в воздухе, базовые навыки для этого закладываются с помощью других видов спорта. Можно долго прыгать на батуте, чтобы развить это ощущение. У меня все это уже было глубоко на подкорке – благодаря акробатике. Я не сразу осознал это, но мой гимнастический бэкграунд во многом предопределил мою дальнейшую карьеру сноубордиста».

Сегодня Морган может на равных соперничать с теми, кто занимался сноубордингом гораздо дольше него, и побеждать их. Причина в том, что он, не ставя перед собой изначально такой цели, регулярно оттачивал один из ключевых ментальных навыков, необходимых в этом виде спорта. Более того, он нашел способ развивать в себе этот навык намного эффективнее, чем если бы тренировался лишь непосредственно на трассе.

Немаловажно содержание и качество тренировки. В исходной формулировке правила 10 000 часов говорится о «планомерной практике»; значит, нет смысла оставаться в зоне комфорта. Тренируя один и тот же трюк в течение нескольких тысяч часов, можно стать экспертом только в одном – самом этот трюке.

Планомерная практика заставляет критически оценивать собственные достижения и постоянно ощущать себя на пределе возможностей. Она позволяет находиться в той идеальной точке, где могут создаваться и укрепляться новые соединения между нейронами и формироваться нужные цепочки нервных импульсов. «Будучи поставлены в условия, когда мы вынуждены сбавлять темп, делать и исправлять ошибки – как бывает, когда идешь вверх по льду, то и дело поскальзываясь и оступаясь, – мы в конечном счете незаметно развиваем быстроту и ловкость движений», – пишет Койл. Мозг претерпевает изменения вне зависимости от того, чем именно мы занимаемся, только у взрослых эти изменения, как правило, закрепляются лишь в том случае, если мы сознательно уделяем чему-то много внимания.

На нейропластичность также влияет характер организации практики. Исследования показали, что глубину изменений в мозге можно увеличить путем концентрированного научения. Лучше всего это можно проиллюстрировать на примере погружения в среду изучаемого языка. Проведя всего месяц где-нибудь во французской провинции вдали от крупных городов, можно выучить язык гораздо лучше, чем занимаясь по учебникам каждую неделю в течение нескольких лет. Все потому, что в первом случае человеку приходится выйти из зоны комфорта, оказавшись в той самой идеальной точке, где обучение будет максимально эффективным.

Профессиональные спортсмены уже погружены в привычный для них график тренировок, но вот спортсмену-любителю такой темп пойдет только на пользу. Билли Морган в начале своей карьеры сначала полгода работал, потом следующие полгода занимался сноубордингом – прекрасные условия для концентрированного научения. Тем самым ему удалось добиться нужных изменений в мозге и повысить его эффективность намного быстрее, чем если бы он распределял время между работой и тренировками более равномерно.

Скорость научения мозга также можно повысить благодаря двигательной активности. Физическая активность – один из лучших катализаторов нейропластичности. Сила воздействия физических упражнений поистине огромна. Они помогают лучше справляться со стрессом, снизить уровень беспокойства и депрессии и повысить эффективность научения и памяти сразу по целому ряду аспектов.

Такой эффект обусловлен резким подъемом уровня белка, известного как нейротрофический фактор головного мозга (BDNF), в крови при физических нагрузках. Этот белок вызывает рост нейронов и запускает адаптивные механизмы в синапсах. «Ученые давно установили, что, если обработать нейроны BDNF в чашке Петри, клетки автоматически формируют новые отростки, демонстрируя тот же структурный рост, который необходим в процессе научения. Полагаю, что BDNF действует на мозг так же, как суперудобрение на рассаду»,[57] – пишет доктор Джон Рэйти в книге «Искра» (Spark: The Revolutionary New Science of Exercise and the Brain), где связь между физической активностью и эффективностью обучения описывается подробнее. Повышение уровня BDNF после физической нагрузки регистрируется не только в областях мозга, отвечающих за двигательную активность, но и в гиппокампе, играющем важную роль в действии механизмов памяти.

Следовательно, наиболее рационально организовывать тренировки спортсменов таким образом, чтобы обсуждение тактических аспектов проходило в конце занятия, после физической нагрузки, вызывающей резкое повышение нейропластичности. Тогда спортсмен лучше усвоит урок.

Еще один способ повысить эффективность научения – создать систему мотивации, или стимулирующего подкрепления. Ключевая роль здесь отводится нейромедиатору дофамину. Он выделяется в ответ на получение какого-либо вознаграждения, не важно, в реальной жизни или в виртуальном пространстве. Создатели игрушек на смартфоне умело эксплуатируют этот принцип, поощряя владельца гаджета (очками, золотыми монетами, которые можно потратить, новым доспехом для персонажа) ровно в таком объеме, чтобы он продолжал играть дальше.

Помимо прочего, дофамин повышает пластичность нейронов, поэтому нужно предусмотреть в программе тренировок такую систему поощрений, которая будет не только мотивировать спортсмена на продолжение регулярных занятий, но и помогать мозгу с закреплением усвоенного.

В следующей главе мы поговорим о том, как в передовых методиках подготовки спортсменов и когнитивных инструментах учитываются результаты последних исследований в области нейропластичности, что позволяет ускорить формирование нейронных цепей и образование миелиновых оболочек. Но есть и другие способы добиться тех же результатов.

Сегодня наука занимается процессами, лежащими в самой основе устройства нашей нервной системы, и раскрывает такие пути максимального увеличения и ускорения нейропластичности, которые могут быть использованы в неблаговидных целях. Но они же способны навсегда изменить не только спорт, но и весь мир.

Великая война Лэнса

«Был пробел во время Первой мировой войны. Потом во время Второй мировой. А потом случился пробел во время Великой войны Лэнса».[58]

Так бывший велосипедист, опорочивший свое имя употреблением допинга, Лэнс Армстронг отозвался о лишении его всех семи титулов, полученных в общем зачете «Тур де Франс» и исключении его имени из списка победителей престижной веломногодневки. Столь принципиальное решение спортивных чиновников – это лишь отдельно взятый пример борьбы с допингом в спорте высоких достижений. Наиболее часто обвинения и вопросы в связи с возможным употреблением препаратов, повышающих выносливость спортсменов, звучат именно в адрес велосипедистов и бегунов-спринтеров, даже если результаты их анализов всегда были отрицательными.

До последнего времени большинство подобных обвинений затрагивали виды спорта, ориентированные на отдачу, то есть те, в которых важнее не столько быстрота принятия решений, сколько продемонстрированная атлетом скорость, сила или выносливость. Однако сегодня существует опасность новой волны кризиса в большом спорте. Эта волна может накрыть принципиально иные дисциплины, и главной опасностью на сей раз будет нейродопинг.

Когда мы учимся чему-то новому, благодаря нейропластичности в синапсах увеличивается количество нейромедиаторов и рецепторов, что облегчает передачу сигнала соседним нейронам (напомним, что одновременная активизация нейронов ведет к возникновению связи между ними). Но передачу нервного импульса можно облегчить и по-другому – путем изменения общего баланса нейромедиаторов в головном мозге. Этот принцип уже применяется в производстве различных рекреационных и медицинских препаратов: так, прием некоторых из них ведет к повышению уровня дофамина – нейромедиатора, высвобождаемого, когда мы забиваем гол или успешно проходим очередной уровень в игре на смартфоне.

Один из таких препаратов, метилфенидат (торговое название «Риталин»), часто – некоторые считают, что очень часто, – назначают детям с синдромом дефицита внимания и гиперактивности. Механизм действия основан на стимулировании выработки дофамина в мозге, что приводит к активизации внимания. Исследования показали, что препарат также повышает синаптическую пластичность. Другие психостимуляторы, например декстроамфетамин, способствуют восстановлению функций памяти у пациентов, перенесших инсульт.

На сегодняшний день уже зафиксированы случаи приема подобных препаратов студентами при подготовке к выпускным экзаменам. Можно допустить, что эти же вещества способны повышать уровень нейропластичности и у спортсменов, облегчая для них процессы освоения и совершенствования практических навыков, а также принятия решений. В ходе исследования, проведенного с участием немецких триатлонистов-любителей,[59] выяснилось, что за прошедший год 15,1 % из них принимали различные вещества для стимулирования когнитивных процессов.

Некоторые вещества, повышающие нейропластичность, относятся к стимуляторам, которые уже входят в список запрещенных препаратов Всемирного антидопингового агентства. Другие методы определить сложнее.

Когда спортсмены, отстраненные от соревнований за применение допинга, возвращаются в спорт, одна из основных проблем заключается в том, чтобы установить, не помогает ли им до сих пор эффект от препаратов, незаконно принимавшихся ими в прошлом. Доказать это сложно. Еще сложнее будет со стимуляторами, воздействующими на мозг. Группа нейробиологов из Университета Джонса Хопкинса в Балтиморе (США) провела эксперимент,[60] по условиям которого испытуемые должны были перемещать курсор по экрану путем давления на датчик, закрепленный между большим и указательным пальцами. Курсор нужно было двигать от одной точки до другой как можно быстрее, не совершая при этом лишних движений. Для этого волонтеры должны были научиться правильно рассчитывать силу сжатия датчика. За этим занятием они проводили по 45 минут в день, и через пять дней им удалось значительно снизить количество ошибок.

Во второй группе участникам эксперимента было дано то же задание, но у них к голове была подсоединена батарея, посредством которой через двигательную кору посылались электрические импульсы. Успехи этой группы оказались более впечатляющими: они перемещали курсор быстрее и допускали меньше ошибок, чем волонтеры из контрольной группы. Более того, они не утратили этого навыка и спустя три месяца. В другом исследовании, где участниками были пациенты, перенесшие инсульт, выяснилось, что восстановлению двигательной активности после инсульта способствует ТМС (транскраниальная магнитная стимуляция) двигательной коры.

«Подобные манипуляции с определенной долей вероятности однажды могут войти в стандартный набор процедур в курсе нейрореабилитации инвалидов и – кто знает, – возможно, также в программу тренировок будущих спортсменов-олимпийцев либо пополнят список запрещенных средств, приравненных к допингу»,[61] – считает профессор Йенс Бо Нильсен, проводивший аналогичное исследование в Копенгагенском университете.

В раннем возрасте мозг человека подобен губке, он впитывает огромное количество информации и изменяется в ответ на различные стимулы даже без непосредственного контроля со стороны сознания. Нейрофизиологи называют это критическим периодом, поскольку уровень пластичности мозга в это время бывает запредельным. В течение критического периода мозг особенно чувствителен к воздействию, карта его коры перекраивается очень легко.

Понятие критического периода объясняет, почему так просто выучить иностранный язык и говорить на нем без акцента именно в детском возрасте. Им же объясняется резкий скачок в развитии, который мы делаем в первые годы жизни, когда научаемся ходить, говорить и мыслить отвлеченными понятиями.

За внимание в нашем мозге отвечает базальное ядро – группа клеток, спрятанных глубоко в нейронной ткани. Когда человек проходит через критический период, эти клетки резко активизируются, благодаря чему механизмы научения работают практически без усилий от рождения до достижения возраста 10–11 лет. Всплеск и последующий спад активности базального ядра регулируются за счет высвобождения большого количества BDNF, белка, стимулирующего нейропластичность во время физической нагрузки.

Сворачивание активности базального ядра знаменует окончание критического периода. Теперь устойчивые изменения в мозге происходят только в качестве реакции на что-то очень важное либо при сознательной концентрации внимания. Отсюда понятно, почему маленькие дети усваивают грамматику и употребление слов языка без особых усилий, в то время как взрослому приходится часами просиживать за учебниками и зубрить таблицы склонений и спряжений.

Если мы поймем, как можно перезапустить критический период, это станет началом революции, причем не только в спорте, а вообще во всех областях, где имеет место приобретение навыков и профессионального опыта. И это действительно возможно.

Пионеры исследований, посвященных нейропластичности, Майкл Килгард и Майкл Мерцених, смогли научить детенышей лабораторных крыс, пока те находились в критическом периоде развития мозга, различать ноты путем многократного повторения соответствующих звуков. Вначале слуховая кора животных могла дифференцировать ноты только по высоте звука, но со временем у них развились специальные зоны, которые реагировали, например, на до-диез.

Затем ученые ввели микроэлектроды в базальное ядро уже взрослых особей и добились возвращения у крыс критического периода. При проигрывании звуков мозг животных легко перестраивал свою карту, совсем как у детенышей, чей критический период был в самом разгаре. Так Мерцениху и Килгарду удалось распечатать закрывшееся окно возможности ускоренного обучения.[62]

До применения на людях подобной или других методик, например, когда BDNF будут вводить непосредственно в мозг,[63] пройдут еще годы, если не десятилетия. Очевидно, нужно еще будет как-то решить этические вопросы. Но уже сегодня спорт как никогда активно использует самые передовые достижения научно-технического прогресса. Если где-то вдруг появляется возможность улучшить результат, будьте уверены, что кто-то прямо сейчас платит деньги за возможность использовать эту маленькую хитрость. Тренеры, представляющие самые разные виды спорта, уже делают выводы.

Итак, в части I книги мы говорили о том, как благодаря нейропластичности мозг спортсмена развивает способность к прогнозированию и быстрому принятию решений. Далее мы познакомимся с теми, кто использует достижения науки о мозге для расширения границ человеческих возможностей, и раскроем маленькие секреты, которые помогут обычному человеку добиться собственных спортивных успехов.

Домашнее задание
СТИМУЛИРУЕМ КОГНИТИВНЫЕ СПОСОБНОСТИ
Концентрированное научение

Если попытки освоить какой-либо навык, научиться хорошо играть в спортивную игру или выучить иностранный язык не приносят результата, возможно, следует пересмотреть график практики: не распылять усилия на одно занятие в неделю, а полностью посвятить себя тренировкам в течение некоторого продолжительного периода. В начале своей карьеры сноубордиста Билли Морган работал и занимался спортом по полгода. Так его мозг изменился намного быстрее, чем если бы он распределял время между работой и тренировками более равномерно.

Польза физических нагрузок

Физические нагрузки повышают уровень белка BDNF, который стимулирует активный рост ответвлений нейронов. Другими словами, физическая активность способствует более продуктивному научению и запоминанию информации. Чтобы воспользоваться этим естественным стимулятором умственной деятельности, достаточно делать зарядку не после занятия интеллектуальным трудом, а до него.