Вы здесь

Автомобильные присадки и добавки. Базовые присадки к смазочным материалам (В. Ю. Болгов, 2011)

Базовые присадки к смазочным материалам

Смазочные масла по их назначению классифицируют на следующие основные группы: моторные, индустриальные, трансмиссионные, турбинные, компрессорные, приборные и некоторые другие более узкого специального назначения. Наиболее масштабной по объему производства и ассортименту является группа моторных масел: для бензиновых (карбюраторных) двигателей, дизелей и двигателей, работающих на газовом топливе. К этой же группе относятся универсальные масла, применяемые в двигателях разной конструкции. В группу индустриальных масел для промышленного оборудования входят масла для гидравлических систем (гидравлические жидкости), направляющих скольжения, шпинделей, зубчатых передач и др. Трансмиссионные масла подразделяются на масла, используемые для смазывания механических, гидромеханических и гидростатических передач.

Масла для двигателей внутреннего сгорания принято называть моторными маслами. Иногда их называют также картерными маслами. К этой группе относятся масла, предназначенные для смазывания карбюраторных, дизельных и авиационных поршневых двигателей, а также масла для двухтактных бензиновых двигателей.

Современные моторные масла представляют собой сбалансированный коллоидный раствор многих функциональных присадок в базовой минеральной (нефтяной) или синтетической основе, обеспечивающих основные функциональные свойства моторных, да и трансмиссионных масел.

В зависимости от вида базового масла (основы) моторные масла подразделяются на:

1. Минеральные масла, получаемые в процессе переработки (перегонки) нефти и состоящие из молекул разной длины (длина углеводородных цепочек – 20…35 атомов) и разного строения (рис. 3).

К основным примесям, присутствующим в минеральных основах, относятся:

– соединения серы (sulfur compounds) и органические кислоты (organic acids), способные вызывать коррозию металлов;

– непредельные углеводороды (unsaturated hydrocarbons), снижающие антиокислительную стойкость масла;


Рис. 3. Схема взаимодействия синтетического (вверху) и минерального (снизу) масел с поверхностями трения


– смолистые и асфальтеновые соединения (resins, bitumen), образующие при работе лаковые отложения и нагар на горячих поверхностях деталей, ухудшающие низкотемпературные свойства и подавляющие эффективность антиокислительных и антикоррозионных присадок;

Нагар – отложения на поверхности камеры сгорания, состоящие в основном из карбонов и карбоидов и способные вызывать интенсивное изнашивание деталей цилиндропоршневой группы.

– парафины (wax) – растворенные в масле твердые углеводороды, которые повышают температуру застывания масла и ухудшают его низкотемпературную фильтруемость;

Температура застывания – показатель способности масла или дистиллятного топлива оставаться текучим при низких температурах. Это наименьшая температура, при которой жидкость остается текучей после охлаждения в определенных условиях.

– полициклические соединения (polycyclic aromatics, PCA), также снижающие низкотемпературные свойства масла и способствующие образованию смолистых отложений и нагара.

Как видим, все эти соединения в той или иной степени снижают качество готового нефтехимического продукта. Вследствие неоднородности основы и наличия многих примесей наблюдается нестабильность вязкостно – температурных свойств, высокая испаряемость, низкая стойкость к окислению и другие отрицательные свойства. Индекс вязкости (ИВ) лучших минеральных основ не превышает 100 единиц. Повышение вязкостных характеристик минеральных масел достигается специальными загущающими присадками.

Индекс вязкости – эмпирическое число, которое указывает на степень изменения вязкости масла при изменении температуры. Масла с высоким индексом вязкости проявляют меньшую зависимость вязкости от температуры, чем масла с низким индексом вязкости. Для повышения индекса вязкости проводят глубокую гидроочистку базовых масел или используют вязкостные присадки (маслорастворимые полимеры) или синтетические (полимерные) масла.

2. Синтетические масла (Fully Synthetic, Voll Synthetic, 100 % synthetic), получаемые путем химических реакций, направленных на образование однотипных молекул органических веществ с заданными свойствами, в качестве которых выступают полиальфаолефины (ПАО), алкилбензолы или эфиры (эстеры).

Полиальфаолефины (ПАО) – углеводороды с длиной цепочки порядка 10…12 атомов, получаемые путем полимеризации коротких углеводородных цепочек – мономеров из 3…5 атомов. Служат основой для производства синтетических моторных масел.

Для производства ПАО обычно используются бензиновые молекулы или нефтяные газы – бутилен и этилен, из которых путем полимеризации (химического составления) получают короткие углеводородные цепочки – мономеры из 3…5 атомов. К достоинствам ПАО относятся: низкая температура застывания (до —60 оС), невысокая восприимчивость к перепадам температур, низкая испаряемость и окисление. В то же время стоимость такой основы моторного масла в 4,5 раза выше обычной минеральной.

Эстеры (греч. aither – эфир) – сложные эфиры, получаемые нейтрализацией спиртами карбоновых кислот рапсового масла, смолы хвойных деревьев и кокосовой копры. Применяются в качестве присадок к моторным маслам. Молекулы эстеров обладают электрическим зарядом (полярны), притягивающим их к поверхности трения в зоне контакта.

Электрический заряд так распределен в молекулах эстеров, что полярная молекула притягивается к металлу одним концом, образуя плотный молекулярный ворс. Исходная вязкость эстеров задается еще на этапе производства основы, так как чем более тяжелые используются спирты, тем выше получается вязкость масляной основы. При этом можно вообще отказаться от загущающих присадок, которые в процессе работы двигателя постепенно «выгорают», приводя к окислению («старению») масла. В настоящее время существуют технологии изготовления полностью биологически разлагаемых масел (биомасел) на основе эстеров.

Кинематическая вязкость – основной показатель смазочных масел, показывает зависимость между динамической вязкостью и плотностью жидкости. Ее определяют в капиллярных вискозиметрах путем измерения времени протекания известного объема жидкости через небольшое калиброванное отверстие при заданной температуре. Единицы измерения кинематической вязкости – мм2/с или сантистоксы (сСт).

Моторное масло на основе эстеров обойдется потребителю примерно в 10 раз дороже, чем на минеральной основе. Например, литр эстеровой моторной «синтетики» стоит минимум 15–20 долларов США. Поэтому эстеры добавляют к другим масляным основам в качестве присадок (обычно 3…5 %).

Динамическая вязкость – внутреннее трение или свойство жидкости оказывать сопротивление перемещению ее частиц под влиянием действующих на них внешних сил. Она характеризует несущую способность и прокачиваемость жидкости, измеряется с помощью вискозиметров и обозначается в Па·с или пуазах.

Как уже отмечалось, синтетические моторные масла обладают более высокой вязкостно – температурной характеристикой (ВТХ) по сравнению с маслами на минеральной основе. Температура потери подвижности синтетических моторных масел может быть существенно ниже (до —650 оС), чем у минеральных, а вязкость при температурах 250…3000 оС в 2–3 раза выше, чем у равновязких им минеральных масел при 1000 оС.

Благодаря высокому индексу вязкости, синтетическое масло позволяет поддерживать оптимальную толщину масляного клина как при низких, так и при высоких температурах, что, в свою очередь, снижает износ деталей двигателя, особенно в условиях экстремальных температур.

Так, при низких температурах «синтетика» сохраняет свою текучесть, что обеспечивает максимально быстрое поступление масла к узлам трения и снижает износ деталей при пуске, а низкая испаряемость позволяет экономить на угаре масла.

Более равномерная молекулярная структура способствует снижению внутреннего трения, за счёт чего повышается эффективность работы двигателя и снижается температура масла.

Синтетические масла имеют лучшую термическую стабильность, низкую испаряемость и малую склонность к образованию высокотемпературных отложений. Они превосходят минеральные масла по антиокислительным свойствам, диспергирующей и механической стабильности, обладают равными или лучшими противозадирными и противоизносными свойствами. Поэтому синтетические масла с успехом применяются в высокофорсированных теплонапряженных ДВС.

Задир – катастрофический износ, наблюдаемый в парах трения из‑за местного сваривания и разрушения мест сварки. Его можно предотвратить использованием противоизносных, противозадирных присадок и модификаторов трения.

Благодаря своим свойствам синтетические масла могут эксплуатироваться 20 и более тысяч километров пробега автомобиля без замены. Расход синтетических моторных масел на угар на 30…40 % меньше по сравнению с минеральными.

Срок службы – календарная продолжительность эксплуатации изделия до наступления разрушения или другого предельного состояния. Предельное состояние устанавливается в соответствии с изменениями параметров, условий безопасности, экономических показателей, необходимости первого капитального ремонта и т. п.

В то же время, наряду с высокой ценой традиционных компонентов, таких как ПАО и эстеры, синтетические масла обладают более высокой, чем у «минералки», активностью по отношению к материалам уплотнений, в них хуже растворяются дополнительные присадки, которые используются при производстве современных моторных масел. При этом эстеры (эфиры) очень требовательны к отсутствию в масле влаги, в том числе водяного конденсата.

3. Частично синтетические (полусинтетические) масла (Semi‑Synthetic, Teil Synthetic, Synthetic, Synthetic Based, Synthetic Blend), состоящие из смесей минеральных и синтетических базовых масел.

Как показывает практика, большинство моторных масел, позиционируемых как полусинтетические, а частично и полностью синтетические масла, на самом деле являются гидрокрекинговыми (НС) маслами, которые достаточно успешно совмещают высокие качества синтетики с неагрессивностью «минералки» при более доступной цене.

Гидрокрекинг (греч. hydor – вода, англ. cracking – расщепление) – технология химического синтеза моторных масел, заключающаяся в воздействии (насыщении) водородом в присутствии специального катализатора на высококипящие (тяжелые) нефтяные фракции, а также на легкокипящие и среднедистиллятные прямогонные фракции и вторичные продукты их термокаталитической переработки для получения бензиновых фракций, реактивного и дизельных видов топлива, смазочных материалов и т. д.

В отличие от ПАО, гидрокрекинговые масла получают не из коротких бензиновых мономеров, а из тяжелых и длинных углеводородов. Длинные углеводородные цепочки разрушают (крекингом) на более короткие «масляные», но с однородной структурой. К местам разрыва в новых укороченных молекулах прикрепляют водород, т. е. происходит «гидрирование + крекинг = гидрокрекинг». В результате НС – синтеза получают базовое масло с очень высокими вязкостно – температурными характеристиками с индексом до 130…150 единиц.

Гидрокрекинговое масло – смазочное масло, полученное путем перегонки и глубокой очистки нефти на основе гидрокрекинга, улучшенное специальными синтетическими присадками, обладает лучшими свойствами, чем чисто минеральное масло, но большим нагарообразованием и коррозионной активностью, чем чисто синтетическое масло.

Одним из этапов изготовления гидрокрекинговых масел является введение специальных вязкостных присадок, в результате чего индекс вязкости еще больше увеличивается, и может достигать 180 единиц, что сопоставимо со 100 %-ным синтетическим маслом. К тому же, НС – масла не разрушают материал уплотнений, менее восприимчивы к наличию влаги, обладают лучшими синергетическими свойствами с дополнительными присадками, чем ПАО или эстеры.

Синергетика (греч. synergetikos – совместимый) – научное направление, изучающее общие закономерности, управляющие процессами самоорганизации в системах разного рода: биологических, технических, химических и т. д.

Нужно сказать, что реальное содержание ПАО в обычной полусинтетике не более 30…35 % (чаще 15…25 %), остальное – минеральная основа и специальные присадки. Как видно, основные компоненты синтетических масел – ПАО и эстеры – также являются своего рода присадками при изготовлении моторных масел. Гидрокрекинговые масла состоят из НС – компонента примерно на 80 %, остальные 20 % приходятся на пакет присадок (рис. 4).


Рис. 4. Примерное содержание присадок в моторном масле:

1 – базовое масло (80 %); 2 – вязкостные присадки (10 %); 3 – остальные присадки (10 %)


При аналогичном качестве стоимость гидрокрекинговой основы всего в 2 раза выше минеральной, но в 2,5 раза ниже стоимости ПАО и в 3–5 раз дешевле эстеров.

Современные моторные масла используются для уменьшения трения, снижения износа и предотвращения задира контактируемых поверхностей. Масло отводит теплоту от трущихся деталей и уплотняет зазоры, в первую очередь в зоне цилиндропоршневой группы двигателя.

Износ различных узлов и деталей двигателей внутреннего сгорания зависит от ряда факторов, определяемых особенностями конструкции и техническим состоянием двигателя, условиями его эксплуатации, качеством применяемого топлива и масла и т. п.

Интенсивность изнашивания увеличивается в случае:

– попадания абразива в смазочную систему (роль абразива могут играть также продукты разложения масла, образующие зольные отложения) или при переходе с нефтяного топлива на топливо не нефтяного происхождения (в частности спиртовое);

Интенсивность изнашивания – отношение величины износа поверхностей трения (в принятых единицах) к пути трения или объёму выполненной работы. Различают линейную, весовую, энергетическую интенсивности изнашивания.

– повышения содержания серы в топливе;

– накопления в масле воды или другой охлаждающей жидкости;

– повышения химической активности масла;

– увеличения расхода масла на угар вследствие повышенного пенообразования масла и т. д.

Абразивный материал – минерал естественного или искусственного происхождения, частицы которого имеют высокую твёрдость и обладают способностью микрорезания (царапания, скобления и т. д.). Разрушение поверхности детали в результате её взаимодействия с такими частицами называют абразивным изнашиванием.

Повышение надежности работы двигателя достигается и другими способами, приводящими к снижению износа. Например, наличие в масле воды снижает его способность противодействовать изнашиванию трущихся поверхностей. С целью удаления из масла воды, механических примесей, и других продуктов, присутствие которых может отразиться на работе двигателя в процессе эксплуатации, увеличивают эффективность работы средств очистки.

Условия работы моторного масла определяются различными рабочими температурными нагрузками на узлы и детали двигателя, смазываемые моторным маслом (цилиндропоршневая группа, подшипники, механизм газораспределения и т. д.). Для обеспечения надежной подачи моторного масла к различным агрегатам двигатели оснащены специальными приспособлениями (смазочной системой): емкостью для хранения масла, средствами очистки (фильтрами), масляной магистралью, насосами и т. п.

Функциональные свойства многих масел ранее оценивали, прежде всего, по их вязкостно – температурным характеристикам и смазочной способности. В настоящее время требования к эксплуатационным свойствам масел значительно расширились и ужесточились, что потребовало введения большого числа показателей свойств масел. В общем случае смазочные масла должны обладать следующими характеристиками:

1) оптимальными вязкостно – температурными свойствами, обеспечивающими подвижность при низких температурах, и создание прочной смазочной пленки на рабочих поверхностях в широком диапазоне температур;

2) смазывающими свойствами, обеспечивающими минимизацию трения и различных видов изнашивания;

3) высокой устойчивостью к окислению, предотвращающей значительные изменения химического состава смазочных масел в процессе их работы;

4) моющими свойствами, влияющими на снижение склонности масел к образованию различного состава смолистых отложений на рабочих поверхностях и в смазочной системе;

5) низкой коррозионной активностью;

6) удовлетворительными защитными свойствами, позволяющими маслу предохранять металл от атмосферной коррозии.

Смазочные масла также должны обладать низкой испаряемостью, пенообразующей способностью, не вступать в соединение с водой (эмульгироваться), не оказывать отрицательного влияния на уплотнительные материалы, не быть токсичными, не подвергаться биоповреждениям, не изменять своих свойств при хранении и регенерации, легко транспортироваться, не вызывать загрязнения окружающей среды и т. д.

Несомненно, к важным факторам обеспечения длительного и эффективного срока службы автомобильной техники относится не только высокое качество ее эксплуатации, технического обслуживания и ремонта, но и качество применяемых топливно – смазочных материалов (ТСМ) и других препаратов автохимии. Как уже неоднократно отмечалось, основным способом повышения функциональных свойств смазочных материалов является применение дополнительных присадок и добавок.

Различные препараты для применения в качестве каких‑либо добавок к топливно – смазочным материалам изначально были созданы для повышения их противоизносных, антифрикционных, экономических и экологических свойств, т. е. для профилактики износа и поддержания техники в работоспособном состоянии. Большинство из них и сейчас выпускается для этих целей.

В настоящее время, наряду с принятыми и широко распространенными показателями (противоизносными, защитными, антикоррозионными, диспергирующими, стабилизирующими, вязкостно – температурными, антиокислительными, противопенными и др.), для моторных масел введены новые – демпфирующие, противопиттинговые и др. Для их обеспечения разрабатываются новые технологии производства базовых масел и присадок к ним.

Питтинг – (англ. pit – делать ямки) – местная коррозия металлической поверхности вследствие разрушения граничных слоев смазки, ограниченная точкой или малой областью, которая имеет форму каверны. Питтинг уменьшается в присутствии присадок, снижающих напряжения сдвига, таких как дисульфид молибдена или графит.

При эксплуатации машин и механизмов происходят значительные химические и физические изменения в маслах, т. е. изменяются их состав и свойства, что влияет на эксплуатационные свойства масел. Для предотвращения подобных изменений в большинство смазочных масел вводят специальные вещества и их композиции. В зависимости от состояния и растворимости в масле эти вещества получили разные названия. Органические маслорастворимые продукты составляют самую распространенную группу и называются присадками. Твердые нерастворимые вещества, как правило, неорганического происхождения, называются антифрикционными добавками, а полимерсодержащие композиции – модификаторами. Имеются также кондиционеры и рекондиционеры металла.

Кондиционер (рекондиционер) металла (поверхности) (англ. air – condition – состояние воздуха) – вещество и механизм воздействия на металл (поверхность), позволяющие восстанавливать структуру и состав металла (поверхности), на который он воздействует посредством доставки необходимых компонентов (среды и энергии) от внешних источников (препаратов), а также придавать трущимся поверхностям высокие антифрикционные и противоизносные свойства.

Существует более ста органических и металлоорганических присадок, предназначенных для повышения устойчивости масел к окислению, абсолютного значения их вязкости, а также смазочной способности. Одновременно они снижают зависимость вязкости масла от температуры, температуру застывания, замедляют коррозию металлических поверхностей, уменьшают нагары на деталях двигателей и т. д.

По своему действию присадки разделяют на: противоизносные, антифрикционные, антиокислительные, вязкостные (загущающие), депрессорные, противопенные и др. (табл. 5).


Таблица 5. Некоторые функциональные присадки, используемые в смазочных маслах

Дисперсант – присадка, которая способствует поддержанию твердых загрязнений в картерном масле в состоянии коллоидной суспензии, предотвращая образование шламов и лаков на деталях двигателя. Обычно это беззольные, не содержащие металла соединения, используемые в сочетании с детергентами.

В основном присадки вводят в масла в небольших количествах: от долей до нескольких процентов (в композициях их общая концентрация может доходить до 15 % и более). Исключение составляют вязкостные присадки, которых может добавляться до 20…30 %, что значительно изменяет свойства базовых масел. Высокий уровень концентрации присадок приводит к тому, что незначительное изменение баланса, например, вследствие попадания в масло топлива, влаги, а также окисления при работе существенно снижает его стабильность. Поверхностно – активные вещества (ПАВ) присадок теряют свои свойства, вступая в реакцию с влагой и топливом, в результате снижается не только эффективность их применения, но и ухудшаются трибологические свойства базовых смазочных материалов.

По химическому составу присадки к смазочным материалам представляют собой производные различных органических соединений – алкилфенолов, аминов, дитиофосфорных, дитиокарбаминовых, салициловых кислот и ряда других веществ.

Присадки состоят из молекул одной или нескольких полярных групп и одной или нескольких неполярных. Полярные группы обусловливают адсорбцию молекул ПАВ присадок на границе между маслом и металлом. По группе активной (полярной) составляющей присадки подразделяют на серо-, фосфор-, кислород-, хлор-, азот– и борсодержащие. Неполярные группы (алкильные радикалы, нафтеновые или ароматические кольца и их сочетания) определяют растворимость присадок в маслах.

Большинство базовых присадок являются техническими продуктами, представляющими собой раствор активного компонента в масле или другом растворителе. В таком виде под различными условными названиями и индексами выпускаются производные мочевины, сульфонаты, сукцинимиды, эфиры фосфорной кислоты и многие другие присадки.

Рассмотрим основные группы присадок к смазочным маслам.

Для предотвращения или уменьшения образования лаковых отложений и осадков на преимущественно горячих металлических рабочих поверхностях, предупреждения пригорания поршневых колец, а также повышения коллоидной стабильности масла (поддержание во взвешенном состоянии примесей органического и неорганического характера – сажи, нагара, частиц солей свинца размером 0,04 мкм, которых в масле может быть до 10 %) в моторные масла вводят моющие (детергенты) и диспергирующие (диспергенты) присадки.

Моющие присадки блокируют агломерацию асфальтенов в твердые частицы (нагар) размером 0,6…1,5 мкм. Таким образом они препятствуют возникновению и росту отложений на металлических поверхностях, повышению вязкости масла и возникновению шлама, чем значительно снижают абразивный износ деталей двигателя.

Шлам – темный осадок, по консистенции подобный гелю, который накапливается на неподвижных внутренних поверхностях двигателя. Обычно легко удаляется, если не превращается под действием нагрева в углеродистые отложения. Его образование связывают с перегрузкой масла нерастворимыми загрязнениями.

Моюще – диспергирующие присадки условно делят на зольные и беззольные. В молекуле зольных присадок содержатся полярные группы, которые адсорбируются на частицах – продуктах окисления масла, препятствуя их росту и предотвращая образование отложений и лаков на деталях двигателя. Зольные моющие присадки повышенной щелочности способствуют нейтрализации кислот, оксидов азота, ди– и триоксидов серы (что особенно важно в случае дизельных видов топлива), образовавшихся при окислении масла в процессе эксплуатации двигателя. Это достигается за счет протекания щелочной реакции. Моющие присадки выбирают в зависимости от условий работы масла, особенностей конструкции двигателя и специфики его эксплуатации. Концентрация моющих присадок в масле составляет 3…15 % (иногда выше). Она не должна быть слишком большой, иначе может наблюдаться повышенное абразивное изнашивание из‑за высокой зольности масла.

Число нейтрализации – мера кислотности или щелочности масла. Число представляет собой массу в миллиграммах кислоты (НСl) или основания (КОН), требуемых для нейтрализации одного грамма масла.

При производстве отечественных моторных масел применяют детергенты трех классов: алкилфеноляты, сульфонаты и алкилсалицилаты щелочноземельных металлов. В нормальных солях содержатся стехиометрические соотношения количества металлов, соответствующие щелочности кислот, а щелочные (высокощелочные, суперщелочные, гиперщелочные) соли содержат значительное количество оксидов металлов, гидроксидов, карбонатов и т. д. в коллоидно – дисперсной форме. Моющие присадки, содержащие соли металлов, долгое время находили широкое применение. Однако в последнее время их применение стало ограничиваться в связи с повышением доли беззольных дисперсантов и антиокислительных присадок.

Практически одновременно с проблемой улучшения моющих свойств масел встала задача повышения их окислительной стабильности при повышенных рабочих температурах. При высоких температурах в присутствии атмосферного воздуха происходит окисление (старение) смазочного материала.

В оптимально очищенных минеральных маслах изначально содержатся природные сернистые и азотные ингибиторы, обеспечивающие стабильность и срок службы масел, достаточные для применения во многих областях, но они не отвечают всем необходимым требованиям в случае моторных и трансмиссионных масел. К тому же сера, являясь эффективным ингибитором окисления, оказывает коррозирующее действие. Соединения, в которых одновременно содержатся сера и фосфор, значительно эффективнее, чем ингибиторы, содержащие эти элементы по– отдельности, поэтому они применяются главным образом в виде ингибиторов для моторных масел.

Для предотвращения каталитического ускорения окисления углеводородных масел под действием ионов металлов и сплавов, особенно цветных (таких как медь, марганец, кобальт), они должны быть связаны в виде комплексов и осаждаться в виде нерастворимых соединений металлов. Для этих целей в смазочные масла добавляются антиокислительные присадки (до 2 %), которые отвечают за стабильность химического состава масла, особенно при высоких температурах.

Соединения селена (диалкилселенид) также могут применяться в качестве ингибиторов, имея хорошие антиокислительные свойства в синтетических маслах при температуре до +270 °C. Однако они применяются довольно редко из‑за коррозионной активности по отношению к меди, алюминию, серебру (иногда, к стали и чугуну), а также вследствие высокой стоимости.

С 1951 года для эксплуатации двигателя при высоких рабочих температурах, а также его запуска при низких температурах стали выпускать всесезонные масла. Оптимизация зависимости вязкости таких масел от окружающей температуры и рабочей температуры двигателя достигается сочетанием маловязкой базовой основы, которая обеспечивает пониженные вязкостные свойства масла при низких пусковых температурах, и специальных синтетических вязкостных присадок, создающих требуемую вязкость при повышенных рабочих температурах.

Известно, что в момент пуска трущиеся детали двигателя подвергаются значительному износу. Имеется термин – пусковой износ. При одном только пуске ДВС длительностью несколько секунд износ значительно больше, чем при работе двигателя на установившемся режиме в течение нескольких часов. Пусковой износ зависит от вязкости масла – малая вязкость обеспечивает более низкий пусковой износ вследствие лучшего поступления масла к узлам трения.

Изнашивание – процесс разрушения и отделения материала с поверхности твердого тела и (или) накопления его остаточной деформации при трении, проявляющейся в постепенном изменении размеров и (или) формы тела.

В установившемся режиме, наоборот, лучше работают более вязкие масла.

Для уменьшения трения и изнашивания различных узлов и деталей двигателя масла должны обладать такими вязкостно – температурными свойствами, которые бы обеспечивали и быстрый пуск двигателей, и надежную работу в последующий период.

Для повышения вязкости смазочных масел и индекса вязкости при нагреве в них добавляют вязкостные (загущающие) присадки («модификаторы вязкости»). Такие масла называют загущенными. Загущающие присадки в сочетании с присадками, улучшающими трибологические свойства моторных масел, позволяют создавать энергосберегающие масла.

В то же время масла с загущающими присадками постепенно теряют свою вязкость (загустевают). Это не только результат испарения самых низкокипящих фракций, так как температура в картере двигателя может достигать 180 °C, но и механической, а также термохимической деструкции (окисления) полимерных молекул загущающих присадок на мелкие фрагменты, эффективность которых значительно снижается.

В отличие от незагущенных масел, вязкость которых зависит в основном от температуры смазочного материала и рабочего давления, загущенные масла обладают еще способностью изменять свою вязкость в зависимости от напряжения и градиента скорости сдвига. Они проявляют временное падение вязкости с увеличением скорости сдвига, например, между поршнем и стенками цилиндра двигателя. Такие вещества (резиновый клей, густотертая краска, битум и др.) называют «разжижаемые сдвигом», а их вязкость называют кажущейся, так как она снижается при определенном градиенте скорости сдвига, и тем больше, чем ниже температура базового масла.

Загущающие присадки на основе полиметакрилатов ПМА В-1, ПМА В-2, «Дизакрил» представляют собой масляные растворы эфиров метакрилатовой кислоты и масел синтетических жирных спиртов. При низкой температуре, когда масло достаточно вязкое, молекулы полиметакрилатов находятся в скрученном состоянии и мало влияют на вязкость. С ростом температуры они расправляются и повышают вязкость (рис. 5). Полимеры компенсируют значительную потерю вязкости самого масла при повышении температуры, таким образом, индекс вязкости масла повышается.


Рис. 5. Молекула полиметакрилата (вязкостной присадки) при различной температуре масла


Поэтому загущенные масла наряду с высоким индексом вязкости, обеспечивающим минимальные потери мощности на трение и экономию топлива при нагреве, обладают хорошей текучестью при низких температурах, способствуют легкому и быстрому пуску двигателя в холодное время года, не образуют большого количества нагара.

Чтобы выдерживать большие сдвиговые и нормальные нагрузки, смазочные материалы должны иметь высокую несущую способность. Для обеспечения этих свойств в моторные масла (для снижения износа пар трения кулачок – толкатель), в трансмиссионные масла (особенно для гипоидных передач, имеющих конические шестерни со спиральными зубьями), в гидравлические жидкости и смазочно – охлаждающие среды добавляют противозадирные присадки.

Вязкостные свойства масел в нормальных условиях эксплуатации не отражают их характеристик при высоких нагрузках и скоростях скольжения, когда толщина смазочного слоя не обеспечивает надежное разделение трущихся поверхностей и не предохраняет от непосредственного контакта микрошероховатостей. В этом случае наблюдается режим граничной смазки, происходит контакт микровыступов шероховатостей металлических поверхностей, резкий нагрев (температурные «вспышки») контактируемых участков (до 1500 оС), их сваривание и последующеe разрушение (скалывание).

Граничная смазка – смазка двух трущихся поверхностей без создания непрерывной смазочной пленки. Она имеет место при высоких нагрузках и требует использования противоизносных или противозадирных присадок для предотвращения непосредственного контакта металлов.

За счет выделяющейся в зоне контакта энергии противозадирные присадки вступают во взаимодействие с поверхностями трения, образуя защитные соединения с металлами. При нормальных режимах эксплуатации они находятся на поверхностях трения в виде твердых веществ, но при высоких температурах их предел текучести снижается и происходит скольжение металлических поверхностей относительно друг друга. Тем самым предотвращается сваривание микровыступров трущихся поверхностей и, следовательно, повышение интенсивности их изнашивания. При этом вязкость масла во многом определяет прочность масляной пленки.

Фосфор, сера и хлор – основные элементы многих противозадирных присадок, которые вступают в реакции с металлами в условиях повышенной температуры и давления с образованием на поверхностях защитных пленок химических соединений. Эти присадки оказывают противозадирное, антикоррозионное и антиокислительное действие и поэтому особенно широко применяются в моторных маслах. На их основе выпускаются ремонтно – восстановительные препараты любительской автохимии, получившие название кондиционеры металла, которые будут рассмотрены в дальнейшем.

Затраты на производство смазочных масел возрастают пропорционально обеспечению для них низкотемпературных свойств. Поэтому проводится депарафинизация масел, но лишь частично – до температуры застывания (около —15 °C). При отрицательных температурах из смазочного масла выделяются парафиновые углеводороды в виде игл и пластин, что приводит к потере текучести (подвижности) масла и затрудняет низкотемпературный запуск двигателя. Форма и размер образовавшихся кристаллов парафина зависят от вида масла и его фракционного состава. При этом из маловязких масел выделяются крупные кристаллы, а из высоковязких образуются микрокристаллические парафины. Наличие в масле парафиновых углеводородов обусловливает в первую очередь застывание масла. Подвижность масла теряется из‑за образования кристаллической структуры парафиновых углеводородов.

Для дальнейшего снижения температуры застывания и работоспособности масла предназначены депрессорные присадки, которые модифицируют кристаллические структуры твердых углеводородов с сохранением подвижности масла.

Наиболее распространены депрессорные присадки к моторным, трансмиссионным и гидравлическим маслам: марки АзНИИ (препарат алкилирования нафталина хлорированным парафином в присутствии хлорида алюминия); АзНИИ – ЦИАТИМ-1 (дисульфид алкилфенола с гидроксидом бария); АФК (алкилфенол с гидроксидом кальция); ПМА Д (30…40 %-ный раствор полимеров эфиров метакриловой кислоты и синтетических жирных первичных спиртов в индустриальном масле), а также Депрессал – модифицированный препарат алкилирования фенола хлорпарафинами.

Депрессорные присадки применяются при концентрациях 0,05…1,0 %, они наиболее эффективны в маслах парафинового основания.

Применение в качестве базовых масел высокоочищенных нефтяных основ – масел, полученных гидрогенизационными способами, а также ряда синтетических разработок, позволяет значительно улучшить низкотемпературные свойства выпускаемых масел (уверенный запуск двигателей при температурах —40…50 °C) и уменьшить потери на трение при гидродинамическом режиме смазывания. Однако такие масла имеют более низкие антифрикционные и противоизносные свойства.

Для повышения трибологических свойств (минимизации потерь на трение, снижения интенсивности изнашивания и температуры трущихся поверхностей) смазочных материалов в них, кроме противозадирных, вводят также антифрикционные и противоизносные присадки. Эффективность их действия зависит от химического строения присадки и химического состава масляной основы.

Антифрикционные присадки (модификаторы трения) входят в состав энергосберегающих моторных масел. Они обеспечивают гарантированную экономию топлива за счет снижения механических потерь на трение и соответствующего повышения коэффициента полезного действия двигателя. Такие присадки образуют на поверхностях трения многослойные адсорбционно – хемосорбционные пленки «сэндвичевой структуры» с диффузией легирующих металлов присадки в трущиеся поверхности деталей. Они наиболее эффективны при граничном режиме трения, например, между компрессионными поршневыми кольцами и цилиндрами вблизи верхних мертвых точек. Достоинством твердых нерастворимых добавок к смазочным материалам является также их эффективность, как при низких, так и при высоких температурах.

Под воздействием кислорода, влаги и агрессивных веществ металлические поверхности подвергаются коррозии (коррозионному изнашиванию). Следовательно, главное при защите от коррозии – предотвращение контакта металлических поверхностей с этими веществами. Существуют различия между атмосферной коррозией (например, при хранении и транспортировке в условиях влажного и теплого климата) и коррозией под воздействием веществ, образующихся в двигателе (главным образом соединений хлора и брома при сжигании этилированного бензина или серы при сжигании дизельного топлива), а также других агрессивных веществ. К тому же, например, противозадирные присадки, содержащиеся в трансмиссионных маслах, при высоких температурах приобретают коррозионные свойства, вследствие чего в эти масла необходимо вводить противокоррозионные присадки (ингибиторы коррозии).

Ингибиторы коррозии существенно снижают несущую способность масел вследствие конкурентного взаимодействия обеих присадок с металлическими поверхностями. При этом, благодаря наличию природных ингибиторов, неочищенные масла или масла неглубокой очистки обеспечивают определенную защиту от атмосферной коррозии, тогда как антикоррозионные свойства чистых минеральных масел неэффективны при защите от атмосферной коррозии, кислород и влага свободно диффундируют через масляную пленку и взаимодействуют с металлом. Так как коррозия является, главным образом, следствием электрохимических реакций, то и предотвратить ее можно созданием (нанесения) специального защитного слоя, препятствующего непосредственному контакту влаги и кислорода с металлом.

Высокоэффективные ингибиторы должны обладать высокой адгезией к металлической поверхности и создавать пленку, непроницаемую для кислорода и влаги. Различают ингибиторы физического механизма действия, представляющие собой молекулы с длинными алкильными цепями и полярными группами, способные адсорбироваться на металлических поверхностях, создавая защитные слои. К другой группе относятся химические ингибиторы, реагирующие непосредственно с металлом поверхности с образованием защитных химических соединений, изменяющих её электрохимический потенциал.

Коррозия (лат. corrodo – грызу) – процесс разрушения поверхности металла в результате химического или электрохимического воздействия внешней среды.

Противопенные (антипенные) присадки предназначены для предупреждения образования пены и быстрого ее разрушения в масле, в особенности при аэрации в процессе эксплуатации. Механизм действия этих присадок основан на снижении поверхностного натяжения на границе раздела жидкость – воздух. К противопенным присадкам относятся фосфорсодержащие соединения, фторированные углеводороды, эфиры и соли жирных кислот, силоксановые полимеры. Наиболее известна противопенная присадка полиметилсипоксан ПМС-200А, которая широко применяется в различных маслах в концентрации 0,007…0,005 % (мас.).

Функции присадок к смазочным маслам не ограничиваются только каким‑то одним действием. Так, антифрикционные присадки оказывают влияние на противозадирные и противоизносные свойства масел, моющие – на антиокислительные, и наоборот. При этом в рамках каждой группы эффективность присадок может заметно изменяться как в зависимости от концентрации, состава присадки, так и от концентрации компонентов ее составляющих, а также типа и химического состава базового масла.

Возрастающие требования к качеству масел привели к необходимости создания композиций многофункциональных присадок, которые повышают многие эксплуатационные свойства масел. При составлении композиций присадки не просто механически смешиваются, а химически взаимодействуют. Поэтому усиливаются базовые или проявляются новые качества присадок.

Для упрощения хранения, транспортирования и облегчения смешивания базовых масел с присадками выпускают пакеты присадок, в состав которых не входят только вязкостные и депрессорные присадки. При необходимости их вводят в масло дополнительно. Изменяя дозировки пакета присадок, можно приготавливать масла с различным уровнем эксплуатационных свойств. Пакеты присадок обычно содержат до 15 компонентов. Их вводят в масло в концентрации до 12 % (мас.).

Характеристики некоторых отечественных пакетов приведены в табл. 6. Для моторных масел производятся пакеты присадок К-471, К-483, К-484.


Табл. 6. Характеристика некоторых пакетов масляных присадок

Щелочное число – количество кислоты (перхлорной или соляной), необходимое для нейтрализации всех компонентов основы масла, выраженное в эквивалентах КОН. Характеризует количество оснований щелочных элементов, которые могут нейтрализовать свободные кислоты в масле, например кислые продукты окисления масла или продукты горения сернистых топлив, попадающие в моторные масла. Для моторных масел – основной показатель, характеризующий запас качества или уровень эксплуатационных свойств. Щелочность измеряется в мг КОН на 1 г продукта.

От характера взаимодействия присадок друг с другом (в случае композиции) и с полярными компонентами масла зависит восприимчивость (или приемистость) масел к присадкам и взаимное ослабление (антагонизм) или усиление (синергизм) функционального действия присадок при их совместном применении. Антагонизм или синергизм действия смеси двух присадок зависит от их взаимодействия друг с другом, на которое влияют внешние факторы – температура, влажность и т. п. Так, например, на взаимодействие молекул присадок влияют продукты окисления масел, вода может вызывать гидролиз присадок.

Содержание воды определяется путем нагревания пробы нефтепродукта с обезвоженным бензином в дистилляционном аппарате Дина – Старка, снабженном холодильником и градуированным приемником. После конденсации растворитель и вода непрерывно разделяются в приемнике. Вода остается в градуированной части ловушки, а нефтепродукт возвращается в дистилляционный сосуд. Норма содержания воды – «следы», означает не более 0,03 % воды по массе.

Как уже отмечалось, присадки, используемые в маслах, могут проявлять синергетические или антагонистические свойства, усиливающие или ослабляющие их действие по основному функциональному направлению. Так, например, наличие детергентов влияет на эффективность действия дитиофосфатов цинка как противоизносных присадок. Влияние на эффективность действия присадок оказывает и состав масляной основы.

При выборе присадок к маслам помимо состава и свойств самой присадки (наличие примесей, стабильность при хранении и т. д.) учитывают химический состав масла, концентрацию присадки и ее совместимость с присадками другого функционального действия, технологию введения присадок (последовательность, температуру, концентрацию и другие факторы) и условия применения масла (температуру, удельные давления, контактирование с металлами, продолжительность работы и т. п.).


Вопрос. Какова оптимальная периодичность замены моторного масла?

Ответ. Периодичность замены моторного масла определяется рекомендациями производителей автомобиля.

Однако оптимальные сроки замены моторного масла традиционно вызывают достаточно острые дискуссии. Так, например, в Извещении № 46708 от 21.01.2002 г. Лаборатории топливно – смазочных материалов (ТСМ) Волжского автомобильного завода было рекомендовано осуществлять замену масла группы «Стандарт» (стоимость его на тот период составляла 30…60 р. за 1 литр) на автомобилях ВАЗ, выпущенных до 01.10.2000 года и эксплуатировавшихся в зимнее время преимущественно в городе, через 5…7 тыс. км пробега.

Другие примеры. В одном из номеров журнала «За рулем» описывался случай, когда автолюбитель не менял моторное масло до 50 тыс. км пробега. В 2002 году в МАДИ докладывалась докторская диссертация, в которой ее автор доказывал возможность эксплуатации отечественной автомобильной техники до 70 тыс. км пробега без полной замены моторного масла. В качестве профилактического средства в работе предлагалось производить дозаправку до необходимого уровня композицией из используемого в двигателе моторного масла и металлоплакирующих присадок. К слову сказать, защита диссертации оказалась неудачной. Диссертационный совет, состоящий из заслуженных ученых пенсионного возраста, не оценил, столь «революционных», на их взгляд, предложений.

На наш взгляд, оптимальной следует считать периодичность замены моторного масла, указанную в руководстве по эксплуатации каждого конкретного автомобиля.


Вопрос. Влияют ли присадки на повышение ресурса двигателя?

Ответ. Смазочные материалы передовых нефтяных компаний, например такой, как «ChevronTexaco» (США) позволяют эксплуатировать двигатели без ремонта до 1 600 000 км пробега. Например, в 1989 году был зарегистрирован пробег в 1 млн миль без ремонта двигателя Caterpillar 3405B, а в 1996 году также двигателей Cummins и Detroit Diesel Corporation (трех основных производителей двигателей США) при работе на маслах этой фирмы.

Другая известная американская корпорация ExxonMobil для демонстрации возможностей своих синтетических моторных масел Mobil 1 в течение четырех с половиной лет испытывала автомобиль BMW-325i на форсированных режимах, меняя масло в соответствии с требованиями завода – изготовителя, через 10 000 км пробега. Разборка и микрометраж деталей двигателя после 1 млн миль пробега показали, что износ всех деталей оказался в пределах допусков, установленных заводом при выпуске новых автомобилей.

Приведенные результаты по пробегу дизелей на моторных маслах фирмы «ChevronTexaco» и бензинового двигателя на масле Mobil получены на одних из лучших по качеству моторах в мире, которые с самого начала эксплуатировались только с использованием высококачественных смазочных материалов. В этих случаях нет необходимости говорить об использовании каких‑либо дополнительных присадок и добавок к этим маслам. В то же время отечественный автомобильный парк, в большинстве своем состоящий из подержанных импортных машин, а также из выпускаемой новой российской техники, не отвечает аналогичным требованиям по качеству. Для такой техники простая замена моторного масла, пусть даже на самое лучшее и дорогостоящее, не решит проблем поддержания ее в работоспособном состоянии.


Вопрос: Как правильно подбирать и применять моторные масла?

Ответ: Назначение заводом – изготовителем необходимого моторного масла для конкретного двигателя зависит от условий его будущей работы (особенностей эксплуатации). Для этого принято оценивать напряженность или жесткость работы моторного масла в заданном двигателе, а значит, определять степень его форсирования. Так, например, подбор моторного масла может осуществляться по параметру тепловой напряженности двигателя, пропорциональному температуре масла в верхней поршневой канавке. С ее ростом повышаются требования к качеству масла, рекомендуемого для смазывания двигателя.

Подбор масла потребителем также имеет свои особенности. Перед покупкой смазочных материалов внимательно прочитайте требования (рекомендации) завода – изготовителя Вашей техники и по возможности приобретайте те, которые одобрены производителем автомобиля в соответствии с классификациями SAE, API и ACEA и с учетом условий эксплуатации.

Рекомендации по подбору масел по вязкости могут быть следующими:

– для нового двигателя или двигателя с пробегом автомобиля менее 25 % от нормативного межремонтного ресурса двигателя рекомендуется применять всесезонно моторные масла классов SAE 5W-30 или 10W-30;

– при эксплуатации технически исправного автомобиля с пробегом 25…75 % от нормативного межремонтного ресурса двигателя целесообразно применять летом моторные масла классов SAE 10W-40 и 15W-40, зимой – SAE 5W-30 и 10W-30, а всесезонно – SAE 5W-40;

– на автомобилях с большим пробегом (более 75 % от нормативного межремонтного ресурса двигателя) необходимо применять летом моторные масла классов SAE 15W-40 и 20W-50, зимой – SAE 5W-40 и 10W-40, а всесезонно – SAE 5W-50.

Синтетические и полусинтетические смазочные материалы обладают более высокими трибологическими свойствами, но они и значительно дороже. Поэтому если в Вашем агрегате «синтетика» не предусмотрена, лучше её и не покупать.

Не рекомендуется эксплуатировать технику на масле, не соответствующем сезону. Летнее масло в холодное время создаёт трудности с запуском и прогревом двигателя, а зимнее в летний период не гарантирует надежной защиты трущихся соединений от изнашивания. Не пытайтесь уменьшить вязкость летнего масла в зимнее время введением в него топлива. Это приведёт к резкому снижению стабильности пакета присадок, их выпадению в осадок и возможному отказу двигателя.

Отказ – переход от работоспособного состояния в неработоспособное происходит после наступления события (технический сленг – «выход из строя»). Отказы могут быть очевидными (безусловными), такие как заклинивание двигателя, потеря работоспособности шины хотя бы на одном колесе автомобиля, утечка топлива или смазочного материала и др. Ко второй группе причин относятся параметрические отказы, когда падает мощность двигателя, увеличивается расход топлива и моторного масла, снижается давление в системе смазки и др.

Отказ деталей и рабочих органов машин при нормальных условиях эксплуатации происходит вследствие различных видов физического износа: усталостных разрушений, деформации материалов, механического износа, коррозии, эрозии, кавитации, старения материала и т. д.

Покупайте моторное масло только в специализированных магазинах и ни в коем случае на «обочине», спрашивайте сертификаты качества и соответствия, проверяйте наличие защитных пломб и голограмм.

Перед введением свежего масла (сменой масла) рекомендуется проводить комплексную очистку систем двигателя специальными составами и замену фильтрующих элементов.

Доливайте в двигатель только те масла, которые были введены при его заправке. Для этого сразу приобретайте необходимый излишек масла и возите его с собой.


Вопрос: Возможна ли взаимозаменяемость масел в рамках одной спецификации, например АСЕА?

Ответ: Если в сервисной книжке указано на необходимость применения масел категории А1/В1, то в принципе допускается применять также масла категорий А3/В3/В4 или А5/В5 (рис. 6).


Рис. 6. Взаимозаменяемость моторных масел по спецификации ACEA


Что касается масел АСЕА А5/В5, то хоть они и схожи с маслами А3/В3/В4, тем не менее имеют ряд принципиальных отличительных особенностей и не могут быть заменены маслами другого качества.


Вопрос. Совместимы ли минеральные и синтетические моторные масла?

Ответ: Достаточно часто из уст автомобилистов можно услышать о негативных последствиях смешивания разнородных масел: образование сгустков, закупоривание масляных каналов, нарушение слива масла из турбокомпрессора. В то же время известны случаи абсолютно безболезненного смешивания разнородных масел. Так, например, в Учебно – техническом центре AGA лабораторным методом произведено попарное смешивание в соотношении 1:1 синтетического масла «Mobil» и минеральных масел «Mobil» и «Castrol». Все эти смеси были доведены до кипения. Никаких сгустков или осадков не возникло, все смеси после нагревания представляли собой абсолютно однородный состав, который оставался стабильным в течение месяца.

Известны случаи штатной длительной эксплуатации двигателей на смеси синтетических и минеральных моторных масел разных фирм. Однако специалисты по моторным маслам Научного автомоторного института (НАМИ) и Всероссийского НИИ по переработке нефти (ВНИИНП) утверждают, что нельзя гарантировать совместимость любой пары разнородных масел. В одних случаях все протекает нормально, а в других происходит реакция между компонентами присадок, ухудшающая свойства масел. Для ответа на вопрос о свойствах смеси конкретной пары минерального и синтетического масла, необходимо проводить специальную экспертизу, поэтому смешивать моторные масла, изготовленные на разной основе (минеральное, полусинтетическое, синтетическое), всё же не следует.

Переход с минерального на синтетическое масло может иметь место, если после минерального масла сначала использовать полусинтетическое, а затем уже залить синтетическое, или применить при смене масла, так называемые, адаптирующие промывки и поменять, разумеется, масляный фильтр.

Указанную процедуру можно проводить и в обратной последовательности. Надо только знать, что для синтетических масел необходимы сальники, изготовленные из специальных материалов, поэтому нежелательно применять синтетические масла в двигателях, инструкцией по эксплуатации которых это не предусмотрено.

В отношении смешивания между собой однородных масел разной вязкости, то каких‑либо ограничений здесь нет.

Препараты автохимии к моторным маслам

Приработочные препараты

Проведение обкатки (приработки) агрегатов транспортных средств, таких как двигатели внутреннего сгорания и элементы трансмиссии, обусловлено наличием дефектов изготовления и сборки деталей и узлов, приводящих к схватыванию поверхностей трения и возможному появлению на них задиров, а также необходимостью выявления возможных скрытых дефектов изготовления.

Известно, что большинство импортных автомобилей практически не нуждаются в эксплуатационной обкатке, тогда как для отечественных двигателей она является обязательной технологической операцией, как на автозаводах, так и на ремонтных предприятиях. Необходимость в обкатке связана с существующим уровнем проведения сборочных и особенно ремонтных работ. Например, ресурс капитально отремонтированной техники в настоящее время в России составляет около 45…50 % от ресурса новой.

Обкатка (приработка) – заключительная технологическая операция изготовления или ремонта двигателя, качественное проведение которой позволяет уменьшить отказы в период эксплуатации и повысить ресурс.

Для дизеля продолжительность обкатки составляет 30…40 моточасов или около 5000 км пробега для автомобиля. Проведение столь длительной обкатки не может быть оправдано ни экономически, ни технически. Развитие машиностроения в нашей стране, и особенно за рубежом, указывает на необходимость ускорения этого процесса и сокращения его в обозримом будущем до 2…3 мин., необходимых для контроля работоспособности изделия и выявления возможных скрытых дефектов

При приработке происходит изменение геометрии поверхностей трения и физико – механических свойств поверхностных слоев материалов в начальный период трения, проявляющееся при постоянных внешних условиях и заключающееся в уменьшении силы трения, температуры и интенсивности изнашивания. Приработку деталей производят на машиностроительных и ремонтных предприятиях в процессе стендовой обкатки, а также в хозяйствах – потребителях в период эксплуатационной обкатки.

Следует иметь в виду, что практически любая разборка трущихся соединений приводит к необходимости проведения операций обкатки (приработки) вновь собранного узла с потерей части межремонтного ресурса на приработочный износ.

Приработочные присадки и обкаточные технологии давно применяются на мотороремонтных и машиностроительных заводах, однако, в розничной торговле любительских препаратов не так уж и много. Фирмы, выпускающие автохимию, предлагают в качестве приработочных материалов использовать, в основном, препараты, предназначенные для повышения антифрикционных и противозадирных свойств поверхностей трения.

Анализ кривой межремонтного цикла (рис. 7) показывает, что применение приработочных препаратов позволяет интенсифицировать приработку, тем самым сократить продолжительность этапа приработки с Tп до Тпо и продлить зону установившегося режима изнашивания (межремонтного ресурса с Тр до Тро). За счет этого увеличение в зависимости от условий эксплуатации межремонтный ресурс агрегата может увеличиться до 50 %, что особенно заметно на дизелях.


Рис. 7. Кривые межремонтного цикла эксплуатации техники с применением (1) и без применения (2) обкаточных присадок:

Wотк – показатель наступления неработоспособного состояния (отказа) объекта; Wпр – показатель завершения приработки объекта; Тп – продолжительность штатной приработки (без присадок); Тпо – продолжительность приработки с присадкой; Тр – межремонтный ресурс объекта со штатной обкаткой; Тро – межремонтный ресурс объекта с обкаткой на присадках


Как уже отмечалось, из любительских препаратов автохимии наиболее известны специальные приработочные составы Lubrifilm Diamond Run (Actex S. A., Швейцария) и Fenom Nanodiamond Green Run на базе наноалмазов, а также приработочные составы для топлива, двигателя и трансмиссии – марки Fenom Green Run той же фирмы.

Fenom Nanodiamond Green Run (англ. Green Run – «приработка») – состав на базе неабразивных наноалмазов (диаметром 4…6 нм) и кластерного углерода для ускоренной приработки трущихся соединений двигателей и трансмиссий автомобильной и другой транспортной техники, содержащий дополнительно смесь диэфиров и антиоксидантов в высококачественной синтетической основе. Препарат используется в составе масла и обеспечивает ускоренную и качественную приработку пар трения после ремонта агрегатов, при обкатке новых автомобилей или при технологической обкатке агрегатов на машиностроительных предприятиях.

Состав изменяет реологические свойства масла и реализует безабразивную трибохимическую приработку не за счет скалывания и разрушения микронеровностей поверхностей трения, а посредством пластифицирования, деформирования (вдавливания) и наклепа микровыступов шероховатости поверхности. При этом в период обкатки обеспечивается экономия топлива до 8 и моторного масла до 10 %.

Приработочная присадка к топливу Fenom Green Run предназначена для введения в бензин и в дизельное топливо. Она обеспечивает ускоренную послеремонтную приработку с минимальным износом пар трения цилиндропоршневой группы, клапанов и топливной аппаратуры; не содержит абразивных и иных наполнителей, применяемых для ускорения приработки; повышает компрессию и обеспечивает ее выравнивание по цилиндрам, снижает угар масла и удельный расход топлива, к тому же она безопасна для каталитических нейтрализаторов.

Приработочный состав Fenom Green Run для двигателя и трансмиссии серии Fenom предназначен для ускорения и улучшения качества приработки других деталей ДВС, таких как соединение «шейка коленчатого вала – вкладыш», деталей газораспределительного механизма, а также деталей механических трансмиссий и т. п., в случае их замены при ремонте. Он совместим со всеми типами моторных и трансмиссионных масел, не влияет на периодичность смены масла и не требует его досрочной замены. Не содержит абразивных и иных металлических наполнителей, применяемых для ускорения приработки. Состав безопасен для каталитических нейтрализаторов. Обеспечивает быстрое и эффективное достижение равновесной шероховатости, минимизирующей трение и износ в период длительной эксплуатации машин.

Несмотря на высокую эффективность и целесообразность использования приработочных препаратов на отечественной автомобильной технике, автолюбителям всё же лучше воздержаться от их применения до окончания гарантийного срока, установленного заводом – изготовителем. Иначе любой дефект или отказ двигателя, даже случившейся по вине завода – изготовителя, будет им оспорен по результатам химического анализа моторного масла, который неизбежно укажет на применение не допущенных заводом смазочных материалов и присадок.

Однако после проведения ремонтных работ своими силами или при отсутствии по каким‑либо причинам гарантийных обязательств применение приработочных препаратов позволит не только быстрее выйти на штатные режимы эксплуатации (сократить время обкатки), но и значительно увеличить межремонтный ресурс техники (повысить качество приработки).

Ремонтно-восстановительные препараты

В результате многолетних исследований в основном отечественных ученых и практиков трение теперь представляется не только как разрушительное явление природы. Стало известно, что в определенных условиях оно может быть реализовано как самоорганизующийся созидательный процесс, что позволило разработать новые, ранее не известные методы технического сервиса машин, в том числе безразборного восстановления агрегатов и узлов техники в процессе их непрекращающейся эксплуатации.

Впервые термин «безразборное восстановление» официально применен и введен в начале 1993 года одним из авторов данной книги в связи с изобретением, а затем патентованием «Способа безразборного восстановления трущихся соединений». В дальнейшем, на основании теоретических предпосылок и проведенных исследований автором данной книги сформулировано и в настоящее время интенсивно развивается самостоятельное научно – техническое направление – безразборный технический сервис машин и механизмов.

Теоретическими предпосылками к появлению безразборного сервиса (восстановления) явились исследования в области теории самоорганизации, предсказанной И. Р. Пригожиным, а также научные открытия российских ученых. К ним в первую очередь относятся: эффект пластифицирования поверхностей трения в присутствии поверхностно – активных веществ (ПАВ), открытый П. А. Ребиндером; явление избирательного переноса при трении (эффекта безызносности), открытое и исследованное Д. Н. Гаркуновым и И. В. Крагельским; эффект аномально низкого трения, обнаруженный Е. А. Духовским, А. А. Силиным и их коллегами.

Эффект безызносности (избирательный перенос при трении) – научное открытие русских ученых Д. Н. Гаркунова и И. В. Крагельского. Возникает в результате протекания на поверхности контактирующих тел химических и физических процессов, приводящих к образованию самоорганизующихся систем автокомпенсации износа и снижения коэффициента трения.

Безразборный сервис подразумевает комплекс технических и технологических мероприятий, направленных на проведение операций технического обслуживания и ремонта узлов и механизмов без проведения разборочно – сборочных операций с применением передовых разработок автохимической промышленности. Он базируется на вышеуказанных открытиях и является новым научно – практическим направлением.

К разработкам в области безразборного сервиса относятся не только присадки и добавки к различным автомобильным технологическим средам, но и самостоятельные препараты и технологии по их применению. Безразборный сервис может включать операции обкатки, диагностики, профилактики (сезонной подготовки), автохимического тюнинга, очистки и восстановления как отдельных соединений, агрегатов и механизмов, так и автомобиля в целом.

Автохимический тюнинг специальная обработка двигателя препаратами автохимии в целях снижения механических потерь на трение и повышения мощности двигателя.

Особое место, и это признали даже производители смазочных материалов, начав производство специальных моторных масел для автотранспорта с пробегом более 100 тыс. км, занимают методы и средства, предназначенные для частичного восстановления изношенных поверхностей трения узлов и агрегатов автомобиля в процессе непрекращающейся эксплуатации.

В классическом понимании процесс восстановления детали, соединения или машины в целом подразумевает проведение технических и технологических мероприятий, направленных на изменение либо их геометрических размеров до номинальных или ремонтных, либо восстановление работоспособности до нормативных показателей. При этом проводить ремонтные работы имеет смысл даже в том случае, если наблюдается только частичное (неполное) выполнение этих требований.

Известные в настоящее время ремонтно – восстановительные препараты (РВП) по компонентному составу, физико – химическим процессам их взаимодействия с трущимися поверхностями, свойствам получаемых покрытий (защитных пленок), а также механизму функционирования в процессе эксплуатации автомобиля можно разделить на три основные группы: реметаллизанты (металлоплакирующие соединения), полимерсодержащие препараты и геомодификаторы.

К восстановителям, в основном по критерию повышения технико – экономических показателей обработанной техники, следует условно отнести также кондиционеры поверхности, слоистые добавки – модификаторы и нанопрепараты.

В некоторых случаях РВП называют еще ремонтно – эксплуатационными препаратами (РЭП), что на самом деле более точно отражает их предназначение и заложенные функциональные свойства.

Практически все фирмы – производители препаратов автохимии выпускают также добавки к трансмиссионным маслам и пластичные смазки – восстановители.

Все препараты различаются способами применения (введения в трущиеся соединения). Большинство составов вводят в моторные и трансмиссионные масла, топливо или пластичные смазки. Другие подают через систему питания (впускной трубопровод) в виде аэрозолей и добавок к топливно – воздушным смесям – так называемая «специальная обработка». Ряд препаратов подается непосредственно в зону трения, например, в цилиндропоршневую группу.

Применение РВП определяется техническим состоянием автомобиля. При этом необходимость того или иного воздействия оценивается на основании результатов технической диагностики. По результатам диагностирования назначаются либо профилактические препараты более «мягкого» действия, либо препараты, обеспечивающие более интенсивное воздействие на трущиеся соединения и агрегаты автомобиля.

Иногда необходимость применения РВП обусловлена рядом других причин (принудительных), например, участием в соревнованиях, пробегах или каких‑то других нештатных испытаниях (автохимический тюнинг).

Выпускаются также РВП комплексного действия, например, в одном флаконе реметаллизант и кондиционер металла, полимерсодержащий препарат и слоистая добавка. Встречаются препараты, вроде присадки в моторное масло Engine R263 японской фирмы AUG, разработчики которой заявляют о содержании в ней практически всех ремонтно – восстановительных компонентов: тефлона, керамики, молибдена, а также еще каких‑то полимерных и поверхностно – активных веществ в одном флаконе.

Реметаллизанты (металлоплакирующие композиции)

Реметаллизанты (металлизанты) – особый класс препаратов автохимии, базирующийся на аспектах теории самоорганизации, предсказанной И. Р. Пригожиным, и научном открытии российских ученых Д. Н. Гаркунова и И. В. Крагельского – явлении избирательного переноса при трении (эффекта безызносности).

Реметаллизант (лат. re – приставка, обозначающая возврат (return)) (металлоплакирующая присадка) (франц. plaquer – покрывать) – порошковая или ионная добавка на основе пластичных металлов к топливно – смазочным материалам, технологическим и другим средам, реализующая эффект избирательного переноса при трении (эффект безызносности).

Механизм их действия заключается в металлоплакировании трущихся поверхностей вследствие осаждения металлических компонентов, входящих в состав реметаллизантов во взвешенном или ионном виде. При этом частично устраняются микродефекты, снижается коэффициент трения, значительно повышается износостойкость плакированных поверхностей, в некоторых случаях в сотни раз.

Износостойкость – свойство материала оказывать сопротивление изнашиванию в определенных условиях трения, оцениваемое величиной, обратной скорости изнашивания или интенсивности изнашивания.

Термин «металлоплакирующий» введен Д. Н. Гаркуновым, В. Г. Шимановским и В. Н. Лозовским в связи с изобретением ими в 1962 году смазочного материала, реализующего эффект избирательного переноса при трении.

В настоящее время металлоплакирующие композиции (реметаллизанты) делят на порошковые и ионные. Порошковые металлоплакирующие препараты в качестве основного компонента содержат ультрадисперсные порошки, а ионные – полностью маслорастворимые соли пластичных металлов, органические кислоты, мыла жирных и нафтеновых кислот, жирные амиды, эфиры жирных кислот и спиртов, а также глицерин. В качестве плакирующих металлов используются медь, олово, цинк, железо, алюминий, свинец, серебро, хром, никель, молибден.

Металлсодержащие смазочные композиции, кроме порошкообразных металлов, обычно содержат активные химические компоненты, способные образовывать с ними структуры, необходимые для реализации эффекта безызносности. Активные компоненты смазочной среды образуются в процессе трения или добавляются при приготовлении. Подтверждением этому служат смазочные композиции, содержащие альдегиды, способные при трении образовывать вещества, необходимые для формирования металлсодержащих соединений, например комплексов двухвалентной меди.

Все жирные кислоты (предельные и непредельные) являются поверхностно – активными веществами (ПАВ). Под действием жирных кислот и других органических компонентов поверхности трения пластифицируются, что способствует быстрому созданию оптимальных шероховатостей трущихся поверхностей. При относительно высоких температурах, порядка Т = 423…477 К, на них образуются тончайшие медные структуры (толщиной около 100 нм) – «сервовитная» пленка (рис. 8). Под действием содержащихся в присадке активных групп СООН и компонентов СМ на поверхности «сервовитной» пленки образуется полимерная пленка – «серфинг – пленка».

Сервовитная пленка (лат. servo vitte – спасать жизнь) – особая структура на поверхностях трения, характерная для «эффекта безызносности», в которой реализуется особый механизм деформации, протекающий без накопления дефектов, свойственных усталостным процессам. (Термин введен Д. Н. Гаркуновым и И. В. Крагельским).


Рис. 8. Структура поверхности, восстановленной реметаллизантом:

1 – металлическая поверхность детали; 2 – смазочный материал; 3 – «сервовитная» пленка


Впервые присадка, образующая в процессе работы на трущихся поверхностях трения медную пленку, разработана в 60–х годах прошлого века в Московском технологическом институте (ныне Московский университет сервиса) под руководством Ю. С. Симакова и Д. Н. Гаркунова. Она состояла из продуктов взаимодействия 50 % олеиновой кислоты и 50 % олеата меди. Эта присадка послужила прототипом металлоплакирующей присадки (МПП) МКФ-18, а впоследствии целой группы маслорастворимых (ионных) присадок этой серии, таких как МКФ-18У, «Ника», «Стимул-1», «Урал» (производства ООО «Кристалл», Екатеринбург), МКФ-18Е (выпускавшейся на Елецком ремонтно – техническом предприятии и имевшей торговое наименование «Велап» для масел и «Сомет» для смазочно – охлаждающих технологических сред), МКФ-18Х (для холодильного оборудования – выпуска Новокуйбышевского нефтезавода), «Return Metal» (ИЧП «Петров», г. Москва) и многих других.

Швейцарская компания Actex S. A. в 1979 году начала серийное производство металлоплакирующих порошковых препаратов марки Lubrifilm metal, основанных на практической реализации эффекта безызносности. Через 13 лет, в 1992 году, Lubrifilm metal – одним из первых препаратов автохимии этого класса – был официально сертифицирован НАМИ (Научный автомоторный институт, г. Москва) и одобрен АвтоВАЗом.

Современные разработки компании Actex S. A. – реметаллизанты Metalyz 6 и Metalyz 8, которые использовались в качестве одного из компонентов моторного масла «Уфалюб» Уфимского нефтезавода.

Lubrifilm metal (Metalyz) представляет собой ультрадисперсный порошок, состоящий из частиц свинца, включённых в кристаллическую матрицу медно – серебряного сплава и покрытых специальной защитной оболочкой, позволяющих исключить их окисление. Применяется в виде добавки к моторному маслу для создания в зоне высоких удельных нагрузок металлической композиционной пленки. Способ применения, описываемый в инструкции, следующий:

– произвести замену моторного масла и масляного фильтра;

– пустить двигатель и в течение 5 мин. произвести его разогрев;

– остановить двигатель, снять пробку маслозаливной горловины, встряхнуть тубу и содержимое вылить в горловину;

– закрыть пробку и приблизительно через 5 мин. произвести запуск двигателя.

Российскими аналогами Lubrifilm metal по составу и технологическим свойствам являются реметаллизанты РиМет, РиМет – Т, Motor Healer, разработанные в 1987–2001 гг. Институтом металлургии Уральского отделения РАН.

Реметаллизант РиМет состоит из высокодисперсных порошков (размер частиц до 100 нм) сплава меди, олова и серебра в базовой нейтральной основе. Порошковый сплав получают из металлического газа в условиях глубокого (космического) вакуума.

Однако при использовании РиМета отмечено оседание крупных частичек порошка в картере при стоянке автомобиля в течение нескольких суток. Разработанный в основном для бензиновых двигателей, он показал слабую эффективность в дизелях. Связано это с тем, что ПАВ, образующие на поверхности каждой микрочастицы защитную оболочку, которая защищает основной металл частицы от окисления (сгорания) на воздухе, при более высокой рабочей температуре в цилиндрах дизеля теряют свои защитные свойства. Это приводит к ухудшению качества моторного масла и, естественно, эффективности самого препарата.

С целью устранения отмеченных недостатков екатеринбургская фирма – производитель «Fine Metal Powders» разработала новый препарат «Motor Healer» с более мелкодисперсными компонентами.

Независимая фирма «ВМПАвто» (бывший официальный представитель «ВМП» в г. Санкт – Петербурге) выпустила несколько порошковых металлоплакирующих препаратов собственного производства марки «Ресурс», а также продукт комплексного металлоплакирующего и кондиционирующего действия – Remetall. В разработках фирмы был применен пористый, или канальчатый, хром. Данный тип материала используется в высокофорсированных дизельных двигателях, работающих при высоких нагрузках в камере сгорания и температуре до 250 оС, в том числе в двигателях автомобилей, участвующих в гонках «Формула-1». Для обеспечения необходимой долговечности кольца покрывают гальваническим пористым хромом. Известно, что обыкновенный хром обладает высокой износостойкостью, но плохо смачивается маслом. Пористый хром может, как губка, удерживать масло, что позволяет выдерживать нагрузки, недоступные материалам с плотным покрытием, особенно в период приработки.

Одной из последних разработок фирмы «ВМПАвто» является металлоплакирующий препарат «Remteka».

Так как маслорастворимые соли пластичных металлов (меди, олова) и глицерин, часто входящий в состав металлоплакирующих присадок и поглощающий воду, обладают повышенными коррозионными свойствам, то в их состав добавляют специальные ингибиторы коррозии, такие как аминопарафин, АКОР-1 и др.

Наиболее известными ионными металлоплакирующими композициями являются медьсодержащие препараты типа МКФ-18 (в розничную продажу не выпускается), а также оловосодержащие СУРМ (ООО «Пиотр», Санкт – Петербург).

На Московской международной автомобильной выставке «Мотор – Шоу» (MIMS—2004) фирма Shell Car Care Internaional Ltd (г. Манчестер, Великобритания) впервые представила собственный ионный реметаллизант для двигателя – Remetallisant Moteur под торговой маркой «Blue Coral».

При применении препаратов этой группы необходимо учитывать следующие особенности:

1. Если рассматривать эффективность совместного применения хрома и дисульфида молибдена в смазочных материалах, то надо иметь в виду, что в классическом триботехническом понятии эти два компонента достаточно антагонистичны. Хром при высоких нагрузках проявляет свойства металлоплакирования, для чего необходимы ювенальные (свободные от окислов и ПАВ) поверхности, тогда как дисульфид молибдена эти самые поверхности пассивирует (снижает поверхностную энергию), а также препятствует непосредственному контакту активного хрома и трущейся поверхности. Сказанное можно отнести и к совместному применению цинка и дисульфида молибдена в многоцелевой смазке МС 1000.

Триботехника – изучает вопросы практического использования физико – химических превращений при процессах трения, изнашивания и смазки машин в технике.

2. При применении препаратов на основе ультрадисперсных порошковых материалов необходимо учитывать, что ряд частиц, введенных в СМ в виде добавок (взвесей), например реметаллизантов РиМЕТ, Ресурс, Lubrifilm, Супермет и др., могут быть центрифугированы как фильтрами тонкой очистки (центрифугами дизелей), так и коленчатым валом, что может привести к забиванию основной масляной магистрали двигателя (каналов коленчатого вала). Поэтому более прогрессивно применение ионных металлоплакирующих препаратов, как наиболее безопасных и стабильных по своим свойствам, даже при попадании в базовое масло топлива и воды, что для изношенных автомобилей является актуальным.

3. Существует критическая концентрация соединений, обладающих восстановительной способностью, выше которой из‑за быстрого восстановления оксидных пленок в зоне трения вероятность намазывания возрастает. В этом случае отмечается повышенная интенсивность изнашивания. Завышенные концентрации могут приводить к восстановлению ионов металлов и их выпадению в осадок, повышению коррозионных свойств композиций базового смазочного материала и восстановителя.

4. Надо иметь в виду, что образование устойчивых защитных металлических пленок – процесс достаточно продолжительный (постепенный), поэтому при испытаниях, а также штатной работе техники резкое (внезапное) улучшение эксплуатационных показателей может не наблюдаться, но обязательно будет отмечаться их положительная динамика, существенно влияющая на повышение надежности и ресурса узлов и агрегатов техники.

Полимерсодержащие добавки

В конце пятидесятых годов прошлого столетия Х. В. Германсом и Т. Ф. Иганом было обнаружено явление образования органических отложений (загрязнений) на релейных контактах телефонной и телеграфной связи. На основании специальных высокоточных экспериментов ими было установлено, что отложения в зоне контакта образуются вследствие химических превращений паров органических веществ, выделяемых некоторыми изоляционными материалами. Во всех случаях образовавшиеся отложения снижали коэффициент трения в контактной паре. Поэтому эти соединения было предложено называть «полимерами трения» (frictional polymers).

Автохимические препараты, содержащие в своем составе политетрафторэтилен («тефлон»), фторопласт-4, перфторпропиленоксид, перфторполиэфир карбоновой кислоты («эпилам»), полисилоксаны (силикон) и некоторые другие, следует выделить в отдельную группу – полимерсодержащие (или полимерные) добавки или модификаторы.

Еще в 30–е годы прошлого века американский инженер норвежского происхождения Оле Бардаль (Bardahl) разрабатал и внедрил революционный, на тот момент, принцип смазывания. Он был основан на феномене поляризации молекул смазочного материала, что позволяло слою смазочного материала притягиваться к любым металлическим поверхностям, создавая защитную пленку. Разработка была столь эффективна, что американская армия присвоила ей гриф «секретно» вплоть до конца второй мировой войны. Эти разработки можно считать первыми прообразами нового направления в производстве смазочных материалов и автохимии – поляризованных соединений. В настоящее время фирма Bardahl продолжает дело своего основателя, производя целый спектр препаратов специальной автохимии.

В конце прошлого столетия за рубежом получила известность и достаточно длительное время широко применялась специальная жидкость SLIK-50 на основе политетрафторэтилена (ПТФЕ), разработанная Нейлом Греттоном и производимая в Великобритании, но затем она надолго изчезла с рынка автохимии. Также была известна более поздняя разработка – SLIDER 2000 PTFE. Как указано в рекламных проспектах фирмы – производителя, она также содержала ПТФЕ и позволяла существенно повышать надежность обработанных узлов и агрегатов: она могла применяться как добавка к маслам двигателей, станков и т. д., а также вводиться во впускной коллектор ДВС в виде аэрозолей.

Политетрафторэтилен или фторопласт (химическая формула (C2F4)n, где n = 1000…10 000) был открыт в 30–х годах прошлого столетия американским ученым Роем Планкеттом и был запатентован компанией «DuPont de Neumours & Company» (Дюпон) под торговой маркой Тефлон®. Применение ПТФЕ обусловлено тем, что он занесен в Книгу мировых рекордов Гиннесса, как самый скользкий материал в мире. Многие ученые всего мира стали активно работать с этим материалом, предлагая его применение во многих областях, в том числе в автомобильной и автохимической промышленности.

Было также разработано множество модификаций ПТФЕ, которые получили различные наименования: полифлон (Япония), алгофлон (Италия), флюон (Англия), сорефлон (Франция), гостафлон TP (Германия);

политрифторхлорэтилен, известный под торговыми марками фторопласт-3, дайфлон (Япония), гель F (США), гостафлон (Германия), волталеф (Франция); поливинилиденфторид, известный под торговыми марками, фторопласт-2, кайнар (США), KF – полимер (Япония); видар (Германия); солеф (Бельгия), форафлон (Франция); сополимер тетрафторэтилена с этиленом, известный под торговыми марками фторопласт-40, тефзел (США), неофлон ETFE (Япония), хостафлон ET (Германия); сополимер тетрафторэтилена с винилиденфторидом, известный под торговой маркой фторопласт-42; сополимер тетрафторэтилена с гексафторпропиленом, известный под торговыми марками фторопласт-4МБ, тефлон FEP (США), хостафлон FEP (Германия), неофлон (Япония); сополимер тетрафторэтилена с перфторвинилпропиловым эфиром, известный под торговыми марками фторопласт-50, тефлон PFA (США), а также отечественные фторопласты марок Ф4, Ф3 и др.

Компания Shell, получив права на торговую марку SLIK 50, снова выпустила на рынок автохимии серию препаратов под данной торговой маркой.

Конец ознакомительного фрагмента.